Metering pumps, components and metering systems

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842-0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2015

Product Catalogue Volume 1

Metering Pumps, Components and Metering Systems

Metering technology for professionals

The heart of metering technology is quite clearly the pump.

With its optimum performance range and functionality adapted to the feed chemical, it is responsible for smooth-running metering processes.

Chapter 1 focuses on metering pumps that perform all possible metering tasks, ranging from micrometering pumps to pumps delivering up to 75 l/h at a maximum back pressure of 60 bar.

Chapter 2 goes on to present durable and easy-to-operate transfer and peristaltic pumps for pure pump capacities, as well as the matching components, like sturdy storage tanks and collecting pans.

Refer to **Chapter 3** for fully ready mounted metering systems. Whether standard or made-to-measure, thanks to their perfect interaction, the precisely coordinated components ensure a safe and immediately ready-to-use complete solution.

We're there for you!

The selection of a product depends on a number of different factors.

Our team will be happy to be of assistance should you have any questions about our metering technology. Give us a call! We look forward to hearing from you.

Monday to Friday 8:00 - 16:30

ProMinent Germany Sales

0049 6221 842-0 info-de@prominent.com

Technical Consulting

0049 6221 842-1850 service@prominent.com

Pump Guide

You can also find information online. Try out our ProMinent Selection Guide on our website. Just enter the required pump capacity and back pressure – and the Pump Guide will present you with a list of suitable metering pumps. It's the quickest and easiest way to track down the right pump for your needs.

www.pump-guide.com

Note:

We can also support you by phone in selecting the right products and, in many cases, optimising entire applications. For more complex requirements, our consultants will hand the task over to a field sales colleague, who will then clarify your requirements in person on site.

After-sales Service

Our service technicians are on hand to help you. Regardless of whether you need assistance with initial installation or with maintenance and repair – we're happy to help!

0049 6221 842-1850 service@prominent.com

Step by Step to the Right Product

Metering tasks come in all shapes and sizes! Provide us with your data - we'll deliver the optimum solution!

The following data sheet will help in solving your metering problem. Please enter your requirements and conditions and return it to info-de@prominent.com . Our Service Centre will use your data to reach the optimum result - the optimum metering pump and matching accessories for your application.

Required Data for Designing Metering Pumps and Accessories

	Min./max. required feed rate	I/h
	Available power supply	V, Hz
	Min./max. operating temperature	°C
	Properties of process chemical	
	Name, concentration %	
:	Solids content %	
	Dynamic viscosity mPa (= cP)	
,	Vapour pressure at operating temperature	bar
	Remarks, e.g. abrasive,	
	gaseous, flammable,	
	corrosive towards	
	Suction conditions:	
	Min./max. suction lift	m
	Min./max. positive suction head	m
	Pressure in chemical tank	bar
:	Suction line length	m
:	Suction line diameter	mm
- 1	Discharge conditions:	
	Min./max. back pressure	bar
	Min./max. discharge head	m
	Min./max. negative discharge head	m
	Discharge line length	m
	Discharge line diameter	mm
	Number of valves and fittings in	
	suction and discharge line	
	Data required for proportional	
	dosing:	
	Water flow Q min./max.	m ³ /h
	Required final concentration	g/m ³ . ppm

Example:

A required dose in $mg/l = g/m^3 = ppm$

(Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter 5 l.

 $Process \ fluid = sodium \ hypochlorite \ solution \ Na \ OCI \ with \ 12 \ \% \ chlorine \ (by \ weight) = 120 \ g/kg = 150 \ g/l = 150 \ mg/ml$

Selected dosing pump GALa 1005 NPB2 with 0.41 ml/per stroke volume, at max. 10800 strokes/h.

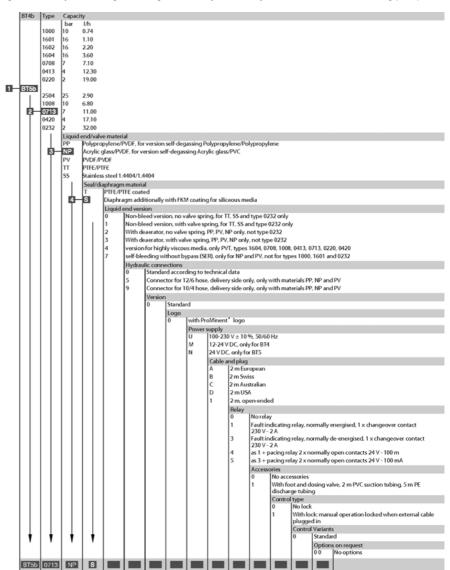
Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput l/h: pulse spacing l/pulse = 50,000 l/h: 5 l/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (I/h) x stroke volume (I)}}{\text{pulse spacing (I)}} = \frac{50,000 \text{ I x } 0.00041 \text{ I}}{\text{h x 5 I}} = 4.1 \text{ I/h}$$

Final dose
$$=$$
 $\frac{\text{concentration (mg/ml)} \times \text{stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg} \times 0.41 \text{ ml}}{\text{ml} \times 5 \text{ l}} = 12.3 \text{ mg/l}}{\text{e 12.3 g/m}^3} = 12.3 \text{ ppm chlorine Cl}_2$

Free Choice with the Identity Code

Use the identity code to determine the properties and features of your low-pressure metering pump. Simply select, enter the code in the bottom row and you've configured your product!


You've opted for a pump product range. It's now up to you to configure the pump exactly to meet your individual needs.

First determine the **pump type (1)**. This is based on the pump capacity you require and the back pressure present. Enter the result at the very bottom, in the grey row of the identity code.

The medium to be metered is crucial when it comes to the **material of the dosing head (2)** and the **seals (3)**. Once again enter the selected code in the bottom row.

You can now select the features and properties of your product with a few restrictions.

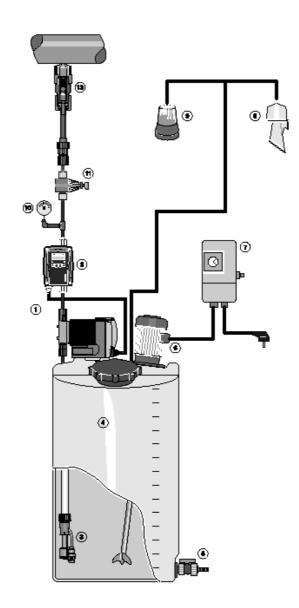
Work through column by column, generating the identity code for your own individual metering pump.

We will be happy to advise you on your metering application.

Give us a call should you still have any questions!

ProMinent Germany Sales 0049 6221 842-0 info-de@prominent.com

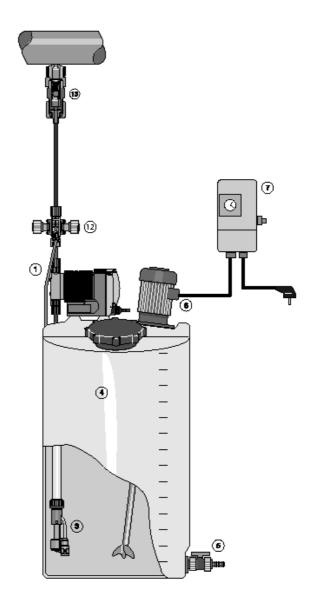
Technical Consulting 0049 6221 842-1850 service@prominent.com



Metering Pumps also Need Accessories

Examples of metering tasks illustrate which components and accessories can be used for different metering processes.

A pump alone is often simply not enough. A metering process requires further **components and accessories**. ProMinent provides all the products you need to guarantee **optimum process flows** for metering liquid media. Expertise and advice are, of course, included!


- 1 Metering pump
- 2 DFMa flow meter with single stroke monitor and feedback to the metering pump
- 3 Suction assembly with level switch
- 4 Chemical tank
- 5 Drain cock
- 6 Stirrer
- 7 Timer for stirrer
- 8 Signal horn
- 9 Display lamp
- 10 Manometer for precise adjustment of the back pressure valve
- 11 Back pressure valve
- 13 Injection valve

Metering Pumps also Need Accessories

- 1 Metering pump
- 3 Suction assembly with level switch
- 4 Chemical tank
- 5 Drain cock
- 6 Stirrer
- 7 Timer for stirrer
- 12 Multifunctional valve
- 13 Injection valve

AP_0005_SW3

New Products Metering Pumps, Components and Metering Systems

Solenoid Diaphragm Metering Pump gamma/ X

The solenoid diaphragm metering pump gamma incorporates a wealth of eXcellent ingenuity! With integrated pressure measurement, it ensures the smooth running of your metering process. The gamma/ X is ideal for all metering work involving liquid media.

The new solenoid diaphragm metering pump gamma/ X is user-friendly and has an outstandingly long service life, just like its predecessor. An ingenious solenoid control measures the back pressure and protects the system from overload. This technology makes a pressure sensor superfluous, meaning that operating safety can be significantly increased: no additional parts come into contact with the feed chemical, there are no additional sealing surfaces and no electronic components come into contact with the feed chemical. Whether the metering volume fluctuates or hydraulic failures affect the metering process – the gamma/ X keeps everything at your fingertips.

It independently ensures a trouble-free metering process and, should the pump ever need maintenance, its service module draws attention to this.

Capacity range 2.3 - 45 l/h, 25 - 2 bar

For more information see page → 1-13

* Available from 2nd quarter of 2015.

Contents

Solenoid metering pumps, components and metering systems page

Low-	-pressu	re Metering Pumps	1-1
		ew of Low Pressure Metering Pumps	1-1
		How to Find the Right Pump Type?	1-1
1.1	Motor D	Driven Metering Pump alpha	1-3
	1.1.1	Motor Driven Metering Pump alpha	1-3
	1.1.2	Identity Code Ordering System	1-5
	1.1.3	Spare Parts Kits, Replacement Diaphragms	1-6
1.2		id Driven Metering Pump Beta®	1-7
	1.2.1	Solenoid Driven Metering Pump Beta®	1-7
	1.2.2	Identity Code Ordering System	1-10
	1.2.3	Spare Parts Kits, Replacement Diaphragms	1-11
1.3		id Diaphragm Metering Pump gamma/ X	1-13
1.0	1.3.1	Solenoid Diaphragm Metering Pump gamma/ X	1-13
	1.3.2	Identity Code Ordering System	1-17
	1.3.3	Spare Parts Kits, Replacement Diaphragms	1-18
1.4		id Driven Metering Pump delta®	1-21
1.7	1.4.1	Solenoid Driven Metering Pump delta® with Regulated	1-21
	1.4.1	Solenoid Driver Metering Fulfip delta With Regulated	1-21
	1.4.2	Identity Code Ordering System	1-24
	1.4.3	Spare Parts Kits, Replacement Diaphragms	1-25
1.5	_	on Plunger Metering Pump mikro delta®	1-27
	1.5.1	Precision Plunger Metering Pump mikro delta®	1-27
	1.5.2	Identity Code Ordering System	1-29
	1.5.3	Spare Parts	1-30
	1.5.4	mikro delta® Installation Accessories	1-31
1.6		atic Metering Pump Pneumados	1-33
1.0	1.6.1	Pneumatic Metering Pump Pneumados b	1-33
	1.6.2	Identity Code Ordering System	1-35
	1.6.3	Ordering Example for Installation Accessories	1-36
	1.6.4	Spare Parts Kits	1-37
1.7		Itic Pumps DULCO®flex	1-37
1.7	1.7.1	Peristaltic Pump DULCO®flex DF2a	1-39
	1.7.1	Identity Code Ordering System	1-40
	1.7.2	Peristaltic Pump DULCO®flex DF3a	1-40
	1.7.4	Identity Code Ordering System	1-42
	1.7.5	Peristaltic Pump DULCO®flex DF4a	1-42
	1.7.5	Identity Code Ordering System	1-43
1.8		eter DulcoFlow®	1-45
1.0	1.8.1	Flow Meter DulcoFlow®	1-45
1.9	_	lic/Mechanical Installation Accessories	1-43
1.9	,	Foot Valves	1-48
	_		
	1.9.2	Injection Valves Injection Lances, Non-Return Valves	1-51
	1.9.3	Back Pressure Valves/Relief Valves	1-56 1-57
	1.9.4		
	1.9.5	Fittings	1-60
	1.9.6	Hoses, Pipes	1-61
	1.9.7	Pressure Accumulator	1-63
	1.9.8	Pulsation Dampers (In-line)	1-65
	1.9.9	Suction Lances, Suction Kit Without Level Switch	1-66
	1.9.10	Suction Lances, Suction Assembly with Two Stage Float Switch	1-69
	1.9.11	Float Switches	1-09
	1.9.12	Metering Monitor, Signal Cable	1-76
	1.9.13	Safety Equipment	1-78
	1.9.14		1-79
	1.9.15	Wall Brackets for Metering Pumps	1-80
	1.9.16	Contact Water Meters for Use in Potable Water and	1-82

Contents

Soler	ioid me	etering	pumps, components and metering systems p	age
	1.10	Mechar	nical/Hydraulic Special Accessories	1-85
	1.10		Pump Diaphragms	1-85
			Custom Valve Balls/Valve Springs	1-86
			Connector Parts/Fittings	1-87
	1.11		tion Examples	1-91
		1.11.1	·	
			Potable Water	1-91
		1.11.2	Shock Metering of Biocide in Cooling Water Circuit	1-92
2	Tanks	and T	ransfer Pumps	2-1
_	2.0		ew of Tanks and Transfer Pumps	2-1
		2.0.1	Selection Guide	2-1
	2.1	PE Met	ering Tanks and Collecting Pans	2-2
		2.1.1	Metering Tanks	2-2
		2.1.2		2-4
		2.1.3	Spare Parts	2-5
	2.2	Access	ories for Metering Tanks	2-6
		2.2.1	Fittings and Detachable Parts	2-6
		2.2.2	Stirrers	2-8
	2.3	Storage		2-10
		2.3.1	PE/PP Tanks and Apparatus	2-10
		2.3.2	PE Storage Tank With General WHG Approval	2-10
		2.3.3	PP/PE Storage Tanks, Custom-built	2-16
		2.3.4	Drip Trays for PE Supply Drums	2-17
		2.3.5	PVC Batch Box	2-18
		2.3.6	Chemical Vapour Lock	2-18
	0.4	2.3.7	•	2-18
	2.4	2.4.1	ic Screw Pump Spectra Eccentric Screw Pump Spectra for Pumping	2-19
		2.4.1	Polymer Solutions	2-19
		2.4.2	Motor Data	2-20
			Technical Data	2-20
		2.4.4	Spare Parts	2-21
	2.5	Centrifu	ıgal Pump von Taine®	2-22
		2.5.1	Centrifugal Pump von Taine®	2-22
		2.5.2	Spare Parts Kits	2-26
	2.6	-	rated Diaphragm Pump Duodos	2-27
		2.6.1	Air-operated Diaphragm Pump Duodos	2-27
	0.7	2.6.2	Spare Parts Kits	2-28
	2.7		Pump DULCO®Trans	2-30
	0.0	2.7.1	Barrel Pump DULCO®Trans	2-30
	2.8	2.8.1	tic Pumps DULCO®flex Peristaltic Pumps DULCO®flex	2-32 2-32
		2.8.2	Peristaltic Pump DULCO®flex DFA	2-32
		2.8.3	Peristaltic Pump DULCO®flex DFB	2-35
		2.8.4	Peristaltic Pump DULCO®flex DFC	2-41
		2.8.5	Peristaltic Pump DULCO®flex DFD	2-48
		2.8.6	Spare Parts	2-56
	2.9		tion Examples	2-59
		2.9.1	Metering Polymers	2-59
		2.9.2	Filling a Day Tank	2-60
		2.9.3	Filling Day Tanks	2-61
		2.9.4	Deacidification of Potable Water	2-62
3	Meter	ing Sy	stems	3-1
	3.0		w of DULCODOS® and Ultromat® Metering Systems	3-1
		3.0.1	Selection Guide	3-1
	3.1	Meterin	g System DULCODOS® eco	3-2
		3.1.1	Metering System DULCODOS® eco	3-2
		3.1.2	Identity Code Ordering System, 35 litres	3-3
		3.1.3	Identity Code Ordering System, 60 litres	3-4
		3.1.4	Identity Code Ordering System, 100 litres	3-5

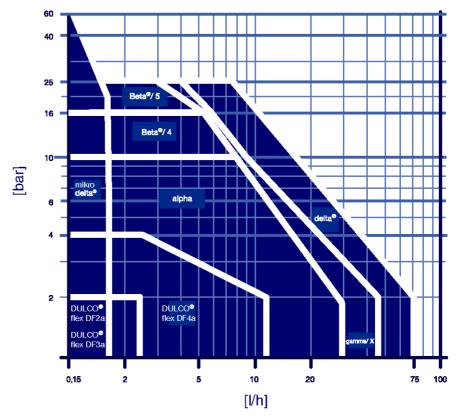
Contents

00.0	noia iii	etering pumps, components and metering systems	page
		3.1.5 Identity Code Ordering System, 140 litres	3-6
		3.1.6 Identity Code Ordering System, 250 litres	3-7
		3.1.7 Identity Code Ordering System, 500 litres	3-8
		3.1.8 Identity Code Ordering System, 1000 litres	3-9
	3.2	Metering System DULCODOS® panel	3-10
		3.2.1 Metering System DULCODOS® panel	3-10
		3.2.2 Identity Code Ordering System for Beta® and	
		gamma/ L, DN 10	3-11
		3.2.3 Identity Code Ordering System for Sigma/ 1, DN 10	3-12
		3.2.4 Identity Code Ordering System for Sigma/ 1, DN 15	3-13
		3.2.5 Identity Code Ordering System for Sigma/ 2, DN 15	3-14
		3.2.6 Identity Code Ordering System for Sigma/ 2, DN 20	3-15
		3.2.7 Identity Code Ordering System for Sigma/ 3, DN 25	3-16
		3.2.8 Identity Code Ordering System for Sigma/ 3, DN 32	3-17
	3.3	DULCODOS® Hydrazin Metering Systems	3-18
		3.3.1 Metering System DULCODOS® Hydrazin	3-18
	3.4	DULCODOS® PPLA Liquid Enzyme Metering Systems	3-19
		3.4.1 Metering System DULCODOS® PPLA	3-19
	3.5	Metering System DULCODOS® custom	3-20
		3.5.1 Metering System DULCODOS® custom	3-20
	3.6	Modular Metering System DULCODOS®	3-22
		3.6.1 Modular Metering System DULCODOS®	3-22
	3.7	Polymer Batching and Metering Systems Ultromat®	3-23
		3.7.1 Metering Systems Ultromat® for the Metering of	
		Liquid Polymer Solutions	3-23
		3.7.2 Continuous Flow Systems Ultromat® ULFa	3-24
		3.7.3 Metering System Ultromat® ULPa	3-27
		3.7.4 Metering Systems Ultromat® ULDa	3-30
		3.7.5 Metering System Ultromat® ATR	3-33
		3.7.6 Metering Systems POLYMORE	3-35
		3.7.7 Metering System PolyRex	3-36
		3.7.8 Metering System Ultromat® MT	3-37
		3.7.9 Ultromat® Accessories	3-38
	3.8	Application Examples	3-40
		3.8.1 Proportional Metering of Phosphate	3-40
		3.8.2 Inhibitor Metering in Cooling Water	3-41
		3.8.3 Inhibitor Metering in Boiler Feed Water	3-42
		3.8.4 Sludge Dewatering	3-43
4	Dome	estic Water Systems	4-1
	4.0	Systems for Domestic Water Installations	4-1
		4.0.1 Proportional Flow Dosing System for Liquid Dosing	4-1
	4.1	Promatik® Metering Unit	4-2
		4.1.1 Promatik®	4-2
		4.1.2 Promatik®	4-3
	4.2	Chemicals for Water Treatment	4-4
		4.2.1 Chemicals	4-4
5	ProM	inent® Chemical Resistance List	5-1
		Resistance of Materials Used in Liquid Ends to the Chemicals Most	
		Frequently Used	5-1
		Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the	
		Most Common Chemicals	5-10

Overview of Low Pressure Metering Pumps

How to Find the Right Pump Type?

Low-pressure metering pumps for practically all liquid chemicals:


the wide range of materials and extremely reliable function make these pumps veritable all-rounders - even under the toughest conditions. You'll find the optimum metering pump for your application in this broad product range from 0.74 to 75 l/h at a back pressure of 25 - 2 bar.

Tip

The performance overview will assist you with rapid pre-selection. Determine the right product range of metering pumps based on a given back pressure (bar) and pump capacity (I/h).

All our low-pressure metering pumps are self-priming!

SG_0028_C

Back pressure [bar] as a function of feed rate [I/h]

Important note

ProMinent[®] metering pumps in the capacity range of **over 75 l/h or over 25 bar**, as well as metering pumps approved for use in premises at risk of gas explosions are included in **volume 3 "Motor-driven and process metering pumps for all capacity ranges".**

Motor Driven Metering Pump alpha

Motor Driven Metering Pump alpha 1.1.1

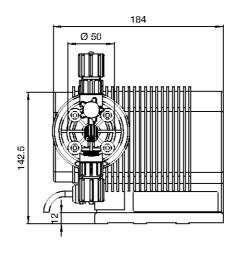
The cost-effective solution for simple applications in the lower performance range. Capacity range 1.0 - 30.6 l/h, 10 - 2 bar

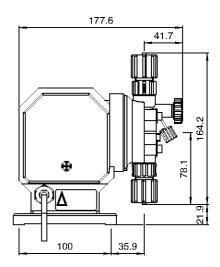
The motor-driven metering pump alpha is the metering pump for liquid media and the optimum solution for simple applications. Robust, low-noise, chemical-resistant, with precise metering and good suction

Various pump types are available as a combination of 2 gears and 4 sizes of dosing head in materials PVDF and clear acrylic/PVC, enabling you to match the pump perfectly to your metering process.

Your benefits

- Precise metering and good suction capacity by soft controlled suction and compression strokes
- Tough plastic housing shock-proof and chemical-resistant
- Suitable for higher viscosity media, thanks to spring-loaded valves
- Low-noise operation


Technical details


- Stroke length adjustment by changing the eccentricity on the pump drive when the pump is idle
- Stroke length adjustment in 10% steps
- Diaphragm deflection from the centre position
- Soft controlled suction and compression strokes

All low capacity applications where constant metering is required.

Dimensional drawing of the alpha

P ALP 0006 SW3

Dimension drawing of the alpha - dimensions in mm

P_ALP_0004_SW

1.1 Motor Driven Metering Pump alpha

Technical Data

Pump type	Delivery rate at max. back pressure			mediu		very rate at k pressure	Number of strokes	Stroke length	Connection size o Ø x i Ø	Suction lift	Shipping weight
	bar	l/h	ml/stroke	bar	l/h	ml/stroke	Strokes/min	mm	mm	mWC	kg
50 Hz versi	50 Hz version										
ALPc 1001	10	1.0	0.29	5	1.1	0.32	30	2	6 x 4	5.1	3.0
ALPc 1002	10	1.8	0.52	5	2.1	0.60	58	2	6 x 4	5.1	3.0
ALPc 1004	10	3.5	1.01	5	3.9	1.12	58	3	8 x 5	5.1	3.0
ALPc 1008	10	7.7	1.00	5	8.6	1.12	128	3	8 x 5	5.1	3.0
ALPc 0707	7	6.9	1.98	3	7.7	2.21	58	3	8 x 5	4.1	3.0
ALPc 0417	4	17.0	2.51	2	18.3	2.76	128	3	8 x 5	4.1	3.0
ALPc 0230	2	30.6	3.98	1	32.7	4.26	128	3	12 x 9	3.1	3.0
60 Hz version	on										
ALPc 1001	10	1.2	0.29	5	1.3	0.31	36	2	6 x 4	5.1	3.0
ALPc 1002	10	2.2	0.53	5	2.6	0.63	69	2	6 x 4	5.1	3.0
ALPc 1004	10	4.1	0.99	5	4.7	1.14	69	3	8 x 5	5.1	3.0
ALPc 1008	10	8.9	0.96	5	10.4	1.13	154	3	8 x 5	5.1	3.0
ALPc 0707	7	8.3	2.00	3	9.2	2.22	69	3	8 x 5	4.1	3.0
ALPc 0417	4	20.6	2.45	2	21.9	2.75	154	3	8 x 5	4.1	3.0
ALPc 0230	2	34.4	3.72	1	39.2	4.24	154	3	12 x 9	3.1	3.0

All data refers to water at 20 °C.

Materials in contact with the medium

	Liquid end	Suction/discharge connector	Ball seal	Seals	Balls
PPE	Polypropylene	Polypropylene	EPDM	EPDM	Ceramic
PPB	Polypropylene	Polypropylene	FKM	FKM	Ceramic
NPE	Acrylic glass	PVC	EPDM	EPDM	Ceramic
NPB	Acrylic glass	PVC	FKM	FKM	Ceramic
PVT	PVDF	PVDF	PVDF	PTFE	Ceramic

Metering diaphragm with PTFE coating for all types.

FKM = fluoro rubber

Motor Data

Туре	Split pole motor with integrated thermal overload protection
Electrical connection	220-240 V, 50/60 Hz (version A)
Power	50 W (at 230 V/50 Hz)
Power consumption	0.4 A (at 230 V/50 Hz)

Warranty: The warranties listed under "General Terms and Conditions of Sale" apply, although there is a warranty period of 12 months for the alpha pump drive

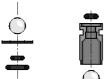
1.1 Motor Driven Metering Pump alpha

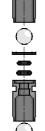
1.1.2

Identity Code Ordering System

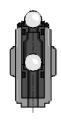
alpha series, version c

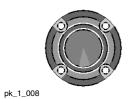
ALPc	Type	Capac	ity (50	Hz / 60	Hz)	
	1001	I/h 1.0	bar 10	l/h 1.2	bar 10	
	1008	1.8 3.5 7.7 6.9 17.0 30.6	10 10 10 7 4 2	2.2 4.1 8.9 8.3 20.6 34.4	10 10 10 7 4	
		PPE PPB NPE NPB PVT	Polypi Polypi Acrylic Acrylic PVDF	ropylene c/PVC/E c/PVC/F /PVDF/F springs withou with 2	e/polypro PDM KM PTFE s at valve s valve sp	pylene/FKM pring, with bleeding rings approx. 0.1 bar, material 1.4571, with bleeding nectors ard according to technical data With ProMinent® logo Electrical connection A 230 V, 50/60 Hz, 2 m, Euro. plug B 230 V, 50/60 Hz, 2 m, Swiss plug C 230 V, 50/60 Hz, 2 m, Austral. plug D 115 V, 50/60 Hz, 2 m, USA plug Accessories 0 No ancillary equipment with foot and metering valve, 2 m PVC suction line, 5 m PE metering line


FKM = fluoro rubber


Motor Driven Metering Pump alpha

1.1.3


Spare Parts Kits, Replacement Diaphragms



Spare parts kits for alpha

Spare parts kits for alpha, consisting of

- pump diaphragm
- suction valve compl.
- discharge valve compl.
- valve balls
- set of seals
- connector set

Туре		Order no.
for alpha c, type 1001, 1002, 1004, 1008	PPE	1001647
	PPB	1001655
	NPE	1001716
	NPB	1001724
	PVT, PPT, NPT	1023110
for alpha c, type 0707, 0417	PPE	1001649
	PPB	1001657
	NPE	1001718
	NPB	1001726
	PVT, PPT, NPT	1023112
for alpha c, type 0230	PPE	1001650
	PPB	1001658
	NPE	1001719
	NPB	1001727
	PVT, PPT, NPT	1023113

Replacement diaphragms

Туре	Order no.
for alpha c 1001	1000246
for alpha c 1002, 1004, 1008	1039612
for alpha c 0707, 0417	1000249
for alpha c 0230	1000250

Accessories

- Foot Valves See page → 1-48
- Injection Valves See page → 1-51
- Hoses, Pipes See page → 1-61
- Suction Lances, Suction Kit Without Level Switch See page → 1-66
- Connector Parts/Fittings See page → 1-87

Spare Parts

■ Custom Valve Balls/Valve Springs See page → 1-86

Low-pressure Metering Pumps

1.2 Solenoid Driven Metering Pump Beta®

1.2.1 Solenoid Driven Metering Pump Beta[®]

All-purpose solenoid metering pump for metering liquid media in water treatment and chemical processes: Solenoid driven metering pump Beta®. Cost-effective, overload-proof, adaptable to existing signal transducers.

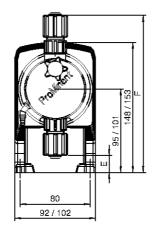
A range of different pump types and material combinations are available for virtually all metering applications. The virtually wear-free solenoid drive guarantees an exceptionally long service life even under maximum load.

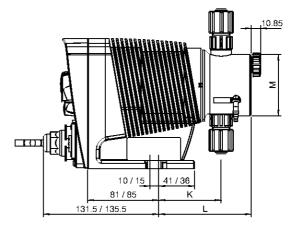
Your benefits

- Simple adjustment of metering capacity via stroke rate and stroke length
- Adaptation to existing signal transducers by external control via potential-free contacts with pulse stepup and step-down
- Suitable for use with almost all liquid chemicals thanks to the available material combinations: PP,
 PVDF, clear acrylic, PTFE and stainless steel
- Self-bleeding dosing head design in clear acrylic/PVC and PP
- Virtually wear-free solenoid drive: economical and overload-proof
- Economical operation with up to 50% energy-savings, thanks to higher pump efficiency
- Everything in sight and under control: 3 LED display for operating, warning and error messages

- External control via potential-free contacts with pulse step-up and step-down to adapt to existing signal transducers of 64:1 to 1:64
- Stroke rate adjustment in 10% steps of 10 100% corresponds to 18 180 strokes/minute
- Continuous stroke length adjustment between 0 100% (recommended 30 100 %)
- Connector for 2-stage level switch
- Wide-ranging electrical connection: 100 230 V, 50/60 Hz
- Optional relay module, can also be easily and reliably retrofitted
- Design for low voltage 12-24 V DC

Field of application


Metering liquid media in water treatment and chemical processes

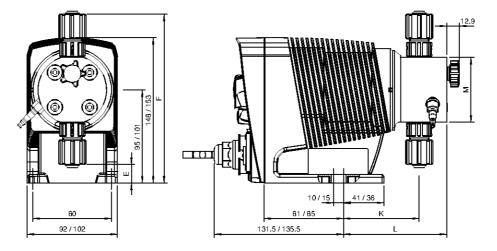

Dimensional drawing of Beta® Material design PP

E	F
19.5	179
7	186.5
14	191.5
1.5	200.5
	19.5 7 14

P_BE_0048_SW1 Beta® b

Туре	K	L	М	
1000-1604	71	105.5	Ø 70	
0708-0220	77.5	111	Ø 90	
1008-0232	74	107.5	Ø 90	
0232	77.5	94.5	Ø 110	

P_BE_0069_SW3

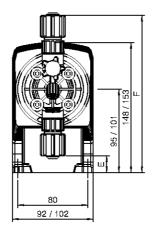

Dimensional drawing of Beta®, Material version PP - dimensions in mm

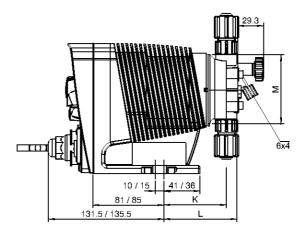
1.2 Solenoid Driven Metering Pump Beta®

Dimensional drawing of Beta® Material design NP

Туре	E	F
1000-1604	19	172
0708-0220	7.2	183
2504	24.5	178.5
1008-0420	14	188
0232	3.2	199

Туре	K	L	M
1000-1604	77	105	Ø 70
0708-0220	77.5	105.5	Ø 90
2504	77	105	Ø 70
1008-0420	74	102	Ø 90
0232	76	104.5	Ø 110


P_BE_0070_SW3


Dimensional drawing of $\mathsf{Beta}^{\texttt{@}}, \mathsf{Material}$ version NP - dimensions in mm

Dimensional drawing of Beta® Material design PV

Туре	E	F
1604	19	179
0708-0220	8	185.5
1008-0420	14	191.5
0232	3.2	199

Туре	K	L	M
1604	71	83	Ø 70
0708-0220	73	90	Ø 90
1008-0420	73	90	Ø 90
0232	76	93	Ø 110

P_BE_0071_SW3

Dimensional drawing of $\mathsf{Beta}^{\circledast}, \mathsf{Material} \ \mathsf{version} \ \mathsf{PV}$ - dimensions in mm

1.2 Solenoid Driven Metering Pump Beta®

Technical Data

Pump type	Delivery rate at back pres			Delivery rate at medium back pressure Number of strokes		Connection size o Ø x i Ø	Suction lift	Average power consumption	Shipping weight PP, NP, SS PV, TT			
	bar	l/h	ml/ stroke	bar	l/h	ml/ stroke	Strokes/ min	mm	mWC	W	kg	kg
Beta® b												
BT4b 1000***	10	0.74	0.07	5.0	0.82	0.08	180	6 x 4	6.0**	7,2	2.9	3.6
BT4b 1601***	16	1.10	0.10	8.0	1.40	0.13	180	6 x 4	6.0**	9,6	2.9	3.6
BT4b 1602***	16	2.20	0.20	8.0	2.50	0.24	180	6 x 4	6.0**	11,2	2.9	3.6
BT4b 1604***	16	3.60	0.33	8.0	4.30	0.40	180	6 x 4	6.0**	15,2	3.1	3.9
BT4b 0708***	7	7.10	0.66	3.5	8.40	0.78	180	8 x 5	6.0**	15,2	3.1	3.9
BT4b 0413	4	12.30	1.14	2.0	14.20	1.31	180	8 x 5	3.0**	15,2	3.1	3.9
BT4b 0220	2	19.00	1.76	1.0	20.90	1.94	180	12 x 9	2.0**	15,2	3.3	4.4
BT5b 2504	25	2.90	0.27	10.0	5.00	0.46	180	8 x 4****	6.0**	19,2	4.5	5.3
BT5b 1008	10	6.80	0.63	5.0	8.30	0.76	180	8 x 5	6.0**	19,2	4.5	5.3
BT5b 0713	7	11.00	1.02	3.5	13.10	1.21	180	8 x 5	4.0**	19,2	4.5	5.3
BT5b 0420	4	17.10	1.58	2.0	19.10	1.77	180	12 x 9	3.0**	19,2	4.7	5.8
BT5b 0232	2	32.00	2.96	1.0	36.20	3.35	180	12 x 9	2.0**	19,2	5.1	6.6
Beta® b mete	ring p	umps w	ith self-d	egass	ing liqui	id end						
BT4b 1601	16	0.59	0.06	8.0	0.78	0.07	180	6 x 4	1.8**	9,6	2.9	-
BT4b 1602	16	1.40	0.13	8.0	1.70	0.16	180	6 x 4	2.1**	11,2	2.9	_
BT4b 1604	16	2.70	0.25	8.0	3.60	0.33	180	6 x 4	2.7**	15,2	3.1	-
BT4b 0708	7	6.60	0.61	3.5	7.50	0.69	180	8 x 5	2.0**	15,2	3.1	_
BT4b 0413	4	10.80	1.00	2.0	12.60	1.17	180	8 x 5	2.0**	15,2	3.1	-
BT4b 0220	2	16.20	1.50	1.0	18.00	1.67	180	12 x 9	2.0**	15,2	3.3	_
BT5b 1008	10	6.30	0.58	5.0	7.50	0.69	180	8 x 5	3.0**	19,2	4.5	-
BT5b 0713	7	10.50	0.97	3.5	12.30	1.14	180	8 x 5	2.5**	19,2	4.5	-
BT5b 0420	4	15.60	1.44	2.0	17.40	1.61	180	12 x 9	2.5**	19,2	4.7	-

Beta $^{\odot}$ b metering pumps with dosing heads for higher-viscosity media have a 10-20 % lower capacity and are not self-priming. G 3/4-DN 10 connector with d 16-DN 10 hose nozzle.

- * The given performance data constitutes guaranteed minimum values, calculated using water as the medium at room temperature.
- ** Suction lift with a filled dosing head and filled suction line, with a self-bleeding dosing head with air in the suction line.
- *** Pressure-reduced pump types are available in the pressure ratings 4, 7 and 10 bar for special applications, for example in the swimming pool sector. More detailed information is available upon request.
- **** With stainless steel design 6 mm connector width.

All data refers to water at 20 °C.

Materials in contact with the medium

	Dosing head	Suction/pressure connector	Ball seat	Seals	Balls
PPE	Polypropylene	Polypropylene	EPDM	EPDM	Ceramic
PPB	Polypropylene	Polypropylene	FPM	FPM	Ceramic
PPT	Polypropylene	PVDF	PVDF	PTFE	Ceramic
NPE	Clear acrylic	PVC	EPDM	EPDM	Ceramic
NPB	Clear acrylic	PVC	FPM	FPM	Ceramic
NPT	Clear acrylic	PVDF	PVDF	PTFE	Ceramic
PVT	PVDF	PVDF	PVDF	PTFE	Ceramic
TTT	PTFE with carbon	PTFE with carbon	Ceramic	PTFE	Ceramic
SST	Stainless steel material no. 1.4404	Stainless steel material no. 1.4404	Ceramic	PTFE	Ceramic

Only the self-bleeding design in material designs PPE, PPB, NPE and NPB with a valve spring made of Hastelloy C, PVDF valve insert. Diaphragm with a PTFE coating.

FKM = fluorine rubber

Metering reproducibility: \pm 2% when used according to the operating instructions.

Permissible ambient temperature -10 °C to +45 °C

Degree of protection: IP 65, insulation class F

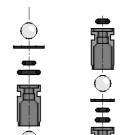
Scope of delivery: Metering pump with mains cable (2 m) and plug, connecting kit for hose/pipe connection as per table.

1

1.2 Solenoid Driven Metering Pump Beta®

1.2.2

Identity Code Ordering System

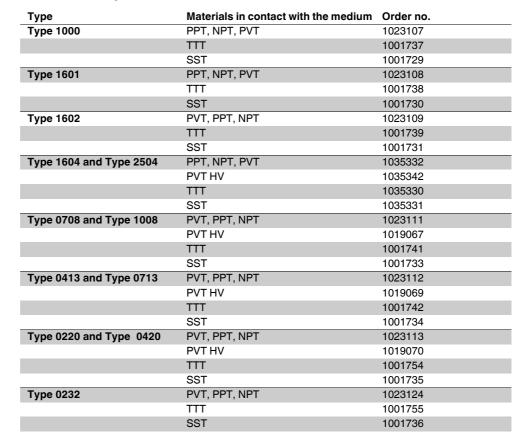

Beta® Version b

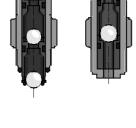
3T4b	Туре	Capac	ity												
		bar	l/h												
	1000	10	0.74												
	1601	16	1.10												
	1602	16	2.20												
		16	3.60												
		7	7.10												
	0413	4	12.30												
		2	19.00												
	0220	2	19.00												
Г5Ь	0504	0.5	0.00												
	2504	25	2.90												
		10	6.80												
		7	11.00												
	-	4	17.10												
	0232	2	32.00												
		Liquid	end/va	alve mat	erial										
		PP	Polypr	opylene/	PVDF, fo	r versior	self-deg	gassing F	olyprop	ylene/Po	lypropyle	ne			
		NP	Acrylic	glass/P\	VDF, for	version s	elf-dega	ssing Ac	rylic glas	ss/PVC					
		PV	PVDF/	PVDF			_	_	-						
		TT	PTFE/	PTFE											
		SS	Stainle	ess steel	1.4404/1	.4404									
					m mater										
			E		PTFE co		v with PF	and NP	self-hle	edina					
			В		PTFE co		•			•					
			T		TFE coa		iy willi P	and M	, 3011-01	ceanig					
			S				vith EVA	oooti	for all:	0110 22-1	io				
			٥	-	agm addi		viui mili	coating	ioi silice	ous med	ia				
					end vers				T	- 00	l + 00/	20			
				0						「, SS and					
				1						ΓT, SS ar					
				2						NP only, i					
				3						, NP only					
				4						T, types 1		08, 1008	, 0413, 0	713, 022	20, 0420
				9	self-ble	edingonl	y with PF	P/NP, not	for type	s 1000 a	nd 0232				
					Hydrau	ılic conr	ections	i							
					0			ding to te	chnical (data					
					5	Connec	tor for 1	2/6 hose,	delivery	side onl	у				
					9					side onl					
						Versio		, , ,							
						0	Standa	rd							
							Logo 0	with Pro	Minent	logo					
							U			logo					
								Power U		0 V ± 10	0/ EN/60	ш-			
								М				112			
								N	24 V D	C, only w	IIII D 140				
								IN							
										and plug					
									A	2 m Eui					
									В	2 m Sw					
									С	2 m Aus					
									D	2 m US					
									1	2 m, op	en-ende	d			
										Relay					
										0	No relay	/			
										1	Fault in	dicating	relay, no	rmally er	nergised, 1 x changeover contact
1									1	1	230 V -		,, -		
- [1	3			relay, nor	mally de	-energised, 1 x changeover contac
									1	1.	230 V -			-	
1									1	4					ppen contacts 24 V - 100 m
									1	5	as 3 + p	acing re	lay 2 x n	ormally o	ppen contacts 24 V - 100 mA
l											Access	ories			
									1	1	0		essories		
									1	1	1			sing val	ve, 2 m PVC suction tubing, 5 m PE
										1			ge tubing		,
										1		Contro	•		
										1		0	No lock		
										1		1			ial operation locked when external
									1	1	1	Ι΄		lugged ir	
									1	1	1			l Varian	
									1	1	1		0	Standa	
J									1	1					
J		i	Ī	1	1					1		1	Ī		s on request
														0 0	No options

1.2 Solenoid Driven Metering Pump Beta®

1.2.3

Spare Parts Kits, Replacement Diaphragms




Spare parts kits for Beta®

Spare parts kits for Beta® consisting of:

- 1 pump diaphragm
- suction valve compl.
- discharge valve compl.
- 2 valve balls
- 1 set of seals
- 1 connector set

Suction and discharge valve set not included with stainless steel version.

Accessories

- Foot Valves See page → 1-48
- Injection Valves See page → 1-51
- Hoses, Pipes See page → 1-61
- $\,\blacksquare\,$ Suction Lances, Suction Kit Without Level Switch See page \rightarrow 1-66
- Connector Parts/Fittings See page → 1-87

Spare Parts

■ Custom Valve Balls/Valve Springs See page → 1-86

1.2 Solenoid Driven Metering Pump Beta®

Spare parts kit for Beta® with SEK

Spare parts kits for metering pumps with self-bleeding dosing head consisting of:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 1 Bleed valve, complete
- 2 Valve balls
- 1 Set of seals
- 1 Connector kit

Туре	Materials in contact with the medium	Order no.
Type 1601	PPE9	1001756
	PPB9	1001762
	NPE9	1001660
	NPB9	1001666
Type 1602	PPE9	1001757
	PPB9	1001763
	NPE9	1001661
	NPB9	1001667
Type 1604	PPE9	1035335
	PPB9	1035336
	NPE9	1035333
	NPB9	1035334
Type 0708 and Type 1008	PPE9	1001759
	PPB9	1001765
	NPE9	1001663
	NPB9	1001669
Type 0413 and Type 0713	PPE9	1001760
	PPB9	1001766
	NPE9	1001664
	NPB9	1001670
Type 0220 and Type 0420	PPE9	1001761
	PPB9	1001767
	NPE9	1001665
	NPB9	1001671

Replacement diaphragms for Beta® range

Туре	Materials in contact with the medium	Order no.
Type 1000	all materials	1000244
Type 1601	all materials	1000245
Type 1602	all materials	1000246
Type 1604 and Type 2504	all materials	1034612
Type 0708 and Type 1008	all materials	1000248
Type 0413 and Type 0713	all materials	1000249
Type 0220 and Type 0420	all materials	1000250
Type 0232	all materials	1000251

Solenoid Diaphragm Metering Pump gamma/ X

gamma/ X - the proven best-seller intelligently extended

Capacity range 2.3 - 45 l/h, 25 - 2 bar

The solenoid diaphragm metering pump gamma incorporates a wealth of e**X**cellent ingenuity! With integrated pressure measurement, it ensures the smooth running of your metering process. The gamma/ X is ideal for all metering work involving liquid media.

P_GX_001_SW1

1.3.1

The new solenoid diaphragm metering pump gamma/ X is user-friendly and has an outstandingly long service life, just like its predecessor. An ingenious solenoid control measures the back pressure and protects the system from overload. This technology makes a pressure sensor superfluous, meaning that operating safety can be significantly increased: no additional parts come into contact with the feed chemical, there are no additional sealing surfaces and no electronic components come into contact with the feed chemical. Whether the metering volume fluctuates or hydraulic failures affect the metering process – the gamma/ X keeps everything at your fingertips.

It independently ensures a trouble-free metering process and, should the pump ever need maintenance, its service module draws attention to this.

Your benefits

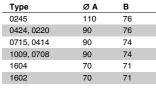
- Simple adjustment of the capacity directly in I/h
- Trouble-free processes by the detection of hydraulic malfunctions or blocked discharge lines
- Integrated pressure measurement and display for greater safety during commissioning and in the process
- Adaptation to existing signal transducers by external control via potential-free contacts with pulse stepup and step-down
- External control via 0/4-20 mA standard signal with adjustable assignment of signal value to stroke rate
- Integrated 7-day timer for timed metering tasks
- Guaranteed metering by means of automatic bleeding
- Connection to process control systems via bus interfaces, such as Profinet, CAN bus, from the 3rd quarter of 2015, others on request
- Organise work processes conveniently with the optional process timer. The alternative to a timer or PLC
- Virtually wear-free solenoid drive, overload-proof and economical
- Suitable for continuous micro-metering from 2 ml/h thanks to the regulated solenoid drive

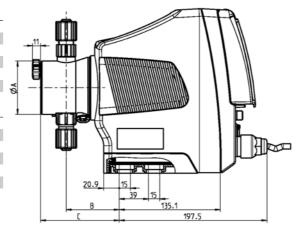
Technical details

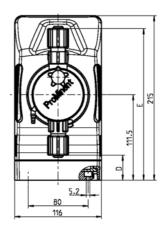
- Available material combinations: PP, PVDF, clear acrylic, PTFE and stainless steel
- Special dosing head designs for gaseous and high-viscosity media
- Illuminated LC display and 3-LED display for operating, warning and error messages, visible from all sides
- Factor with external contact control 99:1 1:99
- Batch operation with max, 65,536 strokes/start pulse
- Input concentration for simple adjustment with volume-proportional metering tasks
- Stroke rate adjustment in 1 stroke/hour increments from 0 to 12,000 strokes/h
- Continuous electronic stroke length adjustment from 0 100% (recommended 30 100%)
- Connector for 2-stage level switch
- External control via 0/4-20 mA standard signal with adjustable assignment of signal value to stroke rate
- Optional 4-20 mA output for remote transmission of stroke length and stroke rate
- Universal power supply unit 100 V 230 V, 50/60 Hz
- Optional 230 V relay module, can also be easily and reliably retrofitted
- Optional 24 V combined relay, can also be easily and reliably retrofitted

Field of application

Can be integrated into automated processes and used in all industries. The pump can work as a control unit with the process timer, for example in cooling water treatment

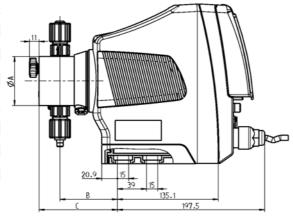

* Available from 2nd quarter of 2015.

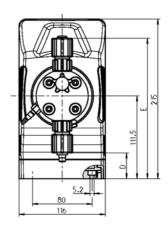



1.1.2015

Dimensional drawing for gamma/ X Material design PPT

Type	С	D	E	
0245	-	14	209	
0424, 0220	110	24	202	
0715, 0414	107	24	202	
1009, 0708	108	24	202	
1604	106	32	198	
1602	106	32	198	

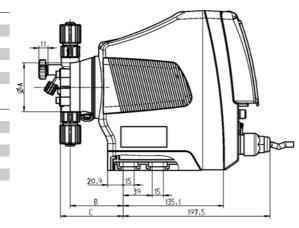

P_G_0055_SW3

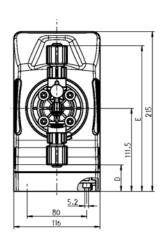

Dimensional drawing of gamma/ X, Material design PPT - dimensions in mm

Dimensional drawing of gamma/ X Material design NPT

Туре	ØA	В	
0245	110	76	
0424, 0220	90	76	
0715, 0414	90	76	
1009, 0708	90	74	
1604, 2504	70	77	
1602	70	77	

Туре	С	D	E
0245	105	14	210
0424, 0220	104	23	200
0715, 0414	104	23	200
1009, 0708	102	23	200
1604, 2504	105	33	191
1602	105	33	191


P_G_0056_SW3


Dimensional drawing of gamma/ X, Material design NPT – dimensions in mm

Dimensional drawing of gamma/ X Material design PVT

Type	ØA	В
0245	110	76
0424, 0220	90	79
0715, 0414	90	73
1009, 0708	90	75
1604	70	71
1602	70	71

Type	С	D	E	
0245	-	14	209	
0424, 0220	90	25	203	
0715, 0414	90	25	203	
1009, 0708	92	25	203	
1604	84	36	196	
1602	84	36	196	

P_G_0057_SW3

Dimensional drawing of gamma/ X, Material design PVT – dimensions in mm

Technical Data

Pump type	Delivery rate at max. back pressure		Number of strokes	Connection size o Ø x i Ø	Suction lift	Shipping	weight	
							PP, NP, PV, TT	SS
	bar	l/h	ml/stroke	Strokes/min	mm	mWC	kg	kg
gamma/ X								
GMXa 1602	16	2.30	0.19	200	6 x 4	6.0**	3.6	4.1
GMXa 1604	16	3.60	0.30	200	6 x 4	6.0**	3.6	4.1
GMXa 0708	7	7.60	0.63	200	8 x 5	6.0**	3.7	5.0
GMXa 0414	4	14.00	1.17	200	8 x 5	3.0**	3.7	5.0
GMXa 0220	2	19.70	1.64	200	12 x 9	2.0**	3.7	5.0
GMXa 2504	25	3.80	0.32	200	8 x 4***	6.0**	4.9	5.5
GMXa 1009	10	9.00	0.75	200	8 x 5	6.0**	5.1	6.5
GMXa 0715	7	14.50	1.21	200	8 x 5	4.0**	5.1	6.5
GMXa 0424	4	24.00	2.00	200	12 x 9	3.0**	5.1	6.5
GMXa 0245	2	45.00	3.70	200	12 x 9	2.0**	5.2	7.0
gamma/ X meter	ring pumps wit	th self-bleedi	ing dosing he	ad*				
GMXa 1602	16	1.30	0.11	200	6 x 4	2.1**	3.6	_
GMXa 1604	16	2.40	0.21	200	8 x 5	2.7**	3.6	-
GMXa 0708	7	6.80	0.57	200	8 x 5	2.0**	3.7	_
GMXa 0414	4	12.00	1.00	200	8 x 5	2.0**	3.7	-
GMXa 0220	2	18.00	1.50	200	12 x 9	2.0**	3.7	-
GMXa 1009	10	8.00	0.67	200	8 x 5	3.0**	5.1	-
GMXa 0715	7	12.00	1.00	200	8 x 5	2.5**	5.1	-
GMXa 0424	4	20.00	1.67	200	12 x 9	2.5**	5.1	-

gamma/ X metering pumps with dosing heads for high-viscosity media have a 10-20% lower capacity and are not self-priming. G 3/4-DN 10 connector with d 16-DN 10 hose nozzle.

- * The given performance data represents guaranteed minimum values, calculated using water as the medium at room temperature. Bypass connector with self-bleeding dosing head (SEK): 6 x 4 mm.
- ** Suction lift with a filled dosing head and filled suction line, with a self-bleeding dosing head with air in the suction line
- *** With stainless steel design 6 mm connector width
- All data refers to water at 20 °C.

Materials in contact with the medium

	Dosing head	Suction/pressure connector	Ball seat	Seals	Balls
PPE	Polypropylene	Polypropylene	EPDM	EPDM	Ceramic
PPB	Polypropylene	Polypropylene	FKM	FKM	Ceramic
PPT	Polypropylene	Polypropylene	PVDF	PTFE	Ceramic
NPE	Clear acrylic	PVC	EPDM	EPDM	Ceramic
NPB	Clear acrylic	PVC	FKM	FKM	Ceramic
NPT	Clear acrylic	PVC	PVDF	PTFE	Ceramic
PVT	PVDF	PVDF	PVDF	PTFE	Ceramic
TTT	PTFE with carbon	PTFE with carbon	Ceramic	PTFE	Ceramic
SST	Stainless steel material no. 1.4404	Stainless steel material no. 1.4404	Ceramic	PTFE	Ceramic

Self-bleeding design only in material designs PP and NP with a valve spring made of Hastelloy C and a PVDF valve insert. Diaphragm with a PTFE coating.

FKM = fluorine rubber

Metering reproducibility: ±2% when used according to the operating instructions

Permissible ambient temperature: -10 °C to +45 °C

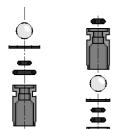
Mean power consumption: 24/30 W

Degree of protection: IP 65, insulation class F

Scope of supply

Metering pump with mains cable, connector kit for hose/tube connector as per table.

1.3.2

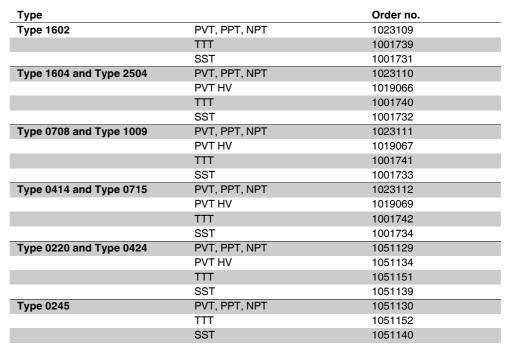

Identity Code Ordering System

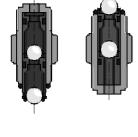
gamma/ X product range, version a

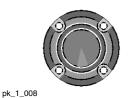
GMXa		Capac	l/h														
	1602		.,				bar	l/h									
			2.3			2504	25	3.8									
	1604		3.6			1009	10	9.0									
	0708		7.6			0715	7	14.5									
	0414		14.0 19.7			0424	4	24.0									
	0220			-lu	tavial	0245	2	45.0									
		PP		alve ma		with self	-bleedin	g design	polypro	pylene/i	oolvoron	vlene					
		NP						design c				,,					
		PV	PVDF/	/PVDF				•	•								
		TT	PTFE/														
		SS			1.4404/												
			Seal/d		ym mate		alv with I	P and N	JP solf-	hleeding	ı desian						
			В				-	PP and		_	-						
			T		PFTE coa		,		,		99						
			S	Diaphra	agm add	itionally	with FK	M coatin	g for sili	ceous m	edia, Fr	KM-B se	als on P	P and N	P, PTFE	on TT,	PV and SS
					end ver												
				0				-					type 02				
				1				ı vaive s e springs		•			nd type 0	1245			
				3					-				pe 0245				
				4								-	, 0414, 2		09, 0715	5, 0424	
				9	self-ble	eding w	ith bypa	ss (SEK), only w	ith PP/N	P, not fo	or types	2504 an	d 0245			
					-		nection										
					0 5			ding to t			2		************	فاندد براهم		iala DD	NP and PV
					9		•						,	•		,	NP and PV
					ľ			pture in			., σασιισ	0.00 0	a. raara	, 0,		,	
						0	Withou	t diaphra	agm rupt	ure indi	cator						
						1		aphragm	rupture	indicate	or, optica	al senso	r				
							Versio		d								
							0	Standa Logo	ra								
								0	with Pro	oMinent ⁶	® logo						
										supply	- J						
									U		0 V, ±10		60 Hz				
											and plu						
										A B	2 m Eu 2 m Sw						
										С	2 m Au						
										D	2 m US	A					
										E	_	eat Brita					
										1		en-end					
											Relay,	pre-set No rela					
											1		•	r contact	230 V -	- 2 A. faı	ult indicating relay N/C
											4						cing relay
											С	1 x N/C	24 V –	100 mA	, such as	s 1 + 4 –	20 mA output
												Acces					
												0		essories		charge v	valve, 2 m PVC suction
													tubing,	5 m PE	delivery	tubeonl	ly with PP, PV and NP, not
													with PV				
													Contro	l versio		nal 1·1 v	with pulse control
													3				pulse control + analogue
														0/4 - 20) mA		
													4				ocess timer
													5 C		s 3 + 4 w s 3 + CA		ocess timer
													R				interface, M12
													-	no rela	y with Pl	ROFIBU	IS® version
															ng mon		
														0		signal in	put
															Pause		N/C lovel N/C
															0		N/C, level N/C
																Langua DE	age German
																EN	English
																FR	French
																ES	Spanish

1.3.3

Spare Parts Kits, Replacement Diaphragms




Spare Parts Kit for gamma/ X


Spare parts kits for gamma/ X, consisting of:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 1 Set of seals
- 1 Connector kit

Suction and discharge valve set not included with stainless steel version.

Spare parts kit for gamma/ X with SEK

Spare parts kits for gamma/ L with self-bleeding liquid end, consisting of:

- 1 pump diaphragm
- 1 suction valve set
- 1 discharge valve set
- 1 bleed valve set
- 2 valve balls
- 1 set of seals
- 1 connector set

Type	Materials in contact with the medium	Order no.
Type 1602	PPE9	1001757
	PPB9	1001763
	NPE9	1001661
	NPB9	1001667
Type 1604	PPE9	1001758
	PPB9	1001764
	NPE9	1001662
	NPB9	1001668
Type 0708 and Type 1009	PPE9	1001759
	PPB9	1001765
	NPE9	1001663
	NPB9	1001669
Type 0414 and Type 0715	PPE9	1001760
	PPB9	1001766
	NPE9	1001664
	NPB9	1001670
Type 0220 and Type 0424	PPB9	1051102
	NPE9	1051091
	NPB9	1051124
	PPE9	1051113
		· · · · · · · · · · · · · · · · · · ·

Spare Diaphragm for Product Range gamma/ X

Туре	Materials in contact with the medium	Order no.
Type 1602	all materials	1000246
Type 1604 and Type 2504	all materials	1039612
Type 0708 and Type 1009	all materials	1000248
Type 0414 and Type 0715	all materials	1000249
Type 0220 and Type 0424	all materials	1045456
Type 0245	all materials	1045443

Accessories

- Foot Valves See page → 1-48
- Injection Valves See page → 1-51
- Hoses, Pipes See page → 1-61
- \blacksquare Suction Lances, Suction Kit Without Level Switch See page \rightarrow 1-66
- Connector Parts/Fittings See page → 1-87

Spare Parts

 \blacksquare Custom Valve Balls/Valve Springs See page \rightarrow 1-86

1.4 Solenoid Driven Metering Pump delta®

Solenoid Driven Metering Pump delta® with Regulated Solenoid Drive

Virtually an all-rounder and just the right solution for exacting requirements. A high-end product with a wide range of settings and control options.

Capacity range 7.5 - 75 l/h, 25 - 2 bar.

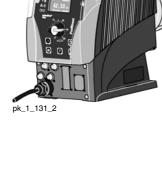
A high-end diaphragm metering pump: The solenoid driven metering pump delta [®] is the first of its kind to have a regulated solenoid drive. Virtually wear-free, extremely economical and with a self-bleeding

A range of different pump types and material combinations are available for virtually all metering applications. The optional 4-week process timer offers a variety of installation options. The pump achieves maximum precision even with fluctuating back pressure thanks to the regulated solenoid drive. This guarantees an exceptionally long service life even under maximum load. The integrated optoGuard® monitoring function reports hydraulic fault statuses, such as excess pressure or ruptured metering line. The large illuminated LC display quarantees good readability of all displayed values. The capacity is shown directly in I/h.

Your benefits

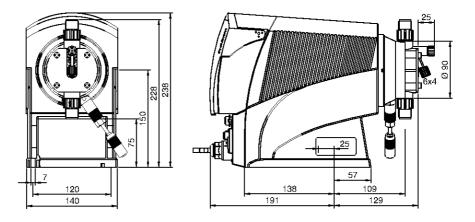
- Adjustment of the capacity directly in I/h
- Adaptation to existing signal transducers by external control via potential-free contacts with pulse step-
- External control via 0/4 20 mA standard signal with adjustable assignment of signal value to stroke rate
- Organise work processes conveniently with the optional process timer. The alternative to timers or
- Optional PROFIBUS® interface for connection to process control systems
- Suitable for use with almost all liquid chemicals, thanks to the available material combinations PVDF, clear acrylic and stainless steel
- Virtually wear-free solenoid drive: overload-proof and economical
- Everything in sight and under control: illuminated LED display and 3-LED display for operating, warning and error messages
- Reporting of hydraulic error statuses, blocked points of injection, ruptured metering lines and air and/or gas in the dosing head, which the integrated monitoring system optoGuard® detects
- Automatic bleed function
- Maximum dosing precision by compensation of pressure fluctuations
- Also ideal for continuous micro-metering from around 6 ml/h

Technical details


- External control via potential-free contacts with pulse step-up and step-down to adapt to existing signal transducers of 99:1 to 1:99
- Batch operation with max. 65,536 strokes/start pulse
- External control via 0/4 20 mA standard signal with adjustable assignment of signal value to stroke rate
- Stroke rate adjustment in 1 stroke/hour steps of 0 to 12,000 strokes/h and/or 200 strokes/min
- Stroke length continuously adjustable between 0 100% (recommended 30 100%)
- Connector for 2-stage level switch
- Dosing monitor input with adjustable number of tolerated defective strokes
- Optional optical diaphragm rupture indicator detects droplets behind the diaphragms
- Optional 4 20 mA output for remote transmission of stroke length and stroke rate
- "Concentration input" option for volume-proportional metering
- PROFIBUS® or CAN Open interface option
- Control module option with connecting option for chlorine, pH, ORP sensors or flow meter DFMa
- Wide-range electrical connection: 100 230 V, 50/60 Hz
- Optional relay module, can also be easily and reliably retrofitted

Field of application

They can be used in all industries and integrated into automated processes. Maximum process reliability through the regulated solenoid drive and optoGuard® monitoring function. The pump can work as a control unit with the process timer, for example in cooling water treatment



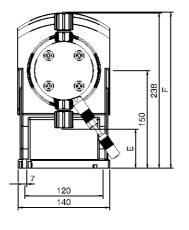
1.4.1

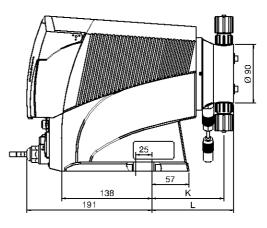
1.4 Solenoid Driven Metering Pump delta®

Dimensional drawing of delta® **Material version PV**

P_DE_0042_SW_2_SW3

Dimensional drawing of delta® type 1612-0730, Material version PV - dimensions in mm


Dimensional drawing of delta® **Material version NP**


Туре	E	F
2508 / 1608	63	235
1612	60	239
1020	54	245
0730	53	246
Туре	K	L
Type 2508 / 1608	K	L 125

0730

112

127

P_DE_0046_1_SW3

Dimensional drawing of delta $^{\otimes}$ without bleed valve, Material version NP - dimensions in mm

1.4 Solenoid Driven Metering Pump delta®

Technical Data

Pump type	Max. pressure	Delivery rate	Stroke volume	Max. stroke rate	Connector size outside Ø x inside Ø	Suction lift	Shipping weight NPE, NPB, PVT / SST
	bar	l/h	ml/stroke	Strokes/min		mWC	kg
DLTa 2508	25	7.5	0.62	200	8 x 4** mm	5*	10/11
DLTa 1608	16	7.8	0.65	200	8 x 5** mm	5*	10/11
DLTa 1612	16	11.3	0.94	200	8 x 5 mm	6*	10/11
DLTa 1020	10	19.1	1.59	200	12 x 9 mm	5*	10/11
DLTa 0730	7	29.2	2.43	200	12 x 9 mm	5*	10/11
DLTa 0450	4	49.0	4.08	200	G 3/4 - DN 10	3*	10/11
DLTa 0280	2	75.0	6.25	200	G 3/4 - DN 10	2*	10/11

delta $^{\otimes}$ metering pumps with dosing heads for higher-viscosity media have a 10-20 % lower capacity and are not self-priming. G 3/4 - DN 10 connector with d 16-DN 10 hose nozzle.

- * Suction lift (mWS) = Suction lift with filled dosing head and filled suction line
- ** With stainless steel design 6 mm connector width

All data refers to water at 20 °C.

Materials in contact with the medium

Design	Dosing head	Suction/pressure connector	Ball seat	Seals	Valve balls
NPE	Clear acrylic	PVC	EPDM	EPDM	Ceramic
NPB	Clear acrylic	PVC	FKM	FKM	Ceramic
PVT	PVDF	PVDF	PVDF	PTFE	Ceramic
SST (8-12 mm)	Stainless steel 1.4404	Stainless steel 1.4404	Ceramic	PTFE	Ceramic
SST (DN 10)	Stainless steel 1.4404	Stainless steel 1.4404	PTFE with carbon	PTFE	Ceramic

Design of connectors

Plastic	8-12 mm	Hose squeeze connection
	DN 10	d16 DN 10 hose nozzle
Stainless steel	6-12 mm	Swagelok system
	DN 10	Rp 3/8 insert

Diaphragm with PTFE coating.

Repeatability of metering $\pm 2~\%$ when used according to the operating instructions.

Permissible ambient temperature: -10 °C to 45 °C

Mean power consumption 78 W

Degree of protection IP 65, insulation class F

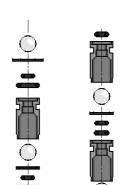
Scope of supply

Metering pump with mains cable, connector kit for hose/tube connector as per table.

1.4 Solenoid Driven Metering Pump delta®

1.4.2

Identity Code Ordering System

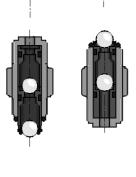

delta® series

	Capa	city											
	bar	l/h				bar	l/h						
2508		7.5			0730		29.2						
1608		7.8			0450		49.0						
1612		11.3			0280	2	75.0						
1020		19.1											
		d end/valv			050	_							
	PV NP	PVDF/PVE Acrylic gla					1600	1612	1020 0	720			
	SS	Stainless s				Je 2500	, 1000,	1012,	1020, 0	730			
		Seal/diap			OI								
			ly with PV										
		S PTI	ÉE/diaphra	agm ad	ditionall	y with I	-КМ со	ating fo	r silica-	laden m	nedia, n	ot for t	types 0450 and 0280
			M-B, only	with NF	•								
		E EP	DM, only	with NP									
			juid end v		:ul= u						-1.00		
		0							materia terial T				
		2							ith mate			,	
		3							materia				
		4					-	-				,1020	and 0730
				aulic co	-								
			0	Stand	ard con	nectors	-		cal data				
			5										only with material NP and PV
			F						4 hose,	standaı	rd on su	iction :	side, only with material NP and PV
						-	indica		indicatio	\n			
				0					indicatio icator, o		ensor		
				2						-		re indi	icator, pressure sensor, only with material SS
					Version		. 3.						, , , , , , , , , , , , , , , , , , , ,
					0	With F	ProMine	nt logo					
							r supp						
						U			ntroller 1	00-230	V 50/6	60 Hz	
								and p					
							A B	2 m E	urope vitzerlar	nd			
							C		ustralia				
							D	2 m U	SA / 11	5 V			
							1	2 m w	ithout p	ug			
								Relay					
								0		ıt relay	rmolly	onorai	and 1 v C/O contact 220 V 8 A
								3		-	-	_	sed 1 x C/O contact 230 V - 8 A ergised 1 x C/O contact 230 V - 8 A
								4		•	•		. contacts 24 V – 100 mA
								5			-		. contacts 24 V – 100 mA
								Α	Shutde	own and	d alarm	relay ı	normally energised 2 x N.O. contacts 24 V - 100 m.
								С					N.O. contact 24 V – 100 mA
								F					230 V not for pump type 2508
								G				valve,	24 V DC and relay output
									Acces	sories Withou	ut acces	sories	
									1				ing valve, 2m suction line and 5 m discharge line
									2				up (only for type 2508, 1608, 1612, 1020, and 0730
									3			-	up (only for type 2508, 1608, 1612, 1020, and 0730
											ol versi		
										0			ternal contact with pulse control
										3			ternal contact with pulse control + analogue 0/4-20
										4 5			k process timer k process timer
										C	as 3 +		·
										M			RP and chlorine + DFMA control module
										R			TBUS® interface, M12
											Acces	s cod	e
											0		out access code
											1		access code
												Lang	
												DE EN	german
												FR	english french
												ES	spanish
													Pause/level
1	1												0 Pause N.C. contact level, N.C. contact
							1	1		1	1		1 1

1.4 Solenoid Driven Metering Pump delta®

1.4.3

Spare Parts Kits, Replacement Diaphragms



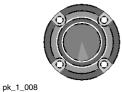
Spare parts kits for delta®

Replacement parts kit for delta®, consisting of:

- metering diaphragm
- suction valve compl.
- 1 discharge valve compl.
- 2 valve balls
- 1 set of seals
 - 1 connecting kit

Stainless steel version without suction and discharge valve compl.

Materials in contact with the medium


Order no.

1027084

1027089

1027085

1027090

Replacement diaphragms for delta® series

PVT

SST

PVT

SST

Туре	Materials in contact with the medium	Order no.
Type 2508/1608	all materials	1030353
Type 1612	all materials	1000248
Type 1020	all materials	1000249
Type 0730	all materials	1000250
Type 0450	all materials	1000251
Type 0280	all materials	1025075

Accessories

Type 0450

Type 0280

- Foot Valves See page → 1-48
- Injection Valves See page → 1-51
- Hoses, Pipes See page → 1-61
- Suction Lances, Suction Kit Without Level Switch See page → 1-66
- Connector Parts/Fittings See page → 1-87

Spare Parts

■ Custom Valve Balls/Valve Springs See page → 1-86

Precision Plunger Metering Pump mikro delta®

Continuous, highly precise and safe metering in the micro-litre range. This challenge is met by the latest generation of pumps.

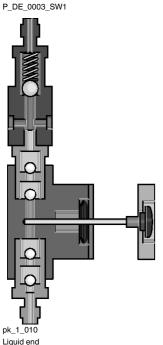
Capacity range 150 - 1500 ml/h, 60 - 20 bar.

1.5.1

The precision plunger metering pump mikro delta[®] meters reliably, ultra-accurately and constantly in the microlitre range – one of the latest generation of solenoid metering pumps. Higher pressures can be achieved thanks to half the stroke length and double the stroke rate compared to the previous model.

The mikro delta® delivers the same litre outputs as its predecessor model. It does this at half stroke length and double stroke rate. This enables higher pressures to be provided. Double ball valves and an integrated back pressure valve guarantee highly precise and pressure-independent metering in the 0 - 60 bar range. The capacity ranges from 1-250 μ l/stroke or 0.001 - 1500 ml/h.

Your benefits


- Ideally suited for continuous micro-metering from approx. 0.2 l/h
- Adaptation to existing signal transducers by external control via potential-free contacts with pulse stepup and step-down
- External control via 0/4 20 mA standard signal with adjustable assignment of signal value to stroke rate
- Organise work processes conveniently with the optional process timer the alternative to timers or PLC
- Optional PROFIBUS® interface for connection to process control systems
- Virtually wear-free solenoid drive: Overload-proof and cost-effective
- Everything in sight and under control: Illuminated LED display and 3-LED display for operating, warning and error messages
- Maximum dosing precision of \pm 0.5% by compensation of pressure fluctuations

Technical details

- Adjustment of the capacity directly in ml/h
- External control via potential-free contacts with pulse step-up and step-down to adapt to existing signal transducers of 99:1 to 1:99
- Batch operation with max. 65,536 strokes/start impulse
- External control via 0/4-20 mA standard signal with adjustable assignment of signal value to stroke rate
- Stroke rate adjustment in 1 stroke/hour steps of 0-6.000 strokes/h or 100 strokes/min
- Stroke length continuously adjustable between 0-100 % (recommended 4-100 %)
- Connector for 2-stage level switch
- PROFIBUS® or CAN Open interface option
- Wide-ranging electrical connection: 100-230 V, 50/60 Hz
- Optional relay module, can also be easily and reliably retrofitted

Field of application

For continuous micro-metering in laboratories and in manufacturing for the addition of very small quantities of liquid.

Materials in contact with the medium

٧	ersion/	Dosing head	Suction/discharge connection	Valve balls	Valve seats	Piston	Valve seals	Plunger gaskets
Т	TT	PTFE with carbon	PTFE with carbon	ruby	ceramic	ceramic	PTFE	PTFE, white
Т	TG	PTFE with carbon	PTFE with carbon	ruby	ceramic	ceramic	PTFE	PTFE + graphite
S	SST	stainless steel 1.4571	stainless steel 1.4571	ruby	ceramic	ceramic	PTFE	PTFE, white
S	SSG	stainless steel 1.4571	stainless steel 1.4571	ruby	ceramic	ceramic	PTFE	PTFE + graphite

Permissible ambient temperature -10 °C ... +45 °C.

Technical Data

Pump type	Deliv	•	at max. ressure	Plunger Ø	Connection size hose oØ x iØ	Connection size piping o∅	Suction lift	Intake height	Perm. pre- pressure suction side	Back pres- sure valve holding pressure	Shipping weight
	bar	ml/h	μl/ stroke	mm	mm	mm	mWC	mWC	bar	bar	kg
Version TT											
100150 TT	10	145	24.17	2.5	1.75 x 1.15	-	6*	0.6**	5	2.5	10
100600 TT	10	580	96.67	5	1.75 x 1.15	_	6*	2.0**	5	2.5	10
101500 TT	10	1,480	246.67	8	3.20 x 2.40	-	4*	2.0**	5	1.5	10
Version SS	5										
600150 SS	60	145	24.17	2.5	1.75 x 1.15	1.58	6*	0.6**	30	2.5	11
400600 SS	40	580	96.67	5	1.75 x 1.15	1.58	6*	2.0**	20	2.5	11
201500 SS	20	1,480	246.67	8	3.20 x 2.40	3.18	4*	2.0**	10	1.5	11

- * Suction lift with primed liquid end and primed suction line
- ** Intake height with clean and wetted valves. Feed chemical water at 20 °C. Intake height at 100 % stroke length, open vent screw and suction side as described.

Max. stroke rate 100 rpm.

All data refers to water at 20 °C.

Electrical connection

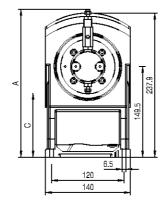
Nominal power, approx.	38 W
Nominal current, approx.	0.64 0.42 A
Start-up peak current, easing within 50 ms	8 4 A

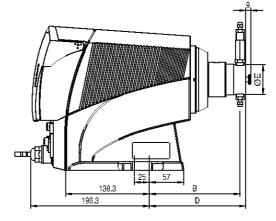
Dimensional drawing of mikro delta® Material version TT and SS

Material version TT

Туре	Α	В
100150	243.9	150.1
100600	243.9	150.1
101500	256.2	150.1

Material version TT


Type	С	D	E	
100150	105.1	159.1	Ø 49	
100600	105.1	159.1	Ø 49	
101500	92.3	161.1	Ø 49	


Material version SS

Туре	Α	В
600150	256.2	150.1
400600	254.7	150.1
201500	256.2	150.1

Material version SS

Type	С	D	E
600150	92.3	161.1	Ø 49
400600	99	159.1	Ø 49
201500	92.3	161.1	Ø 49

P_DE_0034_SW_mikro_SW3

Dimensional drawing of mikro delta®, Material version TT and SS - dimensions in mm

1.5.2

Identity Code Ordering System

mikro delta® series, version a

MDLa	Туре	Capac	city											
		bar	ml/h											
	100150	10	145	(only T	,									
	600150	60	145	(only S	SS)									
	100600	10	580	(only 1	T)									
	400600	40	580	(only S	SS)									
	101500	10	1,480	(only 1	T)									
	201500	20	1,480	(only S	SS)									
		Dosin	g head											
		SS	Stainle	ess stee	l 1.4571									
		TT	PTFE	with 25	% carbo	n								
			Sealin	g mate	rial									
			Т		oure whi									
			G	PTFE \	vith grap	ohite								
				Liquid	end ve	rsion								
				0		e spring								
				1			• •		100150 a	and 600	150)			
							nection							
					0		ard acco	rding to	technica	al data				
						Logo								
						0			®-Logo					
						2		Minent®						
									ver sup		. (0.0.1.1			
							U			10 %, 50)/60 HZ			
									and plu					
								A B	2 m Eu 2 m Sv					
								С	_	istralian				
								D	2 m US					
									Relay	<i>-</i>				
									0	no rela	V			
									1			relav r	ormally	y energised, 1x changeover contact, 230 V - 8 A
									3					y de-energised, 1 x changeover contact, 230 V - 8 A
									4					illy open contact, 24 V - 100 mA
									5					Illy closed contact, 24 V - 100 mA
										Acces				
										0	no acc	essories	;	
											Contro	l variar	nts	
											0	manua	I + exte	rnal contact with pulse control
											3	manua	I + exte	rnal contact w. pulse control + analogue 0/4-20 mA
											4	as 0 +	Proces	s Timer (1 month)
											5			s Timer (1 month)
											С	CANop		
											R	as 3 +	PROFIL	BUS®-interface, M12
												Acces		
												0		ces code
												1	with a	cces code
													Langu	
													DE	german
													EN	english
													FR	french
													ES	spanish
														Pause / Level
														0 Pause, n.c., level n.c.

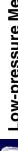
O

Spare Parts	
Spare piston	
Туре	Order no.
100150/600150	803149
100600/400600	803181
101500/201500	803182
Spare piston packing PTFE pure wh	ite
Spare piston packing PTFE pure wh Type 100150/600150	ite Order no. 485431
Туре	Order no.
Type 100150/600150	Order no. 485431
Type 100150/600150 100600/400600	Order no. 485431 485430

Order no.

485428

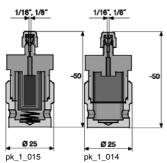
485427


485429

Type

100150/600150

100600/400600


101500/201500

1.5 Precision Plunger Metering Pump mikro delta®

1.5.4

mikro delta® Installation Accessories

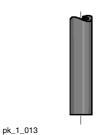
Stainless steel suction filter

Without check valve, interchangeable filter element. Material: 1.4404/1.4310/SS 316/PTFE

Connection		Order no.
1/16" - 15 μm	(For mikro 50 and 200 ml head) (Fig. pk_1_015) for tube Ø 1.58	803253
1/8" - 15 μm	(For mikro 500 ml head) (Fig. pk_1_015) for tube \emptyset 3.175	803254
1/8" - 60 μm	(For SK metering pumps) (Fig. pk_1_014) for tube Ø 3.175	803255

Replacement filter elements for suction filter

		Order no.
Sintered elements	15 μm	403814
Screen mesh	60 μm	404523


Stainless steel injection valve

Housing in 1.4404 and springs in 1.4571, PTFE seals.

Size	Connection	Order no.
Ø 20 x 48 mm	1/16" - 1/4" for tube Ø 1.58 and 1.75 mm	803251
Ø 22 x 56 mm	1/8" - 1/4" for tube Ø 3.175 and 3.2 mm	803252

Suction and discharge pipe

	pressure	Order no.
	bar	
PTFE 1.75 mm o. Ø x 1.15 mm i. Ø (1/16")	12*	037414
PTFE 3.2 mm o. Ø x 2.4 mm i. Ø (1/8")	8*	037415
Stainless steel pipe 1.4435 1.58 mm o. Ø x 0.9 mm i. Ø (1/16")	400*	1020774
Stainless steel pipe 1.4435 3.175 mm o. Ø x 1.5 mm i. Ø (1/8")	400*	1020775

^{*} Permitted operating pressure at 20 °C, provided media is compatible and pipe is correctly connected.

D A

Nipple

1.4571 pipe nipple for mikro g/5 and gamma/4 SK for connecting 1/16" and 1/8" PTFE tubing.

	Order no.
Nipple 1/16" o. Ø 1.58 mm x i. Ø 0.9 mm, length 25 mm	402315
Nipple 1/8" o. Ø 3.175 mm x i. Ø 1.5 mm, length 30 mm	402316
Nipple 1/8-1/16" o. Ø 3.175 - 1.58 mm, length 45 mm	402317

pk_1_017

1.6 Pneumatic Metering Pump Pneumados

Pneumatic Metering Pump Pneumados b 1.6.1

The ProMinent® Pneumados is a pneumatically operated diaphragm metering pump Capacity range 0.76 - 16.7 l/h, 16 - 2 bar.

The metering pump Pneumados has a pneumatic power end and can be used in places without electrical supply voltage, with suction stroke performed by spring force.

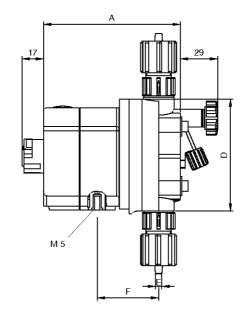
The compression stroke is provided by compressed air applied to a diaphragm, which drives the PTFEcoated metering diaphragm. The suction stroke is actuated by a spring-loaded force. The pump capacity is adjusted by the stroke length and stroke rate.

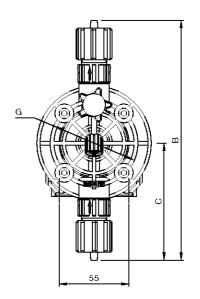
Your benefits

- No electrical supply voltage needed
- Material version PVDF and stainless steel
- Stroke rate of up to 180 strokes/min
- Spring-loaded valves for higher-viscosity media
- Use wherever no electrical supply voltage is available

- Compressed air requirement approx. 50 l/h, non-oiled compressed air preferred
- Length of the compressed air line between the valve and pump max. 1 metre
- Diaphragm deflection from the centre position

- Metering and handling of animal feed


Use in car wash facilities


Dimensional drawing for Pneumados b Material design PVDF

Type	Α	D	E	F	
1000	103	70	6x4	48	
1601	105	70	6x4	49	
1602	103	70	6x4	48	
1005	107	90	8x5	48	
0708	109	90	8x5	50	
0413	109	90	8x5	50	
0220	111	90	12x9	52	
T	_	_	_		

P_PN_0005_SW

Type	В	С	G	
1000	164	78	50	
1601	176	90	50	
1602	172	88	50	
1005	189	92	66	
0708	190	93	66	
0413	181	88	66	
0000	101	00	00	

P_PN_0009_SW3

Dimensional drawing of Pneumados b, Material version PVC - dimensions in mm

1.6 Pneumatic Metering Pump Pneumados

Technical Data

Pump type	Delivery rate at max. back pressure		Number of strokes	Connector sizes	Suction lift	Shipping weight	
	bar	l/h	ml/stroke	Strokes/min		mWC	kg
PNDb 1000	10	0.76	0.07	180	6 x 4	6.0	1.0 - 1.7
PNDb 1601	16	1.00	0.09	180	6 x 4	6.0	1.0 - 1.7
PNDb 1602	16	1.70	0.16	180	6 x 4	6.0	1.0 - 1.7
PNDb 1005	10	3.80	0.35	180	8 x 5*	5.0	1.2 - 1.9
PNDb 0708	7	6.30	0.58	180	8 x 5	4.0	1.2 - 1.9
PNDb 0413	4	10.50	0.97	180	8 x 5	3.0	1.2 - 1.9
PNDb 0220	2	16.70	1.55	180	12 x 9	2.0	1.2 - 1.9

All data refers to water at 20 °C.

Filtered compressed air 6 bar ±10 %

Air consumption at 1 m feed line 47 l/min

Max. stroke rate 180 strokes/min

Connectors

Material	Øo x Øi	Version
For PV	6, 8 and 12 mm	Hose nozzle with clamping ring
For stainless steel SS	6, 8 and 12 mm	Swagelok system screw connection

Materials in contact with the medium

	Liquid end	Intake/pressure connection	Ball seal	Seals	Balls
PVT	PVDF	PVDF	PVDF	PTFE	Ceramic
SST	Stainless steel M. No. 1.4404	Stainless steel M. No. 1.4404	Ceramic	PTFE	Ceramic

DEVELOPAN® metering diaphragm with PTFE coating.

Metering reproducibility of ±2 % when used in accordance with operating instructions. Permissible ambient temperature -10 °C to +50 °C.

^{*} Stainless steel version 6 x 4 mm

1.6 Pneumatic Metering Pump Pneumados

1.6.2

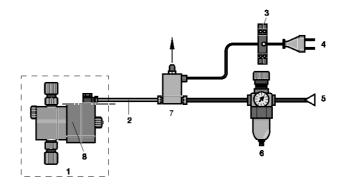
Identity Code Ordering System

Pneumados product range, version b

PNDb	Type	Capa	city												
		bar	l/h												
	1000	10.0	0.76												
	1601	16.0	1.00												
	1602	16.0	1.70												
	1005	10.0	3.80												
	0708	7.0	6.30												
	0413	4.0	10.50	10.50											
	0220	2.0	16.70												
		Liquid end/Valve material													
		PV PVDF/PVDF													
		SS	SS Sta	ainless st	teel 1.44	04/1.44	04								
			Seal/d	liaphrag											
			S		orin diap										
			Т	Standa	ard diaph	ıragm w	ith PTFE	seal							
			Χ	Withou	ıt deliver	y unit									
				Liquid	end ve										
				0	Non-ble	eed, wit	hout valv	e sprin	g only for SS						
				1					lly for SS						
				2	With bl	eed val	e, withou	ut valve	spring only for PV						
				3	With bl	eed val	e, with v	alve sp	ring only for PV						
				X	Withou	t discha	rge unit								
					Hydrau	ulic con	nectors	;							
					0	Standa	ard conn	ection a	s per technical data						
						Versio									
						0	With P	oMinen	t logo						
							Power	conne							
							0		connector, compressed air 6 bar						
							1	6 x 4 c	onnector, compressed air 6 bar						
			Control type												
				0 Single-acting (standard), without control valves											
						1 Electropneumatic actuation, with electric clock generator 24 V DC, solenoid valve 24 V DC, wall bracket and mounting material for solenoid valve									
					Approvals										
									01 CE						

1.6 Pneumatic Metering Pump Pneumados

1.6.3 **Ordering Example for Installation Accessories**


	Order no.
1 x PVC foot valve with filter and Ø 6 back check valve	924557
1 x PVC injection valve with Ø 6 - R 1/2 ball check valve	924680
1 x 5 m suction, discharge and compressed air line, PE 6 x 4 mm	1004492
1 x compressed air connector for Pneumados G 1/4 - 6 mm quick release connector LCK 1/4"	354641
1 x Pneumados wall bracket including fixtures and fittings	1030028

For electrical controller

	Order no.
1 x 3/2-way solenoid valve MHE3, 24 V DC, with connection fittings 6/4mm	1030275
1 x retaining bracket for solenoid valve	1030276
1 x sound absorber for solenoid valve	1030277
1 x electrical pulse generator 30-180 strokes/min., 24Vdc	1030351

Electrical/Pneumatic controller

Schematic diagram

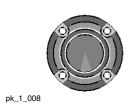
- Pneumados supply limit PE 6x4 max. 1 m

- Electrical pulse generator
 230 V/50-60 Hz mains connector
 Compressed air 6 bar
 Maintenance unit
- 3/2 way solenoid valve with sound absorber Pneumados

pk_1_035

1.6 Pneumatic Metering Pump Pneumados

1.6.4


Spare Parts Kits

Replacement parts kit for Pneumados b consisting of

- 1 Metering diaphragm
- 1 Suction connector compl.
- Discharge connector compl.
- 2 Valve balls
- Set of seals
- 1 Connecting kit

Stainless steel version without suction and discharge valve compl.

Туре		Order no.
Type 1000	PPT, NPT, PVT	1023107
	SST	1001729
Type 1601	PPT, NPT, PVT	1023108
	SST	1001730
Type 1602	PVT, PPT, NPT	1023109
	SST	1001731
Type 1005	PVT, PPT, NPT	1023110
	SST	1001732
Type 0708	PVT, PPT, NPT	1023111
	SST	1001733
Type 0413	PVT, PPT, NPT	1023112
	SST	1001734
Type 0220	PVT, PPT, NPT	1023113
	SST	1001735

Accessories

- Foot Valves See page → 1-48
- Injection Valves See page → 1-51
- Hoses, Pipes See page → 1-61
- Suction Lances, Suction Kit Without Level Switch See page → 1-66
- Connector Parts/Fittings See page → 1-87

Spare Parts

 \blacksquare Custom Valve Balls/Valve Springs See page \rightarrow 1-86

.7.1 Peristaltic Pump DULCO®flex DF2a

The optimum pump product range for use in swimming pools, hot tubs, and spa and wellness facilities

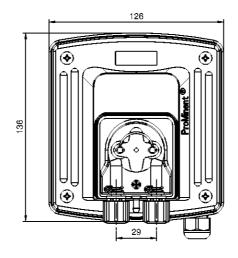
Capacity range 0.4 - 2.4 I/h at max. 1.5 bar back pressure

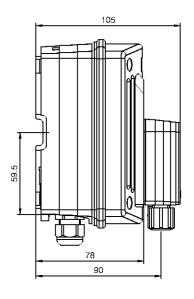
The peristaltic pump DULCO®flex DF2a meters chemicals functionally, cost-effectively and quietly – ideal for use in swimming pools, hot tubs, and in spa and wellness facilities.

The feed chemical is transported by the rotor squeezing the hose in the direction of flow. This explains why there is no need for valves. The feed chemical is thus handled with care. Typical applications: wherever lower pump pressure is sufficient. For example when metering conditioners in private pools.

Your benefits

- Smooth inner wall reduces deposits.
- Hose materials: PharMed® or Viton®
- Virtually silent operation
- Simple handling
- Enhanced service life of the hose due to spring-loaded rollers, which keep the rolling pressure constant
- Robust and protected against spray water from all sides: Housing made of impact-resistant and chemical-resistant PPE




- Self-priming against max. 1.5 bar
- Control or flow control via ON/OFF power supply
- Degree of protection IP 65
- OEM versions on request

Field of application

- Meters conditioners in private pools
- Meters belt lubricants in bottling machines
- Meters cleaning agents in dishwashers

Dimensional drawing of DULCO®flex DF2a

P_DX_0051_SW3

Dimensional drawing of DULCO $^{\tiny{\textcircled{\scriptsize 0}}} flex$ DF2a - dimensions in mm

pk_1_130

1.7.2

Identity Code Ordering System

DULCO®flex product range, version DF2a

DF2a	Туре	Capac	ity												
		bar	l/h												
	0204	1.5	0.4												
	0208	1.5	8.0												
	0216	1.5	1.6												
	0224	1.5	2.4												
		Hose	materia												
		Р	· · · · · · · · · · · · · · · · · · ·												
		V	V Viton® for fragrances (special version)												
			Version												
			0	With P											
			1			nent® lo	_								
				Hydra		nector									
				0				4 mm suction and discharge side							
				9	Conne	ctor for	hose 10	4 mm discharge side only							
					Power	supply	1								
					Α			50/60 Hz							
						Cable	and plu								
						0		ins lead							
						1		m mains lead, open ended							
						Α		ains cable, European plug							
							Drive								
							0	Mains ON/OFF							
		Installation													
		W Wall mounted													
								Accessories							
								0 No accessories							

Viton® and PharMed® are registered trademarks.

Technical Data

Туре		Capacity	Frequency	Connector size	Suction lift	Intake head
	bar	l/h	rpm	o dia. x i dia.	mWC	m WC
0204	1.5	0.4	5	6x4/10x4	4	3
0208	1.5	0.8	10	6x4/10x4	4	3
0216	1.5	1.6	20	6x4/10x4	4	3
0224	1.5	2.4	30	6x4/10x4	4	3

Admissible ambient temperature: 10-45 °C Power consumption approx.: 5 W Switching duration: 100 % Enclosure rating: IP 65

All data refers to water at 20 °C.

Spare hoses

	Order no.
Spare hose set, complete, PharMed®	1009480
Replacement hose compl. Viton®	1023842

1.7.3 Peristaltic Pump DULCO®flex DF3a

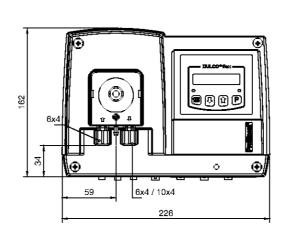
Provides for the perfect atmosphere in spa and wellness zones, thanks to the metering of a range of different pleasant fragrances

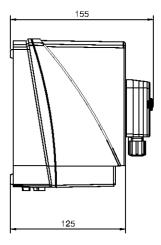
Capacity range 0.4 - 2.4 l/h at max. 1.5 bar back pressure

Fragrance metering in spa and wellness facilities: efficient and high-performance with the peristaltic pump DULCO®flex DF3a. They are used wherever small volumes of fragrances need to be metered.

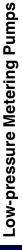
Meters infusions in saunas, steam rooms and whirlpools. The metering pump is equipped with a time control, which can control two other peristaltic pumps for other essences. As the essences cannot be placed undiluted on the oven in saunas, the DF3a has a relay to control the dilution water. To save essences when the sauna is not in use, the pump has a contact input to which a door contact or motion detector can be connected. Essences are therefore only metered when the sauna is in use.

- Employees can therefore operate it quickly: It can be operated simply and reliably with language-neutral user guidance and programming via four buttons on the front
- Quietly operating, does not disturb the spa and wellness experience: Low-noise synchronous motor
- Ideal for retrofitting: Simple to integrate into existing systems
- Efficient operation by economical operation: "Meters only when needed"




- Viton® hose material, specifically for the metering of fragrances in spa and wellness zones
- Control of dilution water by a solenoid valve
- Spring-mounted rollers for uniform roller pressure and increased service life of the hose
- Three float switch inputs

For saunas, steam rooms and hot tubs


Dimensional drawing of DULCO®flex DF3a

P_DX_0050_SW3

Dimensional drawing of DULCO®flex DF3a - dimensions in mm

P_DX_0003_SW1

1.7 Peristaltic Pumps DULCO®flex

1.7.4

Identity Code Ordering System

DULCO®flex product range, version DF3a

DF3a	Applic	cation													
	D		ance m	etering											
1			tallation												
		W	Wall mounting												
			Versi												
			0	with LCD, with ProMinent® logo											
			1						0						
			l '		LCD, without ProMinent® logo										
				Type	e Capacity bar I/h										
				0204		1/n 0.4									
				0208		0.8									
				0216	-	1.6									
				0224		2.4									
						se material									
					٧	Viton									
						Hydra	aulic co		ors						
						0	Stand								
						9	Specia	al conn	ection	10x4 d	ischarg	e side			
							Power	r supp	ly						
							Α	230 V	, 50/60	Hz					
							Ca	Cable	and p	lug					
								0 Witho	ut cabl	е					
								1	With	able 2	.0 m; o _l	oen en	b		
								Α	With	able 2	.0 m; E	uro cor	nector		
								В	With c	able 2	.0 m; S	wiss co	nnecto	r	
									Acce	ssorie	s				
								0	0	Witho	ut acce	ssorie	3		
									1	Meter	ing val	e and	foot va	lve: suc	ction and discharge line
											ware e			,	
										0	None		J		
										Ŭ	Language				
											00		iage-ne	utral	
											00	Relay		Juliai	
												0		ut relay	
												U			relays
													Appii 0	None	
													1		oid valve
													2		
													3		oid valve + pump 2
													3		oid valve + pump 2 + pump 3
															ol versions
														0	External contact
															Pause/level
															Pause break contact + level break contact
															Pause make contact + level break contact
															2 Pause break contact + level make contact
											1				Pause make contact + level make contact
															Approvals
															01 CE-Symbol

Viton® is a registered trademark.

Technical Data

Туре	Capacity		Frequency	Connector size	Suction lift	Intake head
	bar	l/h	rpm	o dia. x i dia.	mWC	m WC
0204	1.5	0.4	5	6 x 4	4	2
0208	1.5	0.8	10	6 x 4	4	2
0216	1.5	1.6	20	6 x 4	4	2
0224	1.5	2.4	30	6 x 4	4	2

Permissible ambient temperature: 10-45 °C 24 W Approx. power consumption: Switching duration: 100 % Enclosure rating: IP 65

All data refers to water at 20 °C.

Spare hoses

	Order no.
Replacement hose compl. Viton®	1023842

1.7.5 Peristaltic Pump DULCO®flex DF4a

The optimum pump for use in swimming pools, hot tubs and spa and wellness facilities. Capacity range 1.5 - 12 l/h, 4 - 2 bar.

The peristaltic pump DULCO®flex DF4a for metering flocculants and activated charcoal treats water precisely and accurately. It is ideal for use in swimming pools, hot tubs or spa and wellness facilities. An operating pressure up to 4 bar is possible.

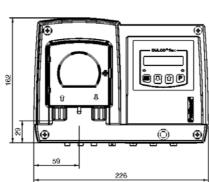
There are three designs of DULCO®flex DF4a available.

- 1 Metering chemicals
- 2 Metering activated charcoal
- 3 Metering flocculants

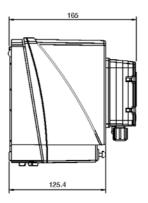
This guarantees that the operating menu, inputs and outputs are always adapted to the respective application.

Your benefits

- Language-neutral user navigation
- Continuous adjustment of capacity
- Hose materials in PharMed® and Tygon®
- Full control, as the capacity is shown in I/h in the display
- Safe and reliable operation: flow volume and concentration can be entered reproducibly
- Long service life: spring-loaded rollers stabilise rolling pressure and reduce wear and tear on the hose
- No troubling noise: low-noise stepper motor with ball bearing drive shaft
- Fast to use: simple installation and retrofitting, even with existing systems
- Guaranteed safety: hose rupture monitoring system and fault indicating relay register and report all problems.
- Suitable for use around the clock 100 % switching-on period
- Operating hour counter for the peristaltic pump you retain the overview.


Technical details

- Priming function
- Night setback
- Inputs for contacts and analogue signals
- Housing degree of protection IP 65
- One or two-stage float switch input
- Operating hour counter
- CANopen interface


Field of application

Swimming pool water treatment

Dimensional drawing of DULCO®flex DF4a

DF4a_SW3
Dimensional drawing of DULCO®flex DF4a - dimensions in mm

P_DX_0003_SW1

1.7.6

Identity Code Ordering System

DULCO®flex product range, version DF4a

-4a /	Applic	cation																
)		ical pu	mp														
	A			arcoal n	neterin	ıg												
F	F	Flocci	ulant m	etering														
			stallation															
		W	Wall r	nounting	g													
			Versi															
			0			ent® log												
			1	Withou	ithout ProMinent® logo													
				Type														
					bar	l/h												
				04004	_	0.35												
				04015		1.50												
				03060		6.00												
				02120		12.00												
						mater												
					P T	PharN			0.400									
							n® not f											
						nyara 0	aulic c			r 6v1								
						9	Standard connector 6x4 Special connector 10x4 discharge side											
						3		wer supply 100 - 240 VAC, 50/60 Hz										
							U 10											
											00112							
								0	Cable and p	ut cab	е							
								1 A B				pen en	d					
												uro coi						
									With c			wiss co						
										ssorie	s							
									0	Witho	ut acc	essorie	s					
									2	With	ip-seal	meteri	ng valv	e PCB	and 1	0 m F	PE r	metering line
										Hard	ware e	xtensi	on					
										0	None							
											Lang	uage d						
											00	Langu	ıage-ne	eutral				
												Relay						
												1						out action
												3					ick-ι	up action
														ol ver				
													8					ontact and analogue 0/4 - 20 mA + 0 - 10
													С	as "8"				
													D				UAN	Nopen and CAN connector
														Furth				
														1				age level + AUX1
														2				age level + AUX1 + AUX2
															Paus			hard and the level bards at the
															0			break contact + level break contact
																		ovals
																01		CE-Symbol

Tygon® and PharMed® are registered trademarks.

Technical Data

Priming lift 3 mWS Approx. power consumption: 24 W Suction lift 4 mWS Switching duration: 100 % 0 - 85 RPM Degree of protection: IP 65 Permissible ambient temperature: 10-45 °C

All data refers to water at 20 °C.

Spare hoses

	Order no.
For type 04004 PharMed®	1034997
For type 04015 PharMed®	1030722
For type 04015 Tygon®	1030775
For type 03060 PharMed®	1030723
For type 03060 Tygon®	1030776
For type 02120 PharMed®	1030774
For type 02120 Tygon®	1030777

1.8 Flow Meter DulcoFlow®

1.8.1

Flow Meter DulcoFlow®

Your reliable control unit: unobtrusively measures, monitors and detects faults. A strong team together with the metering unit!

For the measurement of pulsating volumetric flows in the range of 0.03 ml/stroke - 5 ml/stroke

The flow meter DulcoFlow® reliably measures pulsating flows in the range above 0.03 ml/stroke based on the ultrasound measuring principle. The flow meter achieves maximum chemical resistance, as all wetted parts are made of PVDF and PTFE.

The device works on the ultrasound measuring principle. It was developed specifically for measuring small pulsating volumetric flows. It is installed around 30 cm downstream of the metering pump, so that there is still sufficient pulsation in the flow. All liquids that conduct ultrasound waves can be measured.

Your benefits

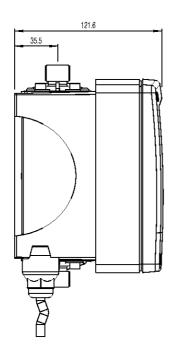
- Maximum chemical resistance by the use of PVDF and PTFE
- No electrical conductivity of the medium is needed
- Measurement above stroke volumes of approx. 30 µl
- Detection of gas bubbles in the feed chemical
- No bottlenecks in the measuring tube. Media with small undissolved particles or with increased viscosity can be measured
- A 0/4 -20 mA current output and a frequency output are available for remote transmission of the measured values.
- Use as a single stroke monitor with feedback to the pump. This ensures that the metering stroke is performed within an adjustable lower and upper limit
- Summation of the metering volume measured with stroke counter
- Intuitive user guidance and simple programming

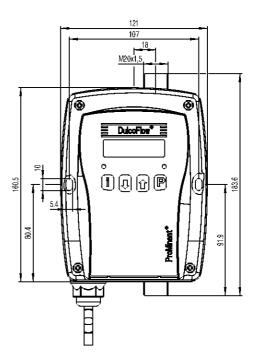
Technical details

- 2 types and/or diameters of the measuring tube are available.
- 2 LEDs for status display and stroke feedback
- 2-line graphic display
- 0/4 20 mA standard signal and 0 10 kHz frequency output for remote transmission of the measured
- Compact, chemically-resistant plastic housing
- Measuring accuracy ±2% if the device has been calibrated to the chemical to be measured. Max. operating pressure 16 bar.

Field of application

- Measurement of the chemical consumption, for example in surface treatment
- Guaranteed metering, for example in the paper industry
- Measured value transmission and pump control by the central control system
- Measurement of aggressive chemicals
- Not suitable for liquids, which have minimal acoustic conductivity, e.g. sodium hydroxide (NaOH) with a concentration of greater than around 20%
- We recommend first testing the measurability with emulsions and suspensions




P_DFI_0002_SW1

1.8 Flow Meter DulcoFlow®

Dimensional drawing of DulcoFlow®

P_DFI_0003_SW_Dulcoflow_SW3

Dimensional drawing of DulcoFlow® - dimensions in mm

Technical Data

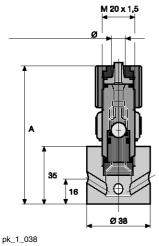
Туре	Type 05	Type 08
Max. operating pressure	16 bar	16 bar
Smallest measurable stroke volume	Approx. 0.03 ml/stroke pulsing	Approx. 0.05 ml/stroke pulsing
Contact output with individual stroke detection	Open collector, 1 contact per stroke	Open collector, 1 contact per stroke
Frequency output	Open collector, up to 10 kHz at maximum flow (parametrisable)	Open collector, up to 10 kHz at maximum flow (parametrisable)
Analogue output	Parametrisable, max. load 400 Ω	Parametrisable, max. load 400 Ω
for series	Beta®, gamma/ X: 1000 – 0414 / 0715 delta®: 1608 – 1612	Beta®, gamma/ X: 1604 - 0220/0424 delta®: 1020 - 0450 Sigma/ 1

1.8 Flow Meter DulcoFlow®

Identity code ordering system for DulcoFlow® ultrasound flow meter

DFMa	Type (for pump series)												
	05					/0715 (with the exception of 0220), delta [®] 1608 – 1612								
	80	Beta®,	ta [®] , gamma/ X 1604 – 0224, delta [®] 1020 – 0450, Sigma/ 1											
		Sealar	lant material											
		E	EPDM											
		V	FKM											
		Т	PTFE											
			Hydra	ulic cor	nection									
			1	16/4 mm										
			2	8/5 mm	n									
			3	12/9 m										
				,	Electrical connection, cable									
				A	30 V AC, 2 m European									
				В		30 V AC, 2 m Swiss								
				C		0 - 230 V AC, 2 m Australian								
				D	100 - 230 V AC, 2 m USA									
					Signal output									
					Signal 0	No output								
					1	·								
					1	Current output								
					2	Contact output								
					-	Current output and contact output								
					4	Current output for delta® with control module								
						Version Lucius D. Mr. 1981								
						0 With ProMinent® logo								
						Accessories								
						0 Without accessories								

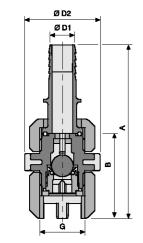
Low-


1.9.1

Foot Valves

At the end of the suction line as protection against contamination and vacuum breaker, with filter meshes and ball check. With 6/4, 8/5, 12/6, 12/9 connectors with ceramic weight.

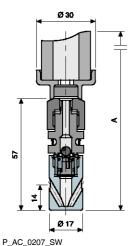
PPE Foot valve


PP body, EPDM seals

Connector	oØ x iØ	A	Fig.	Order no.
	mm	mm		
6/4 for hose	6 x 4	84	pk_1_038	924558
8/5 for hose	8 x 5	84	pk_1_038	809468
12/9 for hose	12 x 9	87	pk_1_038	809470
10/4 for hose	10 x 4	87	pk_1_038	1002916
12/6 for hose	12 x 6	87	pk_1_038	809469
6/4 for hose	6 x 4	57	pk_1_037	914554
G 3/4 - DN 10 for hose	20 x 15 and 24 x 16	93	P_AC_0206_SW	809465

PPB Foot valve

PP body, FKM (FKM) seals


Connector	oØ x iØ mm	A	Fig.	Order no.
		mm		
6/4 for hose	6 x 4	84	pk_1_038	924559
8/5 for hose	8 x 5	84	pk_1_038	924683
12/9 for hose	12 x 9	87	pk_1_038	924684
10/4 for hose	10 x 4	87	pk_1_038	1002915
12/6 for hose	12 x 6	87	pk_1_038	924685
G 3/4 - DN 10 for hose	20 x 15 and 24 x 16	93	P_AC_0206_SW	790189

P_AC_0206_SW

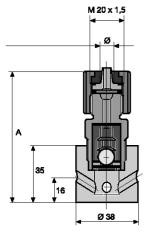
PCB Foot valve

Connector

PVC housing, FKM seals.

	mm			
	r	nm		
6/4 for hose	6 x 4	84	pk_1_038	924557
8/5 for hose	8 x 5	84	pk_1_038	924562
12/9 for hose	12 x 9	87	pk_1_038	924564
10/4 for hose	10 x 4	87	pk_1_038	1002917
12/6 for hose	12 x 6	87	pk_1_038	924563
6/4 for hose	6 x 4	57	pk_1_037	914505
	20 x 15 and 24 x 16	93	P_AC_0206_SW	809464

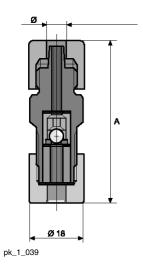
Fig.


Order no.

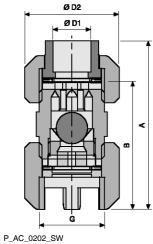
oØ x iØ

PVT Foot valve

PVDF housing, PTFE seals.

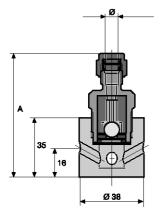


Connector	oØ x iØ mm	A	Fig.	Order no.
		mm		
6/4 for hose	6 x 4	79	pk_1_040	1024705
8/5 for hose	8 x 5	79	pk_1_040	1024706
12/9 for hose	12 x 9	82	pk_1_040	1024707
DN 10 for hose	24 x 16	92	P_AC_0206_SW	1029471

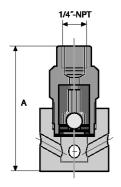

pk_1_040

TT1 Foot valve

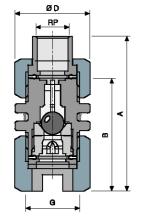
PTFE housing and seals, for connections 6/4, 8/5, 12/6, 12/9 with ceramic weight.



Connector	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 for hose	6 x 4	79	pk_1_040	809455
8/5 for hose	8 x 5	79	pk_1_040	809471
12/9 for hose	12 x 9	82	pk_1_040	809473
12/6 for hose	12 x 6	82	pk_1_040	809472
6/4 for hose	6 x 4	52	pk_1_039	914349
G 3/4 - DN 10	d16 welding sleeve	93	P_AC_0202_SW	809466
G 3/4 - DN 10	u to welding sleeve	93	F_AC_0202_3VV	809400


SS1 Foot valve

Stainless steel 1.4404 housing, PTFE seals. A support sleeve is required for tube connections 6/4, 8/5, 12/9.

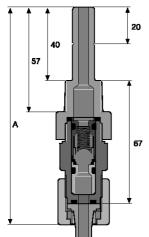


Connector	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 for pipe 6 x 5 mm / hose	6 x 4	74	P_AC_0229_SW1	924568
8/5 for pipe 8 x 7 mm / hose	8 x 5	74	P_AC_0229_SW1	809474
12/9 for pipe 12 x 10 mm / hose	12 x 9	77	P_AC_0229_SW1	809475
1/4" NPT for SS2		70	pk_1_031_SW1	924567
G 3/4 - DN 10 with socket Rp 3/8		67	P_AC_0204_SW	809467

P_AC_0229_SW1

pk_1_031_SW1

P_AC_0204_SW


1.9.2

pk_1_105

pk_1_042

pk_2_029

Injection Valves

For connecting the metering line to the point of injection. Injection valve with check ball, with PP, PVC, PVDF and stainless steel design spring-loaded with Hastelloy C-spring 0.5 bar priming pressure (with R 1/4 spring connector made of stainless steel 1.4571, priming pressure approx. 1 bar) for any fitting position required.

With TT design without spring for vertical installation from below. Valve springs can be retrofitted. Materials used, such as in the pump liquid ends.

Important: Injection valves and injection lances are not suitable as absolutely leak-tight shut-

PPE Injection valves

PP housing, EPDM seals with non-return ball, spring-loaded with Hastelloy C spring, prepressure approx. 0.5 bar with extended screwed socket.

Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 9 bar

Ø 20	
G 1/4	
62	
Ø6x4	
G 1/4	

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	119	pk_1_105	924681
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	119	pk_1_105	809476
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	119	pk_1_105	809478
10/4 - R 1/2 for PVC hose	10 x 4	119	pk_1_105	1002920
12/6 - R 1/2 for PVC hose	12 x 6	119	pk_1_105	809477
6/4 - G 1/4 for PE/PTFE pipe*	6 x 4	62	pk_1_042	914184
G 3/4 - DN 10 for PVC hose	24 x 16	83	pk_2_029	809461

^{*} Valve spring from stainless steel 1.4571, priming pressure approx. 0.8 bar

PPB Injection valves

PP housing, FKM seals with spring-loaded non-return ball, prepressure approx. 0.5 bar.

Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 9 bar

	G
B A	
	Ø D1

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	119	pk_1_105	924682
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	119	pk_1_105	924687
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	119	pk_1_105	924688
10/4 - R 1/2 for PVC hose	10 x 4	119	pk_1_105	1002921
12/6 - R 1/2 for PVC hose	12 x 6	119	pk_1_105	924689
G 3/4 - DN 10 for PVC hose	24 x 16	83	pk_2_029	790191

1.1.2015 Product Catalogue 2015 1-51

pk_1_105

1.9 Hydraulic/Mechanical Installation Accessories

25 R 1/2

PP/PTFE Injection valves

For prevention of chemical deposits. PP body, PTFE mounting insert, EPDM seals with ball check and Hastelloy C spring approx. 0.5 bar priming pressure. (Fig. pk_1_046)

Applications when using appropriate metering lines

25 $^{\circ}\text{C}$ - max. operating pressure 16 bar

45 $^{\circ}\text{C}$ - max. operating pressure 9 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	103	pk_1_046	924588
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	103	pk_1_046	924589
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	106	pk_1_046	924590
10/4 - R 1/2 for PVC hose	10 x 4	106	pk_1_046	1002923
12/6 - R 1/2 for PVC hose	12 x 6	106	pk_1_046	924591

-1 1-

pk_1_046

PVC body, PTFE mounting insert, FKM-B seals, spring loaded ball check with Hastelloy C spring, approx. 0.5 bar priming pressure.

Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar

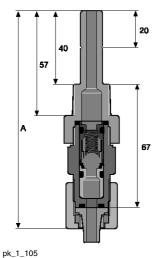
PVC/PTFE Injection valves

Connector	oØ x iØ	Fig.	Order no.
	mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	pk_1_046	809450
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	pk_1_046	809451
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	pk_1_046	809452
10/4 - R 1/2 for PVC hose	10 x 4	pk_1_046	1002924
12/6 - R 1/2 for PVC hose	12 x 6	pk_1_046	809453

A 20

PCB Injection valves

Housing made of PVC, seals made of FKM with non-return ball spring-loaded with Hastelloy C spring, priming pressure approx. 0.5 bar, with extended screwed socket. Type 8/4 up to 25 bar.


Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	119	pk_1_105	924680
8/4 - R 1/2 for PTFE line	8 x 4	119	pk_1_105	1034621
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	119	pk_1_105	924592
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	119	pk_1_105	924594
10/4 - R 1/2 for PVC hose	10 x 4	119	pk_1_105	1002919
12/6 - R 1/2 for PVC hose	12 x 6	119	pk_1_105	924593
6/4 - G 1/4 for PE/PTFE pipe*	6 x 4	62	_	914559
G 3/4 - DN 10 for PVC hose	24 x 16	83	pk_2_029	809460

^{*} Spring made of 1.4571, approx. 0.8 bar priming pressure.

Ø D2

Ø D1

PVT Injection valves

Housing PVDF, seals PTFE, with non-return ball, spring-loaded with Hast. C spring, approx. 0.5 bar priming pressure, with extended screwed socket. Type 6/3 up to 20 bar, 8/4 up to 25 bar.

Applications when using appropriate metering lines

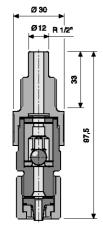
25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 12 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/3 - R 1/2 for PTFE pipe	6 x 3	119	pk_1_105	1024713
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	119	pk_1_105	1024708
8/4 - R 1/2 for PTFE line	8 x 4	119	pk_1_105	1034619
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	119	pk_1_105	1024710
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	119	pk_1_105	1024711
10/4 - R 1/2 for PVC hose	10 x 4	119	pk_1_105	1024709
12/6 - R 1/2 for PVC hose	12 x 6	119	pk_1_105	1024712
G 3/4 - DN 10 with pressure hose nozzle d16 - DN 10.	24 x 16	84	pk_2_029	1029476

A B

PVT injection valve with tantalum spring


PVDF housing, PTFE seals with tantalum spring-loaded ball check, priming pressure approx. 0.5 bar, with extra-long screw-in fitting. 6/3 version up to 20 bar, 8/4 up to 25 bar, for metering of sodium-calcium hypochlorite, with universal tube connector set 6x3, 6x4, 8x4, 8x5, 12x9, 10x4 and 12x6 mm.

Application range when using appropriate metering line

25 °C - max. operating pressure 16 bar

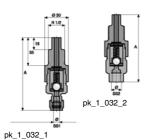
45 $^{\circ}\text{C}$ - max. operating pressure 12 bar

Connection	Α	Fig.	Order no.
	mm		
Universal connector, R 1/2	119	pk_1_105	1044653

P_AC_0184_SW

pk 2 029

TT1 Injection valves


Vertical installation from below. With ball check, without spring. Valve spring (Order No. 469404) can be retrofitted. Body and seals made of PTFE.

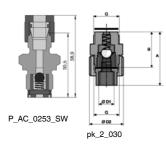
Applications when using appropriate metering lines

25 $^{\circ}\text{C}$ - max. operating pressure 10 bar

45 °C - max. operating pressure 5 bar

Connection	oØ x iØ mm	Α	Fig.	Order no.
		mm		
6/4 - R 1/2 for PE/PTFE pipe	6 x 4	98	P_AC_0184_SW	809488
8/5 - R 1/2 for PE/PTFE pipe	8 x 5	98	P_AC_0184_SW	809479
12/9 - R 1/2 for PE/PTFE pipe	12 x 9	101	P_AC_0184_SW	809481
12/6 - R 1/2 for PVC hose	12 x 6	101	P_AC_0184_SW	809480
G 3/4 - DN 10 with d16 welding sleeve		_	pk_2_030	809462

SS1 Injection valve


Stainless steel 1.4404 body and PTFE seals with spring loaded ball check. Spring made of Hastelloy C. with approx. 0.5 bar priming pressure, for 1.4571 R 1/4 spring, approx. 1 bar priming pressure. Ferrule is required for connection with PE/PTFE pipe.

Applications when using appropriate metering lines

25 °C - max. operating pressure 30 bar

45 °C - max. operating pressure 30 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6 mm - R 1/2 for pipe	6 x 5	93	pk_1_032_1	809489
8 mm - R 1/2 for pipe	8 x 7	93	pk_1_032_1	809482
12 mm - R 1/2 for pipe	12 x 10	96	pk_1_032_1	809483
1/4" NPT - R 1/2 for pipe	R 1/4" NPT	89	pk_1_032_2	924597
6 mm - R 1/4 for pipe		_	P_AC_0253_SW	914588
G 3/4 - DN 10, sleeve	Rp 3/8	-	pk_2_030	809463
	Rp 3/8	-		

PPB Injection valves, O-ring loaded

PP body, FKM seals. Priming pressure approx. 0.5 bar.

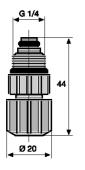
Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 9 bar

Connector	oØ x iØ	Fig.	Order no.
	mm		
6/4 - G 1/4 short	6 x 4	P_AC_0008_SW	914754
6/4 - G 1/4 long	6 x 4	P_AC_0009_SW	741193

Fig.


P_AC_0008_SW

P_AC_0009_SW

Order no.

914558

915091

P_AC_0008_SW

PCB Injection valves O-ring loaded

PVC body, FKM seals, priming pressure approx. 0.5 bar.

Applications when using appropriate metering lines

oØ x iØ

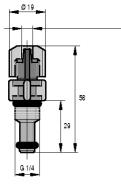
mm

6 x 4

6 x 4

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar


Connector

6/4 - G 1/4 short

6/4 - G 1/4 long

-	
 	_
58	
"	
29	
G 1/4	

1

Hydraulic/Mechanical Installation Accessories

Ø12

PTFE Injection valves O-ring loaded

PTFE housing, FKM seals.

Applications when using appropriate metering lines

25 °C - max. operating pressure 10 bar

45 °C - max. operating pressure 6 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 – for PE/PTFE line	6 x 4	104	P_AC_0183_SW	809484
8/5 - for PE/PTFE line	8 x 5	104	P_AC_0183_SW	809485
10/4 – for PVC hose	10 x 4	104	P_AC_0183_SW	1002925
12/6 - for PVC hose	12 x 6	104	P_AC_0183_SW	809487
12/9 – for PE/PTFE line	12 x 9	104	P_AC_0183_SW	809486

Lip seal injection valve PCB

Body PVC, seals FKM, inlet pressure approx. 0.05 bar. For metering sodium hypochlorite and for use in conjunction with the peristaltic pump DF2a.

Applications when using appropriate metering lines

25 °C - max. operating pressure 2 bar

45 °C - max. operating pressure 2 bar

Connection	oØ x iØ	Α	Fig.	Order no.
	mm	mm		
6/4 - R 1/2 - 1/4 for PE/PTFE pipe	6 x 4	90	pk_1_070	1019953
10/4 - R 1/2 - 1/4 for PE/PTFE pipe	10 x 4	90	pk_1_070	1024697

pk_1_070

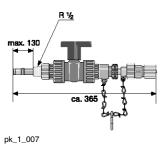
P_AC_0183_SW

Metering Connector for Warm Water up to 200 °C

Consists of stainless steel 1.4404 injection valve, 1 m stainless steel 1.4571 discharge line and threaded connector with reinforcing sleeve for connection of PE/PTFE pipe to stainless steel pipe.

Max. operating pressure 30 bar

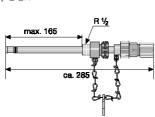
Connection	Fig.	Order no.	
Warm water 6 mm - R 1/4	pk_1_049	913166	
Warm water 6 mm - R 1/2	pk_1_049	913167	
Warm water 8 mm - R 1/2	pk_1_049	913177	
Warm water 12 mm - R 1/2	pk 1 049	913188	


pk_1_049

1.9.3

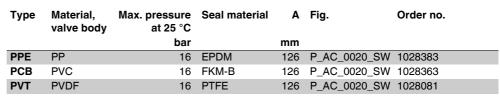
pk_1_062

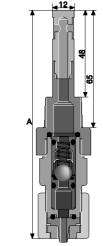
Injection Lances, Non-Return Valves



PPE injection lance

For immersion depths of 20 - 165 mm, in large diameter pipe to prevent chemical deposition at the point of injection. Consists of spring-loaded metering valve, Hastelloy C spring, ceramic ball, adjustable immersion rod and hose valve. With connectors for all hose sizes used with solenoid metering pumps: 6/4, 8/5, 12/9, 10/4 and 12/6.


Туре	Seal material	Seal material Max. pressure at 25 °C		Order no.
		bar		
PPE without stopcock	EPDM/silicone	6	pk_1_007	1021530
PPE with stopcock	EPDM/silicone	6	pk_1_062	1021531
PCB without stopcock	FKM/silicone*	6	pk_1_007	1021528
PCB with stopcock	FKM/silicone*	6	pk_1_062	1021529


* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Short injection lance

Metering lance with universal connection kit, enabling the connection of different hose sizes of from 6/4 to 12/9. Hastelloy C spring, ceramic ball and silicone hose. Material of screwed socket: PVDF.

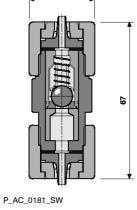
P_AC_0020_SW

PVDF non-return valve for hose installation

With connection kit on both sides for fitting in hose line.

With non-return ball, spring-loaded with Hastelloy C spring, prepressure approx. $0.5\ \mathrm{bar}$.

PVDF housing, PTFE seals.


Different hose sizes from 6/4 to 12/9 can be joined using different connection kits.

Applications when using appropriate metering lines

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 12 bar

Connection	oØ x iØ	Α	Fig.	Order no.	
	mm	mm			
6/4 for PE/PTFE line	6 x 4	67	P_AC_0181_SW	1030463	
8/5 for PE/PTFE line	8 x 5	67	P_AC_0181_SW	1030975	
10/4 for PE/PTFE line	10 x 4	67	P_AC_0181_SW	1030977	
12/6 for PVC hose	12 x 6	67	P_AC_0181_SW	1030978	
12/9 for PE/PTFE line	12 x 9	67	P_AC_0181_SW	1030976	

Ø 28

1.9.4

pk 1 053

Back Pressure Valves/Relief Valves

Back pressure valves are used to generate a constant back pressure to ensure precise metering and protect against over-metering or metering imprecision through free outlets and priming pressure on the suction side. They are also used in conjunction with pulsation dampers to generate low-pulsation metering. We recommend back pressure valves type DHV-RM with fluctuating back pressure and metering into vacuums.

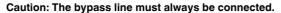
(For Back Pressure Valves/Relief Valves see volume "Motor-driven and process metering pumps for all capacity ranges" page → 1-52)

The DHV listed below are designed for different applications. Please note the relevant notes for the different mountings.

Important: Back pressure valves cannot be used as absolutely leak-tight shut-off devices. Take appropriate precautions when handling hazardous media.

Relief valves are used to protect pumps, pipes and fittings from over pressure, in the event of incorrect operation or blockages in the bypass. In the event of a malfunction, the pump pumps back into the storage tank.

Multifunctional valve type MFV-DK, PVDF



Multifunctional valve for assembly directly onto the liquid end of the pump with the following functions:

- Back pressure valve, opening pressure approx. 1.5 bar, with open discharge or positive pressure on the suction side (black rotary knob)
- Relief valve, opening pressure approx. 6, 10 or 16 bar (red rotary knob)
- Priming aid with pending back pressure, no need to de-pressurise pipes
- Pressure relief, e.g. prior to servicing

The ProMinent® multifunctional valve is simple to operate using smooth action rotary knobs, which return to their initial position on release. This ensures safe operation even under difficult access conditions. The ProMinent® multifunctional valve is made of PVDF and can be used with virtually all chemicals.

Warning: Back pressure valves are not intended as completely sealed units!

Valve body PVDF
Diaphragm PTFE- coated

Seal FKM and EPDM (enclosed)

Hoses see page → 1-61

Type	Relief opening pressure*	Connection	Bypass connector	Order no.
Size I	16 bar	6-12	6/4	792011
Size I	10 bar	6-12	6/4	791715
Size I	6 bar	6-12	6/4	1005745
Size II	10 bar	6-12	12/9	792203
Size II	6 bar	6-12	12/9	740427
Size III	10 bar	DN 10	12/9	792215

The relief opening pressure given above is the pressure at which the valve begins to open. The pressure can be up to 50 % higher until the valve is fully open depending on the type of pump.

Application: multifunctional valves

Size I ALPc 1001, 1002, 1004, 1008, 0708

Beta®, gamma/ L type 1000, 1601, 1602, 1604, 1605, 1005, 1008, 0708, 0413, 0220

gamma/ X type 1602, 1604, 1009, 0708, 0414, 0220

delta® type 1608, 1612

Size II ALPc 0419, 0230

Beta $^{\rm @}$, gamma/ L type 1605, 1008, 0713, 0420, 0232

gamma/ X type 1009, 0715, 0424, 0245

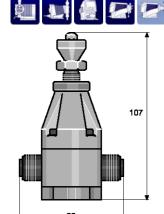
delta® type 1020, 0730

Size III delta® type 0450, 0280 For material design PP, PV, NP, TT

Back pressure valve type DHV-S-DK, 0-10 bar adjustable

101

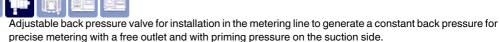
Adjustable back pressure valve for fitting directly onto the dosing head to generate a constant back pressure. For accurate metering with a free outlet and with priming pressure on the suction side.


Caution: Back pressure valves are not absolutely leak-tight shut-off devices! It is essential that you observe the installation notes in the operating instructions!

Applications: Metering pump alpha, Beta®, gamma/ X, Pneumados b, EXtronic® and delta®

Туре	Adjustable pressure	Connection	Material	Order no.
DHV-S-DK	0 – 10 bar	6 to 12 mm	PP/EPDM	302320
DHV-S-DK	0 – 10 bar	6 to 12 mm	PC/FKM*	302321
DHV-S-DK	0 – 10 bar	6 to 12 mm	TT/PTFE	302322
DHV-S-DK	0 – 10 bar	6 mm	SS	1003793
DHV-S-DK	0 – 10 bar	8 mm	SS	1003795
DHV-S-DK	0 – 10 bar	12 mm	SS	1003797

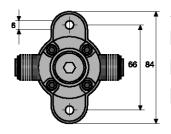
^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Back pressure valve/relief valve type DHV-S-DL, 0-10 bar adjustable

M20 x 1,5

120

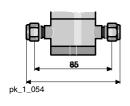
pk_1_129


When used as a back pressure valve in long lines to avoid resonance fluctuations: Install at at the end of the metering line or set setting pressure > line pressure loss.

Use in conjunction with pulsation damper only with a free outlet and short metering line. Use type DHV-RM for use with a pulsation damper with back pressure or long lines.

Caution: Back pressure valves are not absolutely leak-tight shut-off devices! It is essential that you observe the installation notes in the operating instructions!

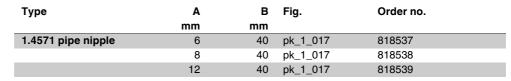
Applications: Metering pumps alpha, Beta®, gamma/ X, Pneumados b, EXtronic® and delta®


(For Back Pressure Valves/Relief Valves see volume "Motor-driven and process metering pumps for all capacity ranges" page \rightarrow 1-52)

Туре	Adjustable	Connection	Material	Order no.
	pressure			
DHV-S-DL	0 – 10 bar	6 to 12 mm	PP	302323
DHV-S-DL	0 – 10 bar	6 to 12 mm	PC/FKM*	302324
DHV-S-DL	0 – 10 bar	6 to 12 mm	TT	302325
DHV-S-DL	0 – 10 bar	6 mm	SS	302326
DHV-S-DL	0 – 10 bar	8 mm	SS	302327
DHV-S-DL	0 – 10 bar	12 mm	SS	302328

Order 2 connecting kits in the required hose size separately for the connection.

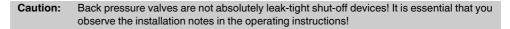
^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive. (For Connection Kits see page → 1-79)

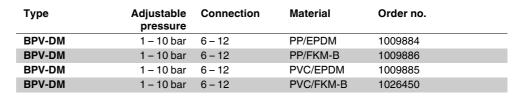


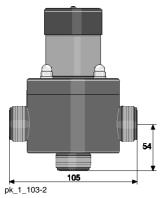
Pipe nipples

pk 1 017

pk_1_101


For the direct connection of the pressure maintenance valve DHV-S-DL in stainless steel (SS) to the liquid end.


Back pressure valve Type BPV-DM


Applications: Metering pumps alpha, Beta®, gamma/ X, Pneumados b and delta®

^{*} Order 2 connection kits in the required hose size separately for the connection.

(Connection Kits see page → 1-79)

Relief valve Type BPV-SM

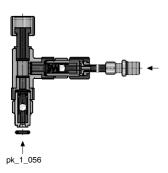
105

Adjustable relief valve for installation in the metering line to protect against overpressure. With additional connector for the relief line at the base of the valve body, no T-piece is required for installation.

Caution: Back pressure valves are not absolutely leak-tight shut-off devices! It is essential that you observe the installation notes in the operating instructions!

Applications: Metering pumps alpha, Beta®, gamma/ X, Pneumados b and delta®

Туре	Adjustable pressure	Connection	Material	Order no.
BPV-SM	1 – 10 bar	6 – 12	PPE	1009887
BPV-SM	1 – 10 bar	6 – 12	PPB	1009889
BPV-SM	1 – 10 bar	6 – 12	PCE	1009888
BPV-SM	1 – 10 bar	6 – 12	PCB	1026445


^{*} Order 3 connection kits in the required hose size separately for the connection.

(Connection Kits see page → 1-79)

1.9.5

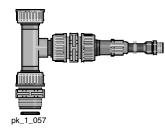
Fittings

Flushing Assembly

For flushing and cleaning dosing heads, metering lines and injection valves.

As a manual or automatic, time-controlled design. Installation, even retrospectively, on the suction connector of the metering pump. Supplied with 2 m flushing pipe and R 3/8 connection nipple.

Automatic flushing equipment for the fully automatic flushing of the pump head is possible on request.


PPE Flushing Assembly

PP material, EPDM seal.

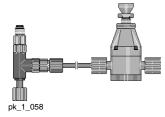
	Fig.	Order no.
For 6/4, 8/5, 12/6, 12/9 connectors	pk_1_056	809909
For G 3/4 -DN 10 connector	pk_1_057	809917
For G 1 -DN 15 connector	pk_1_057	809919

PCB Flushing Assembly

Material: PVC, FKM seals

	Fig.	Order no.
for 6/4, 8/5, 12/6, 12/9 connectors*	pk_1_056	809925
for G 3/4 - DN 10 connectors*	pk_1_057	809926
for G 1 - DN 15 connectors*	pk_1_057	803960

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Relief Valve Assembly

Consisting of a back pressure valve, which can be set from 1 - 10 bar, type DL, complete with connecting parts, installation directly on the dosing head.

Connector size 6 - 12 mm, depending on the pressure connector on the metering pump.

Relief Valve Assembly PPE

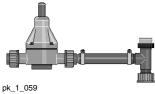


	Fig.	Order no.
For 6/4, 8/5, 12/6, 12/9 connectors	pk_1_058	809990
G 3/4 - DN 10 connector	pk_1_059	809991
G 1 - DN 15 connector	pk_1_059	809992

Relief Valve Assembly PCB

	rig.	Order no.
for 6/4, 8/5, 12/6, 12/9 connectors*	pk_1_058	809989
for G 3/4 - DN 10 connectors*	pk_1_059	809993
for G 1 - DN 15 connectors*	pk_1_059	914745

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Low-pressure Metering Pumps

Hydraulic/Mechanical Installation Accessories

1.9.6

pk_1_013

pk 1 060

Hoses, Pipes


Suction and discharge line

For metering pumps and accessories.

We recommend that only original lines are used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are ensured.

Suction line, soft PVC

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	•
PVC flexible	5	6 x 4	0.5*	1004520
	5	8 x 5	0.5*	1004521
	5	12 x 9	0.5*	1004522
	10	6 x 4	0.5*	1004523
	10	8 x 5	0.5*	1004524
	10	12 x 9	0.5*	1004525
	25	6 x 4	0.5*	1004526
	25	8 x 5	0.5*	1004527
	25	12 x 9	0.5*	1004528
	50	6 x 4	0.5*	1004529
	50	8 x 5	0.5*	1004530
	50	12 x 9	0.5*	1004531
	Sold in metres	19 x 15	0.5*	037020

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Suction and discharge line, soft PVC with woven fabric core

Material	Length	oØ x iØ Permissible pres	sure	Order no.
	m	mm	bar	
Fabric-reinforced flexible PVC	5	10 x 4	18*	1004533
	5	12 x 6	17*	1004538
	10	10 x 4	18*	1004534
	10	12 x 6	17*	1004539
	25	10 x 4	18*	1004535
	25	12 x 6	17*	1004540
	50	10 x 4	18*	1004536
	50	12 x 6	17*	1004541
	Sold in metres	24 x 16	10*	037040
	Sold in metres	27 x 19	10*	037041

Soft PVC suction and metering line with woven inner layer approved for food use

Material	Length	oØ x iØ P	Permissible pressure	Order no.
	m	mm	bar	
Soft PVC with woven inner layer approved for food use	5	10 x 4	10*	1037556
	5	12 x 6	10*	1037561
	10	10 x 4	10*	1037557
	10	12 x 6	10*	1037562
	25	10 x 4	10*	1037558
	25	12 x 6	10*	1037563
	50	10 x 4	10*	1037559
	50	12 x 6	10*	1037564

Permissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, 1/4 of the bursting pressure subject to chemical resistance and correct assembly.

Use pipes and fittings with a pressure rating of PN 16 or PN 10 bar for socket-welded and PVC-cementd rigid PP and PVDF pipe.

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please note the resistance for PVC soft as well as the cleaning instructions when using the equipment for food uses (see homepage).

Suction and discharge, PE

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Polyethylene	5	6 x 4	10*	1004492
	5	8 x 5	10*	1004493
	5	12 x 9	7*	1004504
	10	6 x 4	10*	1004505
	10	8 x 5	10*	1004506
	10	12 x 9	7*	1004507
	25	6 x 4	10*	1004508
	25	8 x 5	10*	1004509
	25	12 x 9	7*	1004510
	50	6 x 4	10*	1004511
	50	8 x 5	10*	1004512
	50	12 x 9	7*	1004513

 ^{*} Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Suction and discharge lines, PTFE

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
PTFE	Sold in metres	1.75 x 1.15	12*	037414
	Sold in metres	3.2 x 2.4	8*	037415
	Sold in metres	6 x 3	20*	1021353
	Sold in metres	6 x 4	14*	037426
	Sold in metres	8 x 4	25*	1033166
	Sold in metres	8 x 5	16*	037427
	Sold in metres	12 x 9	10*	037428
	Meterage, max. 30 m	19 x 16	6*	037430

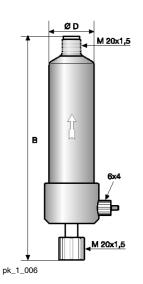
 ^{*} Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Stainless steel pipes

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Stainless steel pipe 1.4435	Sold in metres	1.58 x 0.9	400*	1020774
	Sold in metres	3.175 x 1.5	400*	1020775
	Sold in metres	6 x 5	175*	015738
	Sold in metres	6 x 4	185*	015739
	Sold in metres	8 x 7	160*	015740
	Sold in metres	12 x 10	200*	015743

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Hose Cutting Kit


Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.

	Order no.
Hose Cutting Kit	1038571

1.9.7

Pressure Accumulator

PP Pressure accumulator

Caution: Always install an overflow valve when using pressure accumulators.

Operating range

20 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume	Permissible stroke volume	Connection	Fig.	Order no.
	1	ml			
Size 0*	0.15	1.0	M 20 x 1.5	pk_1_006	1021157
Size I	0.35	2.5	DN 8	pk_1_065	243218
Size II	1.00	5.0	d 16-DN 10	pk_1_065	243219
Size II	1.00	5.0	d 20-DN 15	pk_1_065	243220

* With bleed valve. Install directly at the pressure connector.

	Connection	Α	В	ØD	
Size 0	M 20 x 1.5	-	225	49	
Size I	DN 8	150	170	75	
Size II	DN 10	192	220	110	
Size II	DN 15	200	220	110	

B Pk.1_065

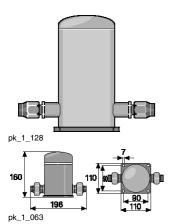
PVC Pressure accumulator

Caution: Always install an overflow valve when using pressure accumulators.

Operating range

20 °C - max. operating pressure 10 bar

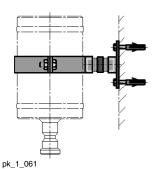
40 °C - max. operating pressure 6 bar


	Volume	Permissible stroke volume	Connection	Fig.	Order no.
	I	ml			
Size 0**	0.15	1.0	M 20 x 1.5	pk_1_006	1021120*
Size I	0.35	2.5	DN 8	pk_1_065	243203*
Size II	1.00	5.0	d 16–DN 10	pk_1_065	243204*
Size II	1.00	5.0	d 20-DN 15	pk_1_065	243205*

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

^{**} With bleed valve. Install directly at the pressure connector.

	Connection	Α	В	ØD
Size 0	M 20 x 1.5	-	225	49
Size I	DN 8	150	170	75
Size II	DN 10	192	220	110
Size II	DN 15	200	220	110



Stainless steel accumulator

Max. operating pressure 10 bar.

	Volume	Permissible stroke volume	Connection	Fig.	Order no.
	I	ml			
Size 0	0.15	2.5	for pipe oØ 6	pk_1_128	914510
Size I	0.35	2.5	for pipe oØ 8	pk_1_128	914511
Size I	1.00	2.5	for pipe oØ 12	pk_1_128	914512
Size II*	1.00	5.0	G 3/4 – DN 10	pk_1_063	914756

Threaded sleeve insert G 3/8.

Wall mounting for accumulator

For PP and PVC versions, consisting of clamping ring, mounting plate and connecting nipple.

			Order no.	
For size I accumulator - 0.35 I	0,35 l	Ø 75	818501	
For size II accumulator - 1I	11	Ø 110	818502	

Low-pressure Metering Pumps

Hydraulic/Mechanical Installation Accessories

1.9.8

Pulsation Dampers (In-line)

Pulsation dampers are used for low-pulsation metering and to reduce the flow resistance with long metering lines.

The gas cushion between the housing and hose is compressed when the metering pump has a pressure stroke, at the same time as a partial volume of the medium is metered into the metering line. The over pressure that forms in the gas cushion causes the compressed volume to be transported on at the following suction stroke and the original, relaxed volume of gas is present again.

Protect the pulsation dampers in principle with a relief valve.

PP In-line damper

PPE in-line damper

PPB in-line damper

PPE in-line damper

PPB in-line damper

Operating conditions 5 - 30 °C - max. operating pressure 10 bar 40 °C - max. operating pressure 8 bar

Damper

CSM*

FKM

CSM*

FKM

diaphragm

Volume

0.05

0.05

0.05

0.05

60 °C - max. operating pressure 4 bar

Seal

material

EPDM

FKM

EPDM

FKM

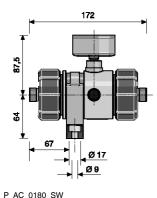
Connection

M 20 x 1.5

M 20 x 1.6

G 3/4 - DN 10

G 3/4 - DN 10


Order no.

1026768

1026771

1026769

1026772

* Chlorosulfonated	polyethylene

PVC In-line damper

Operating conditions

5 - 20 °C - max. operating pressure 10 bar 40 °C - max. operating pressure 6 bar 60 °C - max. operating pressure 2 bar

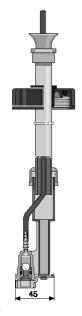
	Volume	Damper diaphragm	Seal material	Connection	Order no.
	I				
PCE in-line damper	0.05	CSM*	EPDM	M 20 x 1.5	1026774
PCB in-line damper	0.05	FKM	FKM	M 20 x 1.6	1026777
PCE in-line damper	0.05	CSM*	EPDM	G 3/4 – DN 10	1026775
PCB in-line damper	0.05	FKM	FKM	G 3/4 – DN 10	1026778

^{*} Chlorosulfonated polyethylene

Threaded end plug

Threaded end plugs to close off the outlet side of the damper together with T-piece installation.

Material	Connection	Order no.
PP	M 20 x 1.5	1030200
PP	G 3/4 – DN 10	1001352
PVC	M 20 x 1.5	1030458
PVC	G 3/4 – DN 10	1001349


1.9.9

pk_1_067

Suction Lances, Suction Kit Without Level Switch

Variable suction lance without level switch

680 mm long for connection to disposable 5 - 60 litre tank, consisting of foot valve, retaining tube, vertically adjustable screw cap and 2 m intake hose.

PPE

Material of retaining tube and foot valvePPSeal materialEPDMHose materialPE

Material	Hose o Ø x i Ø		Fig.	Order no.
	mm			
PPE	6 x 4	For 50 mm tank opening	pk_1_067	790539
PPE	8 x 5	For 50 mm tank opening	pk_1_067	790540
PPE	12 x 9	For 50 mm tank opening	pk_1_067	790541

PCB

Material of retaining tube and foot valvePVCSeal materialFKMHose materialSoft PVC

Material	Hose o Ø x i Ø		Fig.	Order no.
	mm			
PCB	6 x 4	For 50 mm tank opening	pk_1_067	790536
PCB	8 x 5	For 50 mm tank opening	pk_1_067	790537
PCB	12 x 9	For 50 mm tank opening	pk_1_067	790538

Screw cap

For tanks with opening \emptyset 44, customers need to order the \emptyset 44 screw cap as a spare part to replace the \emptyset 50 screw cap.

	Order no.
Ø 44 screw cap	811626

1.1.2015

pk_1_125

Variable suction lance for 200 litre drum without level switch

1000 mm long for connection to a 200-litre drum, with foot valve, support pipe, height-adjustable sealing stopper for S 70x6 (Mauser) thread and 3-metre suction hose.

Adapters for other threads are available on request.

PPE

Material of retaining tube and foot valvePPSeal materialEPDMHose materialPE

Material	Hose o Ø x i Ø		Fig.	Order no.
	mm			
PPE	6 x 4	For 2" tank opening DIN S 70 x 6	pk_1_125	790545
PPE	8 x 5	For 2" tank opening DIN S 70 x 6	pk_1_125	790546
PPE	12 x 9	For 2" tank opening DIN S 70 x 6	pk_1_125	790547

PCB

Material of retaining tube and foot valvePVCSeal materialFKMHose materialSoft PVC

Material	Hose o Ø x i Ø mm		Fig.	Order no.
PCB	6 x 4	For 2" tank opening DIN S 70 x 6	pk_1_125	790542
PCB	8 x 5	For 2" tank opening DIN S 70 x 6	pk_1_125	790543
PCB	12 x 9	For 2" tank opening DIN S 70 x 6	pk_1_125	790544

1.1.2015 Product Catalogue 2015 1-67

Variable suction kit without level switch

For ProMinent® solenoid pumps consisting of a foot valve, adjustable retaining tube with screw connection and 2 m metering line.

Length of retaining tube

 Size I
 385 - 550 mm
 for 35-60 litre tank

 Size II
 660 - 1040 mm
 for 100-500 litre tank

 Size III
 1200 - 1350 mm
 for 1000 litre tank

PPE

Material of retaining tube and foot valvePPSeal materialEPDMHose materialPE

Material	Hose o Ø x i Ø mm	For tank	Fig.	Order no.
PP I	6 x 4	35, 60 I	pk_1_069	790333
PP I	8 x 5	35, 60 l	pk_1_069	790334
PP I	12 x 9	35, 60 l	pk_1_069	790335
PP II	6 x 4	100, 140, 250, 500 l	pk_1_069	790336
PP II	8 x 5	100, 140, 250, 500 l	pk_1_069	790337
PP II	12 x 9	100, 140, 250, 500 l	pk_1_069	790338
PP III	6 x 4	1000 l	pk_1_069	790453
PP III	8 x 5	1000 l	pk_1_069	790454
PP III	12 x 9	1000 l	pk_1_069	790455

PCB

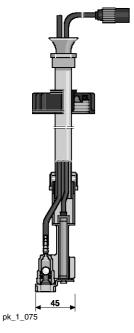
Material of retaining tube and foot valvePVCSeal materialFKMHose materialSoft PVC

Material	Hose o Ø x i Ø	For tank	Fig.	Order no.
	mm			
PVC I	6 x 4	35, 60 l	pk_1_069	790327
PVC I	8 x 5	35, 60 I	pk_1_069	790328
PVC I	12 x 9	35, 60 l	pk_1_069	790329
PVC II	6 x 4	100, 140, 250, 500 l	pk_1_069	790330
PVC II	8 x 5	100, 140, 250, 500 l	pk_1_069	790331
PVC II	12 x 9	100, 140, 250, 500 l	pk_1_069	790332
PVC III	6 x 4	1000 l	pk_1_069	790450
PVC III	8 x 5	1000 l	pk_1_069	790451
PVC III	12 x 9	1000 l	pk_1_069	790452

1.9.10

Suction Lances, Suction Assembly with Two Stage Float Switch

Variable suction lance with two-stage level switch



680 mm long for connection to disposable 5 - 60 litre tanks, comprising a foot valve, level switch with round plug and support pipe, height adjustable screw head and 2 m long suction hose.

For Beta®, gamma and delta® metering pump product ranges

Switching mode at liquid level low 2 x NC.

PPE

Material of retaining tube and foot valve PP Seal material **EPDM** Hose material PΕ

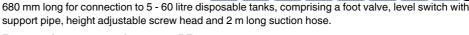
Material	Hose o Ø x i Ø mm		Fig.	Order no.
PP	6 x 4	PP for Ø 50 tank opening, suction hose	pk_1_075	802277
PP	8 x 5	PP for \emptyset 50 tank opening, suction hose	pk_1_075	802278
PP	12 x 9	PP for Ø 50 tank opening, suction hose	pk_1_075	790372

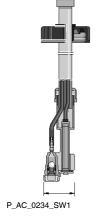
PCB

Material of retaining tube and foot valve PVC FKM Seal material Hose material Soft PVC

Material	Hose o Ø x i Ø mm		Fig.	Order no.
PVC	6 x 4	PVC for Ø 50 tank opening, suction hose	pk_1_075	802077
PVC	8 x 5	PVC for Ø 50 tank opening, suction hose	pk_1_075	802078
PVC	12 x 9	PVC for Ø 50 tank opening, suction hose	pk_1_075	790371

Variable suction lance with two-stage level switch




For metering pump product range DF4a.

Switching mode at liquid level low 2 x NC.

Material of retaining tube and foot valve **PCB FPM** Seal material Hose material Soft PVC

Material	Hose	Fig.	Order no.
	oøxiø		

СВ	6 x 4	PP for Ø 50 tank opening,	P_AC_0234_SW1	790650
		suction hose		

1.1.2015 Product Catalogue 2015

pk_1_076

1.9 Hydraulic/Mechanical Installation Accessories

Screw cap

For tanks with opening \emptyset 44, customers need to order the \emptyset 44 screw cap as a spare part to replace \emptyset 50 screw cap.

	Order no.
Ø 44 screw cap	811626

Variable suction lance for 200 litre drum with two-stage level switch

1000 mm long for connection to a 200-litre drum, with foot valve, level switch with round plug and support pipe, height-adjustable sealing stopper for S 70x6 (Mauser) thread and 3-metre suction hose. Adapters for other threads are available on request.

For Beta®, gamma and delta® metering pump product ranges

Switching mode at liquid level low 2 x NC.

PPE

Material of retaining tube and foot valvePPSeal materialEPDMHose materialPE

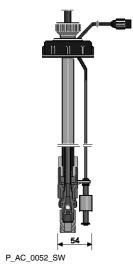
Material	Hose o Ø x i Ø mm		Fig.	Order no.
PP	6 x 4	PP for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	802279
PP	8 x 5	PP for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	802280
PP	12 x 9	PP for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	790374

PCB

Material of retaining tube and foot valvePVCSeal materialFKMHose materialSoft PVC

Material	Hose o Ø x i Ø mm		Fig.	Order no.
PVC	6 x 4	PVC for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	802079
PVC	8 x 5	PVC for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	802080
PVC	12 x 9	PVC for tank opening 2" DIN S 70 x 6, suction hose	pk_1_076	790373

Suction lance for 60-litre canister, fixed length, gas-tight, with two-stage level switch



560 mm long for connection to 60-litre canister with tank height 600 mm and tank opening Ø 55 mm. Design with vent valve and bleed valve. Consisting of foot valve and support pipe, level switch with round plug and 2 m suction hose.

For metering pump product range Beta®, gamma/ X and delta® Switching mode at liquid level low 2 x N/C

PPE

Material of retaining tube and foot valve PP Seal material **EPDM** Hose material PΕ

Material	Hose o Ø x i Ø mm		Fig.	Order no.
PP	6 x 4	PP for Ø 55 with suction hose	P_AC_0052_SW	802285
PP	8 x 5	PP for Ø 55 with suction hose	P_AC_0052_SW	802286
PP	12 x 9	PP for Ø 55 with suction hose	P_AC_0052_SW	802287

PCB

PVC Material of retaining tube and foot valve Seal material FKM Hose material Soft PVC

Material	Hose o Ø x i Ø mm		Fig.	Order no.
PVC	6 x 4	PVC for Ø 55 with suction hose	P_AC_0052_SW	802081*
PVC	8 x 5	PVC for Ø 55 with suction hose	P_AC_0052_SW	802082*
PVC	12 x 9	PVC for Ø 55 with suction hose	P_AC_0052_SW	802083*

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PVDF Suction Lance

Fixed length suction lance made of PVDF with two-stage level switch, consisting of PVDF support pipe, foot valve and two-stage level switch with open end. Suction hose PTFE 8 x 6 mm; a suitable connector kit is included in the scope of delivery.

	Length	Order no.
	mm	
PVDF Suction Lance	350	1038304
PVDF Suction Lance	650	1038305

PP Adjustable suction assembly with two stage float switch and round plug

Consisting of foot valve, support pipe and threaded connector, level switch, two-stage with 3-pin round plug, suction line.

For Beta®, gamma and delta® metering pump product ranges Switching mode at liquid level low 2 x NC.

Long support pipe

Size I	385 - 550 mm	for storage tanks	35 - 60 litres
Size II	660 - 1040 mm	for storage tanks	100 - 500 litres
Size III	1200 - 1350 mm	for storage tanks	1000 litres

PPE

Material of retaining tube and foot valvePPSeal materialEPDMHose materialPE

Material	Hose o Ø x i Ø mm	For tank	Fig.	Order no.
PP I	6 x 4	35, 60 l	pk_1_077	790365
PP I	8 x 5	35, 60 l	pk_1_077	790366
PP I	12 x 9	35, 60 l	pk_1_077	790367
PP II	6 x 4	100, 140, 250, 500 l	pk_1_077	790368
PP II	8 x 5	100, 140, 250, 500 l	pk_1_077	790369
PP II	12 x 9	100, 140, 250, 500 l	pk_1_077	790370
PP III	6 x 4	1000 l	pk_1_077	790465
PP III	8 x 5	1000 l	pk_1_077	790466
PP III	12 x 9	1000 l	pk_1_077	790467

PCB

 Material of retaining tube and foot valve
 PVC

 Seal material
 FKM

 Hose material
 Soft PVC

Material	Hose o Ø x i Ø	For tank	Fig.	Order no.
	mm			
PVC I	6 x 4	35, 60 l	pk_1_077	790359
PVC I	8 x 5	35, 60 l	pk_1_077	790360
PVC I	12 x 9	35, 60 l	pk_1_077	790361
PVC II	6 x 4	100, 140, 250, 500 l	pk_1_077	790362
PVC II	8 x 5	100, 140, 250, 500 l	pk_1_077	790363
PVC II	12 x 9	100, 140, 250, 500 l	pk_1_077	790364
PVC III	6 x 4	1000 l	pk_1_077	790462
PVC III	8 x 5	1000 l	pk_1_077	790463
PVC III	12 x 9	1000 l	pk_1_077	790464
PVC III	12 x 9	1000 l	pk_1_077	790464

1.9.11 **Float Switches**

Level switch kit complete with PVDF two-phase with round plug

The level switch set can be ordered in conjunction with the DN 10/ DN 15 suction assemblies. Customers are responsible for fixing.

For Beta®, gamma/ L and delta® metering pump product ranges

with liquid level low 2 x NC Switching mode: Materials: Level switch PVDF Float PE foamed

3 m cable, PE

Connection	Туре	Order no.
DN 10/15	with 3-pin round plug	1034879

Single stage float switch

For minimum display at the same time as switching off the metering pump.

With flat coupling for direct connection to ProMinent metering pump D_4a.

Technical data

Max. switching voltage 48 V,

Switching current 0.5 A,

Switching power 5 W/5 VA,

Temperature range -10 °C to 65 °C, degree of protection IP 67.

Switching mode: at liquid level low 1 x N/O.

Body PVDF, float PE foamed, cable PE.

	Lead length	Order no.
PVDF/PE with flat coupling	2 m	1031588
PVDF/PE with flat coupling	5 m	1031590

Material

Body PVDF, float PVDF, cable PE.

ead length	Order no.
m ·	1034695
m ·	1034696
1	m ·

pk_1_079

pk_1_080

Two stage float switch

For level monitoring in the storage tank, two-stage with pre-warning alarm message and switch-off of the metering pump after a further 30 mm reduction in level

With 3-pin round plug for direct connection to Beta®, gamma/ L and delta®

With 3 leads, for example in conjunction with relay control, part no. 914768

Technical data

Max. switching voltage: 48 V, Switching current: 0.5 A, Switching power: 5 W/5 VA,

Temperature range: -10 °C to 65 °C, degree of protection IP 67.

Switching mode at liquid level low 2 x N/C.

Material

Body PVDF, float foamed PE, cable PE

	Lead length	Order no.
PVDF/PE with 3-pin round plug	2 m	1031604
PVDF/PE with 3-pin round plug	5 m	1031606
PVDF/PE with 3 wires	2 m	1031607
PVDF/PE with 3 wires	5 m	1031609

Material

Body PVDF, float PVDF, cable PE.

	Lead length	Order no.
PVDF with 3-pin round plug	2 m	1034697
PVDF with 3-pin round plug	5 m	1034698
PVDF with 3 wires	2 m	1034699
PVDF with 3 wires	5 m	1034700

Cable assignment on 3-wire cable:

Colour Function black Earth

blue Minimum pre-warning brown Minimum limit stop

Ceramic weight for vertical fixing of float switch

	ØA	В	øс	Weight	Туре	Order no.
	mm	mm	mm	g		
Size 1	25	50	10	60	For round and latch plug	1019244
Size 2	39	32	*	65	For round plug/flat connector	404004
Size 3	40	50	24	70	For round plug/flat connector	1030189

^{*} Slot 13 x 27 mm

With the two stage float switch with round plug, the weight is pushed up when float is attached.

pk_1_082

pk_1_081

PVDF/PE level switch with hard PVC retaining pipe

For use in chemicals which would attack the float switch PE cable and/or for stable mounting in conjunction with electronic stirrers, FKM seal.

350 - 550 mm for 35 and 60 litres tank Size II 660 - 1,160 mm for 100 to 1,000 litres tank

Size	Float switch	Order no.
Size I	two-stage with round plug	802010
Size II	two-stage with round plug	802011
Size I	one-stage with flat connector	801727
Size II	one-stage with flat connector	801728

Switching mode:

2-stage: 2 x N/C for low fluid levels 1-stage: 1 x N/O for low fluid levels

pk_1_084

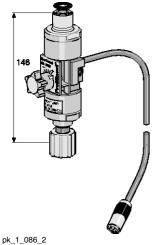
Extension lead, 3-core

	Fig.	Order no.	
For 2-stage float switch with round plug and coupler, length, 3 m	pk_1_126	1005559	

1.9.12

Metering Monitor, Signal Cable

Flow Control adjustable flow monitor



Suitable for the gamma/ X product range in material designs PP, PC, NP and TT. Complete with connector cable for assembly directly on the dosing head.

For monitoring the individual strokes based on the floating body principle. The adjustment screw is used to match the partial flow flowing past the float to the respective stroke volume so that an alarm is emitted if the level is transgressed by approx. 20%. The gamma/ L enables the permitted number of incompletely performed strokes to be selected between 1 to 127, ensuring optimum adaptation to process requirements.

Materials

PVDF Housing: Float: PTFE-coated Seals: FKM/EPDM

Flow Control for Discharge Side Installation

Flow Control	For pump type	Material	Order no.
Size I	1602	PVDF/EPDM	1009229
	1602	PVDF/FKM	1009335
Size II	1604, 0708, 1009, 0414, 0220, 0715, 0220, 0424	PVDF/EPDM	1009336
	1604, 0708, 1009, 0414, 0220, 0715, 0220, 0424	PVDF/FKM	1009338

Note the minimum values for the stroke length.

Pump type	Medium operating pressure	Stroke length (scale division)	Max. permissible operating pressure	Stroke length (scale division)
1602	8 bar	> 30 %	16 bar	> 40 %
1604	5 bar	> 30 %	16 bar	> 50 %
0708	4 bar	> 30 %	7 bar	> 40 %
1009	5 bar	> 30 %	10 bar	> 40 %
0414	2 bar	> 30 %	4 bar	> 30 %
0715	4 bar	> 30 %	7 bar	> 30 %
0220	1 bar	> 30 %	2 bar	> 30 %
0424	2 bar	> 30 %	4 bar	> 30 %

Flow Control for Suction Side Installation

Suitable for the delta® series with slow discharge stroke version. Individual strokes are detected on the suction side where the flow velocity is sufficiently high. With water as the medium, the minimum stroke length is 30%, normal suction stroke version, HV1 or HV2.

Flow Control	For pump type	Material	Order no.	
Size II	1608 – 0730	PVDF/EPDM	1036407	
	1608 – 0730	PVDF/FKM	1036409	
Size III	0450 - 0280	PVDF/EPDM	1036439	
	0450 - 0280	PVDF/FKM	1036440	

Low-pressure Metering Pumps

1.9 Hydraulic/Mechanical Installation Accessories

Universal signal cable

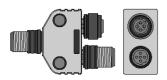
For controlling the metering pump via contacts - external control, standard signals - analog control and for potential-free ON/OFF connection - connection function.

For Beta®, gamma and delta® with 5-pin round plastic plug and 5-wire open-ended cable.

	Lead length	Order no.	
5-core universal cable, 5-pin round plug	2 m	1001300	
5-core universal cable, 5-pin round plug	5 m	1001301	
5-core universal cable, 5-pin round plug	10 m	1001302	

External signal cable

Only for external control of Beta®, gamma/ X and delta® via contacts. With 5-pin round plug, internally bridged and 2-wire cable with open end.


	Lead length	Order no.	
2-core external cable, 5-pin round plug	2 m	707702	
2-core external cable, 5-pin round plug	5 m	707703	
2-core external cable, 5-pin round plug	10 m	707707	

PROFIBUS® adapter, enclosure rating IP 65

		Fig.	Order no.
Y-adapter 2 x M12 x 1 male/female	M12 x 1 male	P_AC_0245_SW	1040956
PROFIBUS® termination assembly, comprising a Y-plug and terminating resistance	M12	-	1040955
PROFIBUS® Y-adapter	M 12 x 1	P_AC_0230_SW	1036621
PROFIBUS® termination resistor, plug-in	M 12 x 1	P_AC_0239_SW	1036622

P_AC_0245_SW

P_AC_0230_SW_1

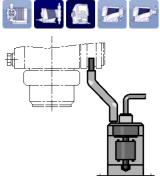
P_AC_0239_SW

USB adaptor

To connect a laptop to gamma and Sigma series metering pumps.

The USB adaptor can be used to transfer timer programmes created using ProTime software to the pump. You will find the ProTime software on our homepage.

	Order no.
USB adaptor	1021544


1

1.9 Hydraulic/Mechanical Installation Accessories

1.9.13

Safety Equipment

Diaphragm rupture indicator

To trigger an alarm and sw

To trigger an alarm and switch off the metering pump in the event of diaphragm rupture. Consisting of PVC/PE level switch, clear acrylic storage tank, connecting sockets and connecting hose. Potential-free N/O switch, max. contact load 60 V AC, 300 mA, 18 W.

To fit all types of Beta® and gamma.

Retrofitting is also possible.

	Order no.
Diaphragm rupture indicator	803640

Horn

HUW 55, 230 V, 50-60 Hz, 165 x 60 x 65, 85 phon, for use indoors (e.g. in connection with fault signalling relay)

	Order no.
HUW 55 Horn	705002

pk_1_088

pk_1_087

Indicator lamp

Red for wall mounting 230 V, 50-60 Hz (e.g. in connection with fault signalling relay, relay control or clock generator relay)

	Order no.
Indicator lamp, red	914780

Fourfold contact repeater

Contact repeater with four reed relays for externally controlled simultaneous pulse pacing of up to four metering pumps of any type or of other devices, e.g. summating counters.

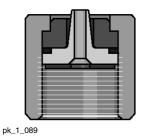
In plastic snap in housing for C bar or wall mounting.

 Mains connection:
 230 V, 50/60 Hz

 Max. contact rating
 24 V, 50 mA

 Dimensions H x W x D
 76 x 112 x 114

Enclosure rating IP 40


		Order no.
Fourfol	ld contact repeater	914753

nozzle, clamp ring, union nut and seal for one or two connectors.

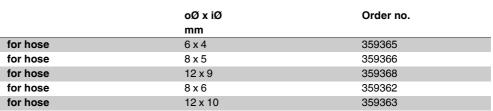
1.9.14 **Connection Kits**

Single Connector Set

Material		oØ x iØ mm	Order no.
PP/EPDM (PPE)	for hose	6 x 4	817160
PP/EPDM (PPE)	for hose	8 x 5	817161
PP/EPDM (PPE)	for hose	12 x 9	817162
PP/EPDM (PPE)	for hose	10 x 4	1002587
PP/EPDM (PPE)	for hose	12 x 6	817163
PP/FKM (PPB)	for hose	6 x 4	817173
PP/FKM (PPB)	for hose	8 x 5	817174
PP/FKM (PPB)	for hose	12 x 9	817175
PP/FKM (PPB)	for hose	10 x 4	1002588
PP/FKM (PPB)	for hose	12 x 6	817176
PVC/EPDM (PCE)	for hose	6 x 4	791161
PVC/EPDM (PCE)	for hose	8 x 5	792058
PVC/EPDM (PCE)	for hose	12 x 9	790577
PVC/EPDM (PCE)	for hose	10 x 4	1002590
PVC/EPDM (PCE)	for hose	12 x 6	792062
PVC/FKM (PCB)	for hose	6 x 4	817065
PVC/FKM (PCB)	for hose	8 x 5	817066
PVC/FKM (PCB)	for hose	12 x 9	817067
PVC/FKM (PCB)	for hose	10 x 4	1002589
PVC/FKM (PCB)	for hose	12 x 6	817068
PVDF (PVT)	for hose	6 x 3	1024583
PVDF (PVT)	for hose	6 x 4	1024619
PVDF (PVT)	for hose	8 x 4	1033148
PVDF (PVT)	for hose	8 x 5	1024620
PVDF (PVT)	for hose	12 x 9	1024618
PVDF (PVT)	for hose	10 x 4	1024585
PVDF (PVT)	for hose	12 x 6	1024617
PTFE (TTT)	for hose	6 x 4	817205
PTFE (TTT)	for hose	8 x 5	817206
PTFE (TTT)	for hose	12 x 9	817207
PTFE (TTT)	for hose	12 x 6	817208

Connection kit for fitting hoses of different sizes to the suction and pressure connector of the dosing head of alpha, Beta, gamma, delta $^{\circ}$, Pneumados b and accessories, consisting of hose

Double Connector Set


Material		oØ x iØ	Order no.
		mm	
PP/EPDM (PPE)	for hose	6 x 4	817150
PP/EPDM (PPE)	for hose	8 x 5	817153
PP/EPDM (PPE)	for hose	12 x 9	817151
PP/EPDM (PPE)	for hose	12 x 6	817152
PP/FKM (PPB)	for hose	6 x 4	817166
PP/FKM (PPB)	for hose	8 x 5	817167
PP/FKM (PPB)	for hose	12 x 9	817168
PP/FKM (PPB)	for hose	12 x 6	817169
PVC/EPDM (PCE)	for hose	6 x 4	817060

Material		oØ x iØ mm	Order no.
PVC/EPDM (PCE)	for hose	8 x 5	817048
PVC/EPDM (PCE)	for hose	12 x 9	817049
PVC/EPDM (PCE)	for hose	12 x 6	791040
PVC/FKM (PCB)	for hose	6 x 4	817050
PVC/FKM (PCB)	for hose	8 x 5	817053
PVC/FKM (PCB)	for hose	12 x 9	817051
PVC/FKM (PCB)	for hose	12 x 6	817052
PVDF (PVT)	for hose	6 x 4	1023246
PVDF (PVT)	for hose	8 x 5	1023247
PVDF (PVT)	for hose	12 x 9	1023248
PVDF (PVT)	for hose	12 x 6	1024586
PTFE (TTT)	for hose	6 x 4	817201
PTFE (TTT)	for hose	8 x 5	817204
PTFE (TTT)	for hose	12 x 9	817202
PTFE (TTT)	for hose	12 x 6	817203

Stainless steel support insert 1.4571

For connection of PE or PTFE pipe to stainless steel connectors using Swagelock and Serto systems.

1.9.15

pk_1_092

pk_1_090

Wall Brackets for Metering Pumps

PPE wall mounting bracket

With fittings, for mounting a metering pump of size Beta® / 4, Beta® / 5, gamma / X and alpha.

The Beta®/4, gamma/X can either be mounted parallel or diagonally to each other.

Dimensions L x W x H: 208 x 120 x 140 mm

Material Fibreglass-reinforced plastic PPE

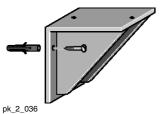
	Fig.	Order no.
for BT4, BT5, gamma/ X, G/ 4, G/ 5, D_4a	pk_1_092	810164

PP adapter plate

With fixing materials for vertical wall-mounting of Beta® or gamma pumps with self-degassing liquid ends. Used with PPE wall bracket.

	Fig.	Order no.	
for BT4, BT5, gamma/ X	pk_1_121	1003030	

PP wall bracket

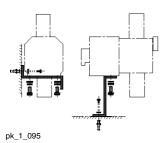


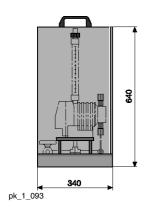
PP wall bracket, holds pump parallel to the wall, includes fixings

Dimensions L x W x H: 230 x 220 x 220 mm

	Fig.	Order no.	
for delta®	pk_2_036	1001906	

Wall/Floor bracket for Pneumados





To hold Pneumados metering pump. Floor or wall mounted, made of coated aluminium. Includes fittings.

	Fig.	Order no.
Dimensions: L x W x H 92 x 80 x 30	pk_1_095	790605

Portable plastic pump stand

To accommodate a metering pump of the product range beta® or gamma/ X. The pump stand can either be designed in PP or black PE. It is prepared for accommodating a fixed pipe and has collector equipment for escaping feed chemical, e.g. in the event of a leakage on the suction line or a rupture of the diaphragm. Supplied with carrying handle, but without pump and pipework

	Fig.	Order no.	
Light grey PP	pk_1_093	1000180	
Black PE	pk_1_093	1000181	

Right-angled PVC threaded connector

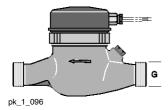
For mounting multifunctional valve onto Beta® or gamma/ L models, self-degassing liquid end version.

	Material	Fig.	Order no.	
PCE Version	PVC/EPDM*	pk_1_083	1003472	
PCB Version	PVC/FKM*	pk_1_083	1003318	

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

1.9.16

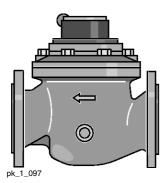
Contact Water Meters for Use in Potable Water and Accessories


DIN Version contact water meter

PN 10 bar, readable, type series MNR-K, operating temp. 40 °C,

contact load max. 100 mA, 24 V, NG - nominal size.

Q_{max} = maximum load, Q_d = permanent load

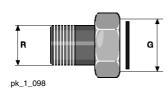

 Q_n = nominal load (1/2 Q_d gccording to calibration regulations)

$Q_{max}/Q_d/Q_n$	Threaded connector width	Connector thread	Length without thread	Pulse interval	Order no.
NG - m ³ /h	R DN/mm	G	mm	I	
5/5/2.5	3/4 – DN 20	1	190	0.05	304467
5/5/2.5	3/4 – DN 20	1	190	0.10	304432
5/5/2.5	3/4 – DN 20	1	190	0.25	304455
5/5/2.5	3/4 – DN 20	1	190	0.30	304428
5/5/2.5	3/4 – DN 20	1	190	0.50	304431
5/5/2.5	3/4 – DN 20	1	190	1.00*	304434
5/5/2.5	3/4 – DN 20	1	190	1.50*	304433
5/5/2.5	3/4 – DN 20	1	190	2.50	304458
5/5/2.5	3/4 – DN 20	1	190	10.00	304453
5/5/2.5	3/4 – DN 20	1	190	100.00	304444
12/12/6	1 – DN 25	1 1/4	260	0.25	1004550
12/12/6	1 – DN 25	1 1/4	260	0.50	1004548
12/12/6	1 – DN 25	1 1/4	260	1.00*	1039764
12/12/6	1 – DN 25	1 1/4	260	1.50*	1004549
12/12/6	1 – DN 25	1 1/4	260	2.00*	1004546
12/12/6	1 – DN 25	1 1/4	260	10.00*	1004547
12/12/6	1 – DN 25	1 1/4	260	100.00	1004545
20/20/10	1 1/2 – DN 40	2	300	2.00*	1039765
20/20/10	1 1/2 – DN 40	2	300	3.00	1004552
20/20/10	1 1/2 – DN 40	2	300	4.00	1004553
20/20/10	1 1/2 – DN 40	2	300	10.00	1004554
20/20/10	1 1/2 – DN 40	2	300	100.00	1004555
30/30/15	2 – DN 50	2 1/2	270	3.00	1020551
30/30/15	2 – DN 50	2 1/2	270	4.00*	1020552
30/30/15	DN 50	Flange	270	6.00*	1020553
30/30/15	2 – DN 50	2 1/2	270	10.00	1020550
30/30/15	DN 50	Flange	270	100.00	304450

^{*}Standard storage tank

DIN Version contact water meter

Readable, series WS-K, operating temp. 40 °C, contact load max. 30 mA, 30 V, DIN 2501 flange, PN 16

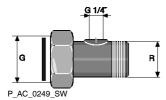

 $Q_{max} = Maximum load$

Q_d = Continuous load

 $Q_n = Nominal load$

$Q_{max}/Q_{d}/Q_{n}$	Connector width	Lower working limit	Length	Pulse interval	Order no.
NG - m ³ /h	DN/mm	l/h	mm	I	
110/55/40	DN 80	275	300	10.00*	1004560
110/55/40	DN 80	275	300	25.00	1004558
110/55/40	DN 80	275	300	100.00	1004559
180/90/60	DN 100	300	360	10.00	1004567
180/90/60	DN 100	300	360	25.00*	1004556
180/90/60	DN 100	300	360	50.00	1004557
350/200/150	DN 150	800	500	50.00*	1004568

^{*}Standard storage tank



Union assembly set with seal

For threaded water meter, brass.

		Order no.
R 3/4	G 1	359029
R1	G 1 1/4	801322
R 1 1/4	G 1 1/2 – (turboDOS®)	359034
R 1 1/2	G 2	359037
R 2	G 2 1/2	359039

Union assembly set with seal

For threaded water meter with G 1/4 connector for injection valve, brass.

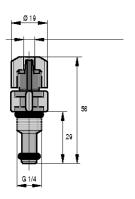
		Order no.
R 3/4	G 1 – 1/4	359030
R1	G 1 1/4 – 1/4	359032
R 1 1/2	G 2 – 1/4	359038
R 2	G 2 1/2 – 1/4	801321

O-ring loaded injection valve

For use with threaded connectors on water meters.

Short design for R 3/4 and R 1 threaded connectors, long design for R 1 1/2 and R 2 threaded connectors.

Applications when using appropriate metering lines


25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 9 bar

Connector		Material	oØ x iØ mm	Fig.	Order no.
6/4 - G 1/4 short	for hose	PP/FKM	6 x 4	P_AC_0008_SW	914754
6/4 - G 1/4 long	for hose	PP/FKM	6 x 4	P_AC_0009_SW	741193
6/4 - G 1/4 short	for hose	PVC/FKM	6 x 4	P_AC_0008_SW	914558
6/4 - G 1/4 long	for hose	PVC/FKM	6 x 4	P_AC_0009_SW	915091

P_AC_0008_SW

P_AC_0009_SW

1.10 Mechanical/Hydraulic Special Accessories

1.10.1 **Pump Diaphragms**

PTFE/FKM diaphragm

ProMinent® EPDM diaphragm with woven fabric core, one PTFE and one FKM layer on the side in contact with the medium. Particularly suitable for metered media containing microcrystals, e.g. silicate. Suitable for Beta® and gamma/ L pumps*.

Pump type	Order no.
1601	1024168
1602	1024169
1604	1034618
1005/1605	1024170
0708/1008	1024171
0413/0713	1024172
0220/0420	1024173

^{*} Identity code letter "S", e.g. BT4A1002PPS...

EPDM diaphragm

ProMinent® diaphragms made of EPDM with woven inner layer.

Max. operating pressure 6 bar.

1000 1001444 1601 1001445 1602 1001446 1005/1605 1001447 0708/1008 1001448 0413/0713 1001449	Pump type	Order no.
1602 1001446 1005/1605 1001447 0708/1008 1001448	1000	1001444
1005/1605 1001447 0708/1008 1001448	1601	1001445
0708/1008 1001448	1602	1001446
	1005/1605	1001447
0413/0713 1001449	0708/1008	1001448
	0413/0713	1001449
0220/0420 1001450	0220/0420	1001450
0232 1001451	0232	1001451

^{*} Identity code letter "P", e.g. BT4A1002PPP...

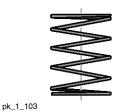
1.10 Mechanical/Hydraulic Special Accessories

1.10.2

Custom Valve Balls/Valve Springs

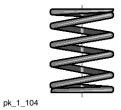
For on-site retrofitting of metering pumps and accessories, for applications where standard materials are unsuitable. Supplied loose only, not fitted.

Valve balls



Material	Ø		Order no.	
	mm			
PTFE	4.7	for valve Ø 6 mm	404255	
PTFE	9.5	for valve Ø 8 and 12 mm	404258	
PTFE	11.0	for valve DN 10	404260	
PTFE	16.0	for valve DN 15	404259	
Ceramic	4.7	for valve Ø 6 mm	404201	
Ceramic	9.2	for valve Ø 8 and 12 mm	404281	
Ceramic	11.0	for valve DN 10	404277	
Ceramic	16.0	for valve DN 15	404275	

Valve springs for liquid ends


With approx. 0.1 bar priming pressure for spring loading of the valve balls in the liquid end. Recommended to improve the valve function and increase metering accuracy, in particular for viscous metering media above 50 m Pas.

Material	Prepressure		Order no.
	bar		
1.4571	0.1	for valve 4.7	469406
1.4571	0.1	for valve 9.2	469403
1.4571	0.1	for mikro g/ 5	469437
1.4571	0.1	for mikro g/ 5	469438
1.4571	0.1	for mikro g/ 5	469439
Hast. C	0.1	for valve DN 10	469114
Hast. C	0.1	for valve DN 15	469107

Valve springs for injection valves

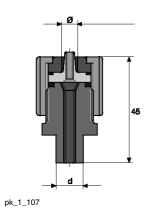
Approx. 0.5/1/2 bar prepressure for increasing metering accuracy and preventing suction and siphoning offset

Material	Prepressure bar		Order no.
1.4571	1.0	for R 1/4" - Ø 6 mm connector	469401
Hast. C	0.5	for R 1/2" - Ø 6, 8 and 12 mm connector	469404
Hast. C	1.0	for R 1/2" - Ø 6, 8 and 12 mm connector	469413
Hast. C	2.0	for R 1/2" - Ø 6, 8 and 12 mm connector	469410
Hast. C	0.5	for DN 10	469115
Hast. C	1.0	for DN 10	469119
Hast. C	0.5	for DN 15	469108
Hast. C	1.0	for DN 15	469116

Valve spring made of Hastelloy C with FEP coating

Material	Prepressure		Order no.
	bar		
Hast. C/FEP	0.5	for R 1/2" - Ø 6, 8 and 12 mm connector	818590
Hast. C/FEP	1.0	for R 1/2" - Ø 6, 8 and 12 mm connector	818536
Hast. C/FEP	0.5	for DN 10	818515
Hast. C/FEP	0.5	for DN 15	818516

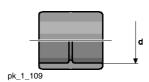
Low-pressure Metering Pumps


1.10 Mechanical/Hydraulic Special Accessories

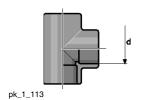
1.10.3

Connector Parts/Fittings

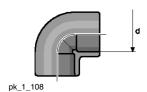
PVC* hose/adhesive nipple


With union nut, for connection of PE tubing to rigid PVC fittings for on-site construction of connector system.

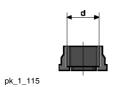
	d mm		oØ x iØ mm	Fig.	Order no.
Nozzle/solvent union	12	for hose	6 x 4	pk_1_107	817088
	12	for hose	8 x 5	pk_1_107	817089
	12	for hose	12 x 9	pk_1_107	817090
	12	for hose	12 x 6	pk_1_107	817091
	16	for hose	6 x 4	pk_1_107	817092
	16	for hose	8 x 5	pk_1_107	817093
	16	for hose	12 x 9	pk_1_107	817094
	16	for hose	12 x 6	pk_1_107	817095


^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PVC straight solvent union


	d		Fig.	Order no.	
	mm				
PVC straight solvent union	12	DN 8	pk_1_109	356608	
	16	DN 10	pk_1_109	356609	
	20	DN 15	pk_1_109	356610	
	25	DN 20	pk_1_109	356611	

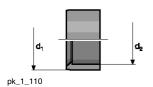
PVC T-joint


	d		Fig.	Order no.	
	mm				
PVC T-joint	12	DN 8	pk_1_113	356406	
	16	DN 10	pk_1_113	356407	
	20	DN 15	pk_1_113	356408	
	25	DN 20	pk_1_113	356409	

90° PVC elbow joint

	d		Fig.	Order no.	
	mm				
90° PVC elbow joint	12	DN 8	pk_1_108	356315	
	16	DN 10	pk_1_108	356316	
	20	DN 15	pk_1_108	356317	
	25	DN 20	pk_1_108	356318	

PVC insert (straight solvent union)



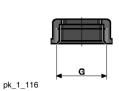
	d		Fig.	Order no.
	mm			
PVC insert (straight solvent union)	12	DN 8	pk_1_115	356571
	16	DN 10	pk_1_115	356572
	20	DN 15	pk_1_115	356573
	25	DN 20	pk_1_115	356574

1.10 Mechanical/Hydraulic Special Accessories

PVC short reducing union

	d1	d2	Fig.	Order no.	
	mm	mm			
PVC short reducing union	12	8	pk_1_110	357025	
	16	10	pk_1_110	357026	
	20	16	pk_1_110	357027	
	25	20	pk_1_110	357028	

PVC hose connection nozzle


	d		Fig.	Order no.	
	mm				
PVC hose connection nozzle	12	DN 8	pk_1_111	356655	
	16	DN 10	pk_1_111	356656	
	20	DN 15	pk_1_111	356657	
	25	DN 20	pk_1_111	356658	

Hose nozzle with seal

Material	d		Fig.	Order no.
	mm			
PVC	16	DN 10	pk_2_046	800554
PVC	20	DN 15	pk_2_046	811407
PVC	25	DN 20	pk_2_046	811408
PP	16	DN 10	pk_2_046	800657
PP	20	DN 15	pk_2_046	800655
PP	25	DN 20	pk_2_046	800656

pk_2_046

Union nuts

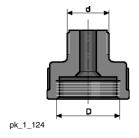
Material	Connection	Fig.	Order no.
PP	G 5/8 – DN 8	pk_1_116	800665
PP	G 3/4 – DN 10	pk_1_116	358613
PP	G 1 – DN 15	pk_1_116	358614
PP	G 1 1/4 – DN 20	pk_1_116	358615
PVC	G 5/8 – DN 8	pk_1_116	800565
PVC	G 3/4 – DN 10	pk_1_116	356562
PVC	G 1 – DN 15	pk_1_116	356563
PVC	G 1 1/4 – DN 20	pk_1_116	356564
PVDF	G 3/4 – DN 10	pk_1_116	358813

Low-pressure Metering Pumps

1.10 Mechanical/Hydraulic Special Accessories

pk_1_114

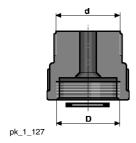
Single adapter kit


For connection of system + GF+ threaded connectors to metering pumps and accessories.

Material	Size	Internal thread D	External thread d	Order no.
PP/EPDM	For DN 8 threaded connector	M20 x 1,5	G 5/8	817164
PP/FKM	For DN 8 threaded connector	M20 x 1,5	G 5/8	740604
PVC/EPDM	For DN 8 threaded connector	M20 x 1,5	G 5/8	740583
PVC/FKM	For DN 8 threaded connector	M20 x 1,5	G 5/8	817069
PVDF/PTFE	For DN 8 threaded connector	M20 x 1,5	G 5/8	1031073
PP/EPDM	For DN 10 threaded connector	M20 x 1,5	G 3/4	817165
PP/FKM	For DN 10 threaded connector	M20 x 1,5	G 3/4	817178
PVC/EPDM	For DN 10 threaded connector	M20 x 1,5	G 3/4	740585
PVC/FKM	For DN 10 threaded connector	M20 x 1,5	G 3/4	740601
PVDF/PTFE	For DN 10 threaded connector	M20 x 1,5	G 3/4	1028409

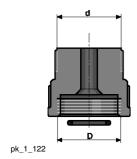
Single adapter kit

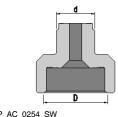
For fitting series A, B, C and E accessories to current metric M20 x 1.5 connectors.

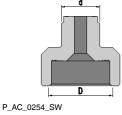

Material	Size	Internal thread D	External thread d	Order no.
PP	6-8 mm connector	M20 x 1.5	G 1/4	811904
PVC	6-8 mm connector	M20 x 1.5	G 1/4	811902

Double adapter kit

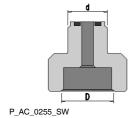
For fitting laboratory type GL connectors, manufactured by Bola or Schott.


Material	Size	Internal thread D	External thread d	Order no.
PTFE	GL 18	M20 x 1.5	GL 18	1000990


Single adapter kit


For fittings of current accessories with metric M20 x 1.5 connectors to series A, B, C and E.

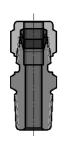
Material	Size	Internal thread D	External thread d	Order no.
PP/EPDM	6-8 mm connector	G 1/4	M20 x 1.5	741088
PVC/FKM	6-8 mm connector	G 1/4	M20 x 1.5	741087
PTFE	6-8 mm connector	G 1/4	M20 x 1.5	741091
PP/EPDM	12 mm connector	G 3/8	M20 x 1.5	741090
PVC/FKM	12 mm connector	G 3/8	M20 x 1.5	741089
PTFE	12 mm connector	G 3/8	M20 x 1.5	741092


1.10 Mechanical/Hydraulic Special Accessories



Adapter

Material	Fig.	Internal thread D	External thread d	Order no.
PP	P_AC_0255	DN 10, G 3/4	M20 x 1.5	800815
PVC	P_AC_0255	DN 10, G 3/4	M20 x 1.5	800816
PVDF	P_AC_0254	DN 10, G 3/4	M20 x 1.5	1017406
PVDF	P_AC_0254	DN 15, G 1	M20 x 1.5	1028530



Stainless steel threaded clip

For connection of suction and discharge tubing to pressure nozzles.

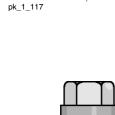
	Clamping range	Order no.	
	mm		
DN 10 clamping ring	16 – 25	359703	
DN 15 clamping ring	20 – 32	359705	

pk_1_028

Stainless steel straight threaded male adapter

Swagelock system, stainless steel SS 316 (1.4401) for fitting tubing to dosing heads and valves with inner threads and for SB versions.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
12 mm - ISO 7 R 3/8	359520
16 mm - ISO 7 R 3/8	359521
16 mm - ISO 7 R 1/2	359529



Stainless steel clamping ring sets

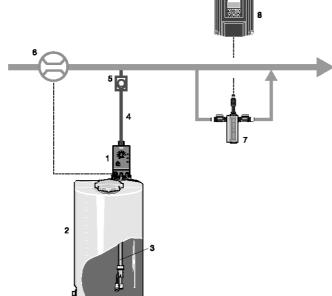
For use with stainless steel threaded connectors for metering pumps and Swagelock accessories. Both parts must be replaced at the same time. Set consists of back and front clamping rings.

	oØ	Order no.
	mm	
Set of rings Ø 6 for pipe	6	104232
Set of rings Ø 8 for pipe	8	104236
Set of rings Ø 12 for pipe	12	104244

Stainless steel threaded connector

Serto system for connecting PE or PTFE discharge line to stainless steel pipe, made from stainless steel with clamping ring, but without support insert (parts in contact with chemicals stainless steel 1.4571).

	Order no.
6 mm outer diameter to 6 mm outer diameter stainless steel pipe	359317
8 mm outer diameter to 8 mm outer diameter stainless steel pipe	359318
12 mm outer diameter to 12 mm outer diameter stainless steel pipe	359320


pk_1_118

1.11 Application Examples

Volume-proportional Metering of Chlorine Bleach Solution in Potable 1.11.1

Product: **Beta®** NaOCI Metered medium:

Potable water Sector: Application: Disinfection

- Intake fitting for foot valve and level
- Soft PVC metering line with woven fabric or PTFE Metering valve

Beta®/ 4 with self-bleeding liquid end made of PMMA/PVC (Plexiglas)

Feed chemical tank

- Contact water meter
 Chlorine measuring sensor
- Control measurement

pk_1_132

Task and requirements

- Volume-proportional feed of chlorine bleach solution into the main water flow
- Monitoring of chlorine content after metering

Operating conditions

- Variable flow
- Installation in closed buildings

Application information

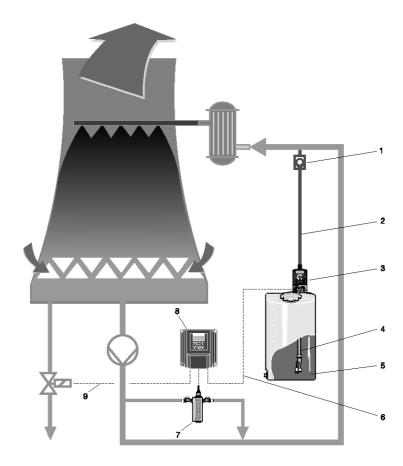
- The metered medium emits gas, therefore after a relatively long period of pump idleness, an air (gas) bubble may have formed in the metering line causing an interruption in metering operation.
- Metering is to be fully automatic and without malfunctions as operating personnel are not always present in the waterworks or water supply.

Solution

- Beta® solenoid-driven metering pump with self-bleeding liquid end
- Contact water meter in main line for pump activation
- DULCOMETER® measuring and control technology for final inspection

Benefits

- High degree of reliability provided by self-bleeding liquid end
- Reliable protection against overmetering and undermetering with downstream final inspection


1.11 Application Examples

1.11.2 **Shock Metering of Biocide in Cooling Water Circuit**

Product: gamma/ L Metering medium: biocide

Industry: cooling water treatment

disinfection Application:

- Metering
 Metering line
 gamma/ L with process timer
- Intake fitting for foot valve and level switch
- Relay output for deactivation of conductivity-controlled desalination

- during biocide shock metering Conductivity sensor D1C conductivity Activation solenoid valve for desalination

pk_1_133

Tasks and requirements

- Increasing the biocide content e.g. at weekly intervals destroys all biological substances in the cooling
- Local increases in concentration may occur resulting in conductivity-controlled desalination. They disappear again after full dispersion in the cooling water circuit.
- Conductivity-controlled desalination must therefore be deactivated during shock metering and for an appropriate time afterwards.

Operating conditions

- Aggressive chemicals (oxidising)
- Installation of the metering pump in the building

Notes on application

- Shock metering takes place at defined intervals, e.g. weekly.
- In smaller cooling circuits, the metering pump with the integrated process timer replaces the PLC.
- Irrespective of the set metering times, conductivity-controlled desalination must be deactivated via a potential-free contact.
- In some cases, desalination is performed before each shock metering cycle. This procedure must be controlled by means of a second relay contact in the pump.

1.11 Application Examples

Solution

- gamma/L with process timer and corresponding relay outputs
- The relays can be assigned to the process timer as needed and execute the necessary switching functions.
- The pump itself operates at the specified metering times.
- The metering program can be set up on a PC and downloaded on site to the pump.
- Metering programs can be sent by e-mail.
- Liquid end made of PVDF for excellent chemical resistance

Benefi

- High IP rating of IP 75 for the control by integration in the pump.
- Cost savings as no PLC required
- Saving of installation costs thanks to compact design
- Simple and safe setting up of programs on the PC
- Fast downloading to the pump, especially in cases where several pumps run with the same program.

2.0 Overview of Tanks and Transfer Pumps

2.0.1

Selection Guide

The right accessories offer even more: They increase the performance range, application options or the feed rates.

This chapter includes storage tanks, transfer and peristaltic pumps, with which you can define the pump capacity precisely and store liquids safely.

The table will assist with quick selection. It is sorted by relevant key figures and details.

Selection Guide - Tanks:

	Shape	WHG approval	Effective volume
PE Metering Tanks	Cylindrical	-	35 – 1,000 l
PE Storage Tank With General WHG Approval	Cylindrical	х	0.5 - 50 m ³
PP/PE Storage Tanks, Custom-built	Cylindrical or rectangular	-	0.5 - 50 m ³

Selection Guide - Transfer Pumps:

Pump type	Priming	Drive	Capacity range
Spectra Eccentric Screw Pump	Self-priming	Electric	to 12,000 I/h
Centrifugal Pump von Taine®	Not self-priming (infeed necessary)	Electric	Up to 22,500 I/h
Air-operated diaphragm pump Duodos	Self-priming	Compressed air	Up to 6,700 l/h, 7 bar
Barrel Pump DULCO®Trans	Self-priming	Electric	to 4,800 I/h

Selection Guide - Peristaltic Pumps

Pump type	Priming	Drive	Capacity range
Peristaltic Pumps DULCO®flex	Self-priming	Electric	Up to 15,000 l/h, max. 15 bar

Dosing and storage tanks

See page → 2-2

Transfer pumps

See page → 2-19

Peristaltic pumps

See page → 2-32

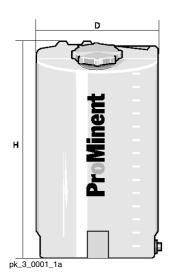
2.1 PE Metering Tanks and Collecting Pans

2.1.1

Metering Tanks

Anyone who works with chemicals, needs to store them safely. ProMinent® dosing tanks are tough and ideal for working with metering pumps.

Capacity 35 - 1,000 litres



PE storage tanks produced in a rotation process. They can be enhanced with ProMinent® metering pumps, suction lances and stirrers. The stackable PE collection pans are available in matching sizes.

Your benefits

- Environmentally-friendly storage of liquid chemicals
- Robust and durable: tough design in UV-stabilised PE (polyethylene).
- Scale for litres and US gallons.
- Simple to install: sintered threaded sockets for fixing ProMinent® metering pumps onto storage tanks.
- Safe storage: If the contents are not needed, a screw-on lid keeps them tightly secure (push-on lid for 35-litre storage tanks).
- Flat sides to secure the storage tank.
- Mounting flange with sintered threaded sockets for fixing a manual or electric stirrer.
- Standard colours: natural, black, blue, yellow, and red.

Natural coloured/transparent PE dosing tank

Usable capacity	D	Н	Threaded bush for metering pumps	Weight	Order no.
1	mm	mm		kg	
35	350	485	without threaded bushes	3.5	791993
60	410	590	gamma/ L / X, Beta®	5.0	791994
100	500	760	alpha, Beta®, gamma/ L / X	7.0	1001490
140	500	860	alpha, Beta®, gamma/ L / X	9.5	791995
250	650	1,100	alpha, Beta [®] , gamma/L/X, Sigma/ 1/2/3, delta [®]	17.5	1023175
500	820	1,190	2 x gamma/ L / X, 2 x Sigma/ 1, 2 x delta [®] , 2 x Beta [®]	24.5	791997
1,000	1,070	1,260	2 x gamma/ L / X, 2 x Sigma/ 1/ 2/ 3, 2 x delta [®] , 2 x Beta [®]	51.0	1010909

Natural coloured/transparent PE dosing tank

Designed for the installation of a manually operated or electric stirrer.

Usable capacity	with an opening for	Order no.
1		
60	manually operated stirrer	792104
60	electric stirrer	792105
100	manually operated stirrer	1002034
100	electric stirrer	1002033
140	manually operated stirrer	792106
140	electric stirrer	792107
250	manually operated stirrer	792108
250	electric stirrer	792109
500	manually operated stirrer	792110
500	electric stirrer	792111
1,000	manually operated stirrer	1010910
1,000	electric stirrer	1010911

An R 3/4" threaded sleeve is moulded on 35-1,000 litre storage tanks for drainage, which requires drilling (Ø 10 mm) on site if necessary. An R 3/4" PE sealing stopper with a seal is screwed in (Accessory part no. 200692).

Dosing tanks without ProMinent® logo are available on request.

ProMinent

2.1 PE Metering Tanks and Collecting Pans

Prominentbk_3_001_1

Black PE dosing tank

For light sensitive media.

Usable capacity I	Order no.
35	791998
60	791999
100	1001322
140	792000
250	1023176
500	792002
1,000	1010912

Blue PE dosing tank

Usable capacity	Order no.
1	
35	1003812
60	1003813
100	1003814
140	1003815
250	1023177
500	1003817
1,000	1010913

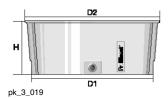
Yellow PE dosing tank

Usable capacity I	Order no.
35	1003818
60	1003819
100	1003820
140	1003821
250	1023178
500	1003823
1,000	1010914

Red PE dosing tank

Usable capacity	Order no.
1	
35	1003824
60	1003825
100	1003826
140	1003827
250	1023179
500	1003829
1,000	1010915

Dosing tanks without ProMinent® logo are available on request.


Transfer Pumps

2.1 PE Metering Tanks and Collecting Pans

2.1.2

PE Stackable Collecting Pans for Dosing Tanks

Made of UV-stabilised polyethylene in a stackable design with ProMinent® logo. 2 flat sides for fixing the collecting pan.

PE colourless/transparent stackable collecting pans

Usable capacity	D2	D1	Н	Weight	Order no.
I	mm	mm	mm	kg	
35	565	507	220	3.0	1010879
60	680	607	270	4.3	1010880
100	802	727	320	6.5	1010881
140	811	727	370	7.0	1010882
250	917	807	520	11.0	1010883
500	1,155	1,009	670	16.0	1010884

PE black stackable collecting pans

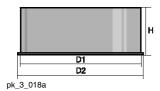
Usable capacity	D2	D1	Н	Weight	Order no.
1	mm	mm	mm	kg	
35	565	507	220	3.0	1010885
60	680	607	270	4.3	1010886
100	802	727	320	6.5	1010887
140	811	727	370	7.0	1010888
250	917	807	520	11.0	1010889
500	1,155	1,009	670	16.0	1010890

PE blue stackable collecting pans

Usable capacity	D2	D1	н	Weight	Order no.
I	mm	mm	mm	kg	
35	565	507	220	3.0	1010891
60	680	607	270	4.3	1010892
100	802	727	320	6.5	1010893
140	811	727	370	7.0	1010894
250	917	807	520	11.0	1010895
500	1,155	1,009	670	16.0	1010896

PE yellow stackable collecting pans

Usable capacity	D2	D1	н	Weight	Order no.
I	mm	mm	mm	kg	
35	565	507	220	3.0	1010897
60	680	607	270	4.3	1010898
100	802	727	320	6.5	1010899
140	811	727	370	7.0	1010900
250	917	807	520	11.0	1010901
500	1,155	1,009	670	16.0	1010902


2.1 PE Metering Tanks and Collecting Pans

PE red stackable collecting pans

Usable capacity	D2	D1	н	Weight	Order no.	
I	mm	mm	mm	kg		
35	565	507	220	3.0	1010903	
60	680	607	270	4.3	1010904	
100	802	727	320	6.5	1010905	
140	811	727	370	7.0	1010906	
250	917	807	520	11.0	1010907	
500	1,155	1,009	670	16.0	1010908	

An R 3/4" threaded sleeve is moulded on 35-500 litre collecting pans for drainage, which requires drilling (Ø 10 mm) on site if necessary. An R 3/4" PE sealing stopper with a seal is screwed in (Accessory part no. 200692).

Collecting pan PE, natural

Usable capacity	D2	D1	Н	Weight	Order no.
I	mm	mm	mm	kg	
1,000	1,280	1,200	980	34.0	740719

Collecting pan PE, black

Usable capacity	D2	D1	н	Weight	Order no.
I	mm	mm	mm	kg	
1,000	1,280	1,200	980	34.0	740726

2.1.3	Spare Parts	
		Order no.
	Push cap for 35 I tank	740708
	Screw cap with seal for 60/100/140/250	1031429
	Screw cap with seal for 500/1000	1030910
	Sealing plugs with 3/4" PE seal	200692

2.2 Accessories for Metering Tanks

Fittings and Detachable Parts

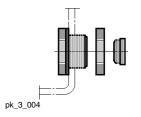
Attachment of pumps to dosing tanks

PP mounting plate

For mounting metering pumps onto metering tanks (including screws for attachment of mounting plates to the metering tank).

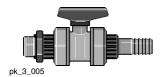
pk_3_003		

	Order no.
Mounting plate, Sigma/ 1/ 2/ 3	740476
Mounting plate, alpha	790850
Mounting plate for Beta®, gamma/ L / X, D_4a	801575
Mounting plate 3 x gamma/ L / X, 3 x Beta®	801580
Mounting plate 2 x gamma/ L / X, 2 x Beta®	801583


Please refer to the following table for the order numbers for the mounting plates.

_			
Dosi	ına	tan	ıks

Metering pumps	35 I	60 I	100 l	140 I	250 I	500 I	1000 l
alpha	790850	790850	х	х	х	2x790850	2x790850
Beta [®] , gamma/ L / X	801575	X	х	х	х	2x	2x
delta [®]	-	801569	801569	801569	х	2x	2x
Sigma/ 1	-	801569	740476	740476	х	2x	2x
Sigma/ 2, Sigma/ 3	-	-	-	-	x	2x740476	2x
2xBeta® or 2xgamma/ L / X	-	801583	801583	801583	801583	2x801583	2x801583
3xBeta® or 3xgamma/ L / X	-	-	801580	801580	801580	2x801580	2x801580


- x = Direct installation of a pump on a storage tank
- 2x = Direct installation of 2 pumps on a storage tank (500 and 1000 litres only)
- = Pump cannot be installed on the storage tank

Tank connectors with PE plugs

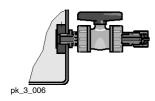
	Order no.
R 1/2" as an additional connection for PE metering tanks 35-1,000 I	809755
R 3/4" as an additional connection for PE metering tanks 35-1,000 I	809756

PP discharge tap

	Order no.
For metering tanks with d 20, Ø 20 mm hose nozzle and 3/4" nipple	809714
for direct connection to the threaded connector on the tank.	

PVC discharge tap

	Order no.
For metering tanks with d 16, Ø 16 mm hose nozzle and 3/4" nipple	809745
for direct connection to the threaded connector on the tank.	


Screw cap lock

	Order no.
Lock with key for screw cap	200683

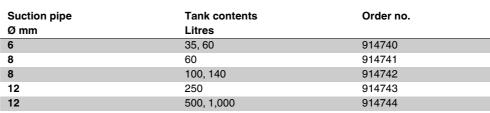
sdun

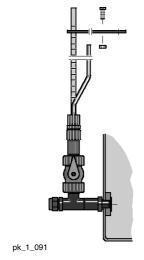
2.2 Accessories for Metering Tanks

PP Tank connector with strainer

A laboratory ball tap and hose connector made of PP for connecting the metering pump at the base of the metering tank.

A 17 mm Ø hole must be provided on-site.

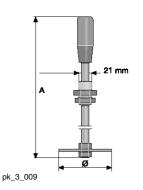

Material	oØ x iØ	Order no.
	mm	
PP	6 x 4	809947
PP	8 x 5	809948
PP	10 x 4	1002933
PP	12 x 9	809949
PP	12 x 6	809950


PVC Tank connector with strainer

Material	oØ x iØ	Order no.
	mm	
PVC	6 x 4	814566
PVC	8 x 5	814567
PVC	10 x 4	1002934
PVC	12 x 9	814568
PVC	12 x 6	814569

PVC Calibration assembly

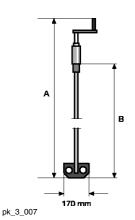
For checking metering volumes and indicating the fluid level; with a graduated measuring tube with 1 ml graduations, foot valve, multi-way valve and the necessary fittings. (Specific information should be given when ordering if there are differing hose and tank sizes).



anks and Transfer Pumps

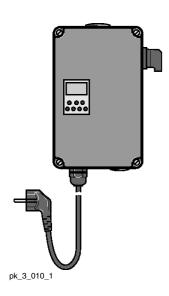
2.2 Accessories for Metering Tanks

2.2.2


Stirrers

PP Hand mixer

Fully assembled.


	Α	Ø	Order no.
	mm	mm	
for 35 und 60 l storage tanks	515	90	741118
for 100 and 140 I tanks	715	90	741119
for 250 and 500 I tanks	1,040	130	741120

PP Hand stirrer

With crank, fully assembled.

	Α	В	Order no.	
	mm	mm		
for 60 I tanks	670	465	914701	
for 100 I tanks	855	650	914738	
for 140 I tanks	965	765	914702	
for 250 and 500 I tanks	1,175	965	914703	
for 1000 I tanks	1,240	1,040	914705	

Timer with digital clock

In plastic housing for the control of a stirrer or a metering pump, 230 V, 50 Hz, max. 6A, IP 65. Day and week programs, shortest switching time 1 min. with 2 m power cable and euro plug.

Order no. 1005561

Stirrers should only be operated via the motor protection switch!

2.2 Accessories for Metering Tanks

Stainless steel electric stirrer

For the batching and mixing of liquids up to max. 500 mPas viscosity. Intermittent operation using timer recommended.

Wide-range motor providing 1400 rpm, insulation class F, insulated for use in hot climates, stainless steel 1.4571 shaft, polypropylene stirring blades, for 1000 litres made of PVDF

The 0.02 - 0.25 kW motors are operated single-phase with an AC power supply 230 V/50 - 60 Hz.

The 0.75 kW motor is operated three-phase with an AC power supply 380 – 415 V/50 – 60 Hz.

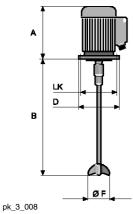
Fit a motor protection switch on all motors.

Not suitable for gaseous media.

Elec. connection	Enclosure rating	Order no.
20 W/230 V/0.38 A	IP55	818576
180 W/230 V/1.90 A	IP55	1001566
180 W/230 V/1.90 A	IP55	791502
180 W/230 V/1.90 A	IP55	791503
250 W/230 V/1.80 A	IP55	791504
750 W/400 V/2.00 A	IP55	791458
	20 W/230 V/0.38 A 180 W/230 V/1.90 A 180 W/230 V/1.90 A 180 W/230 V/1.90 A 250 W/230 V/1.80 A	180 W/230 V/1.90 A IP55 180 W/230 V/1.90 A IP55 180 W/230 V/1.90 A IP55 250 W/230 V/1.80 A IP55

Chemical resistant electric stirrer

Wide-range motor providing 1,400 rpm, insulation class F, insulated for use in hot climates, stainless steel shaft with PVDF coating, polypropylene stirring blades, for 1000 litres made of PVDF.


The 0.02 - 0.25 kW motors are operated single-phase with an AC power supply 230 V/50 - 60 Hz.

The 0.75 kW motor is operated three-phase with an AC power supply 380 - 415 V/50 - 60 Hz.

Fit a motor protection switch on all motors.

Not suitable for gaseous media.

	Elec. connection	Enclosure rating	Order no.
for 60 I tank	20 W/230 V/0.38 A	IP55	818577
for 100 I tank	180 W/230 V/1.90 A	IP55	1002035
for 140 I tank	180 W/230 V/1.90 A	IP55	791454
for 250 I tank	180 W/230 V/1.90 A	IP55	791455
for 500 I tank	250 W/230 V/1.80 A	IP55	791456
for 1000 I tank	750 W/400 V/2.00 A	IP55	791457

. – –					
Size	Α	В	ØD	Ø LK	ØF
60	195	490	115	100	70
100	200	675	160	130	70
140	200	780	160	130	70
250	200	950	160	130	70
500	200	950	160	130	70
1000	230	1190	200	165	130

2.3.1

PE/PP Tanks and Apparatus

Safe and reliable handling of chemicals. Protects, stores and guarantees compliance with legal specifications.

Capacity 500 litres to 50 m³

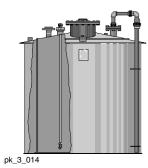
All storage tanks comply with internationally applicable manufacturing approvals and are suitable for installation outdoors and indoors.

ProMinent storage tanks all meet the requirements of the German Water Management Act (WHG), the Directive on Systems for Handling Substances Harmful to Water (VAwS) and the Approval Marks Ordinance. They also comply with the strict legal requirements governing the construction and operation of systems in which substances hazardous to the environment are stored and transported.

Your benefits

- Design and production are in compliance with the construction and test regulations as laid down by the German Institute for Building Technology (DIBT)
- Made of polyethylene PE-HD: Very good resistance to chemicals
- For chemicals as per the DIBT media list

Technical details


- Approval mark Z-40.21-229 as per the WHG Section 19
- For operation at atmospheric pressure at an operating temperature of up to a maximum of 30 °C

Field of application

Suitable for the storage of chemicals. Applications include: Waste water engineering, electroplating, exhaust air treatment, building services, potable water or process water treatment, swimming pools. For installation outdoors or indoors.

2.3.2

PE Storage Tank With General WHG Approval

The storage of chemicals hazardous for water (Water Hazard Class (WGK) 0-3) is subject to strict, regulatory requirements.

We supply storage tanks that comply with WHG §19 I, suitable for installation indoors and outdoors, up to a storage volume of 50 m³. The storage tanks are available with monitoring accessories, filling level devices, filling equipment, heating equipment, extraction and feeder assemblies.

PE-HD Storage tanks

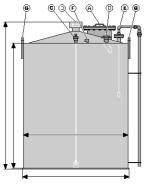
- Approval mark Z-40.21-229 in compliance with the WHG § 19 (Water Resource Management Act)
- Design and manufacture carried out in accordance with the construction and test principles of the DIBT (German Institute of Building Technology)
- For operation at atmospheric pressure up to a max. operating temperature of 30 °C
- Material: polyethylene PE-HD
- For indoor or outdoor installation
- For chemicals in accordance with the DIBT media list

Usable volume 95 % fill level	Internal diameter	External diameter	Height of cylindrical section	Overall height	Weight empty
I	mm	mm	mm	mm	kg
500	800	860	1,050	1,300	50
750	1,000	1,060	1,050	1,300	60
1,000	1,000	1,060	1,350	1,600	70
1,250	1,200	1,260	1,150	1,400	80
1,500	1,200	1,260	1,400	1,650	90
2,000	1,400	1,480	1,400	1,650	100
2,500	1,400	1,480	1,700	1,950	130
3,000	1,600	1,680	1,550	1,800	170
3,500	1,700	1,780	1,550	1,800	190
4,000	1,700	1,780	1,850	2,100	220
5,000	1,900	1,980	1,850	2,100	280

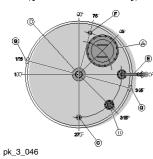
Usable volume 95 % fill level	Internal diameter	External diameter	Height of cylindrical section	Overall height	Weight empty
ı	mm	mm	mm	mm	kg
6,000	2,000	2,080	1,950	2,250	350
7,000	2,150	2,250	1,950	2,250	400
8,000	2,150	2,250	2,250	2,550	500
10,000	2,150	2,250	2,900	3,200	600
12,000	2,150	2,250	3,400	3,700	700

Other sizes available on request.

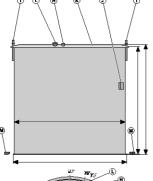
PE-HD Collecting Pans


Usable volume 95 % fill level	Internal diameter	External diameter	Height of cylindrical section	Overall height	Weight empty
I	mm	mm	mm	mm	kg
500	1,050	1,150	1,030	1,050	40
750	1,250	1,350	1,030	1,050	45
1,000	1,250	1,350	1,280	1,300	50
1,250	1,450	1,550	1,080	1,100	55
1,500	1,450	1,550	1,330	1,350	60
2,000	1,650	1,750	1,280	1,300	70
2,500	1,650	1,750	1,600	1,620	90
3,000	1,850	1,950	1,470	1,500	105
3,500	1,950	2,050	1,470	1,500	120
4,000	1,950	2,050	1,750	1,780	140
5,000	2,150	2,250	1,750	1,780	160
6,000	2,250	2,350	1,900	1,950	200
7,000	2,390	2,490	1,910	1,960	220
8,000	2,390	2,490	2,200	2,250	270
10,000	2,390	2,490	2,750	2,800	350
12,000	2,390	2,490	3,300	3,350	450

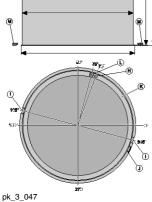
Other sizes available on request.



Our standard equipped storage tanks and collecting pans with approval marks

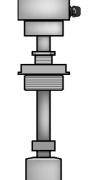

For indoor or outdoor installation; other internal fittings/accessories on request.

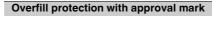
Item	Quantity	Name	500 I - 1,250 I	1,500 l - 2,000 l	2,500 l - 3,500 l	4,000 l - 12,000 l
Α	1	Handhole/manhole, bolted 1.4301	DN 250	DN 250	DN 500	DN 500
В	1	Filling connection with 45° inlet elbow	DN 32	DN 50	DN 50	DN 50
С	1	Sampling pipe PVC/EPDM	DN 15	DN 15	DN 15	DN 20
D	1	Vent pipe with dome	DN 80	DN 100	DN 100	DN 100
Е	1	Cable-operated level indicator	DN 80/40	DN 80/40	DN 80/40	DN 80/40
F	1	Screwed socket for overfill protection	Rp 2"	Rp 2"	Rp 2"	Rp 2"
G	2	Crane lifting eye	-	yes	yes	yes


Collecting Pans for external installation

Item	Quantity	Name	500 I - 1,250 I	1,500 l - 12,000 l
Н	1	Leakage sensor support	Rp 2"	Rp 2"
1	2	Crane lifting eye	-	yes
J	1	Rating plate	yes	yes
K	1	Rain collar	yes	yes
L	1	Inspection port	yes	yes
М	1	Floor claw set	yes	yes

Collecting Pans for installation


Item	Quantity	Name	500 l - 1,250 l	1,500 l - 12,000 l
Н	1	Leakage sensor support	Rp 2"	Rp 2"
I	2	Crane lifting eye	-	yes
J	1	Rating plate	yes	yes



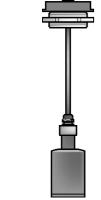
Accessories Meeting The Requirements Of WHG § 19 and VAwS (Directive On **Systems For Storage And Handling Of Water-Endangering Substances)**

Overfill protection with approval mark

T200 level gauge with float as max. level limit switch, without downstream transmitter, see below. Length 500 mm.

Order no.

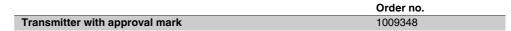
1009334



pk_3_037

Leakage sensor with approval mark

T200 leakage detection system consisting of level detector with float, without downstream transmitter, see below. Length 3,000 mm.


	Order no.
Leakage sensor with approval mark	1009340

pk 3 038

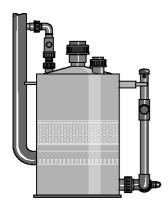
Transmitter with approval mark

For installation in control cabinets by others, suitable for leakage and overfill protection.

Alarm indicator unit

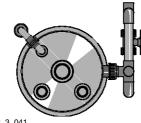
For overfill protection and leakage sensor with approval mark, complete with signal horn and two transmitters.

Price on request.



Tanks and Transfer Pumps

2.3 Storage Tanks

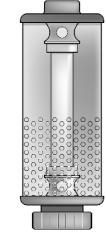


Absorption tank

For ventilation of sealed storage tanks.

Material: polyethylene PE-HD complete with connections, PVC/EPDM ball valve and fixed pipework to storage tank; sizes and prices according to tank volume and stored medium.

Price on request.



pk_3_041

Acid vapour separator

Size and combining agent according to tank volume and stored medium.

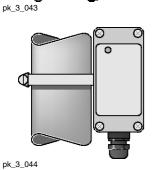
Price on request.

pk_3_042

Other Accessories

Chemical filling station

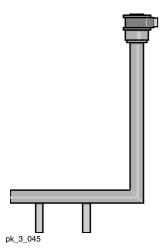
Suitable for third-party wall mounting.


Material: polyethylene PE-HD.

Size: approx. 420x420x1000 mm (LxWxH), complete with DN 50 PVC/EPDM ball valve, threaded

connector and drip tray with ball valve DN 25

PVC/EPDM connection: Rp 20 (parallel female thread)


Other internal fittings such as tanker couplings, automatic valves, heater, etc. are possible; prices on

Bistable changeover contact

With approval mark for fitting on cable-operated level indicator.

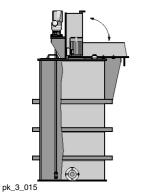
Order no. Bistable changeover contact 1009349

Storage tank heater

With temperature and level control for run-dry protection; on request, according to stored medium and tank volume.

Optional in addition to insulation of the storage tank.

Price on request.

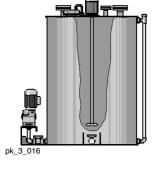


Tanks and Transfer Pumps

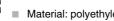
Storage Tanks

2.3.3

PP/PE Storage Tanks, Custom-built

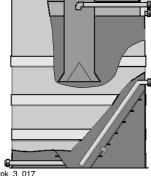


Often the available space or technical system requirements preclude the use of conventional chemical tanks. We solve this problem with panel-welded PE/PP storage tanks. They are perfectly adapted to cope with the individual problem.


Additional internal and add-on equipment, like salt dissolving baskets, sack feed-in equipment, absorption containers, angled and hopper bases, can enhance and extend the operation of the storage tank.

Whether sedimentation tank or grease separator, neutralisation tank or electroplating pickling bath. The optional uses of PE and PP plate material are many and varied.

We supply storage tanks up to a storage volume of 50 m³.



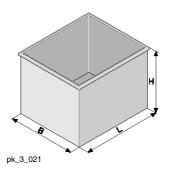
Circular tanks

- Base design: flat base, tapered base, sloping base
- Roof design: flat roof, tapered roof or open, suitable for atmospheric pressure operation at operating temperatures of up to 80 °C
- Standard equipment: 2 crane lifting eyes on circular tanks with usable volumes above 2000 litres
- Prices on request according to application

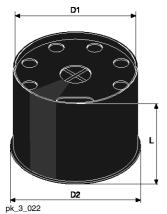
Usable volume 95 % fill level	Internal diameter	External diameter	Height of cylindrical section	Overall height
I	mm	mm	mm	mm
500	800	860	1,050	1,070
750	1,000	1,060	1,050	1,070
1,000	1,000	1,060	1,350	1,370
1,250	1,200	1,260	1,150	1,170
1,500	1,200	1,260	1,400	1,425
2,000	1,400	1,480	1,400	1,425
2,500	1,400	1,480	1,700	1,730
3,000	1,600	1,680	1,550	1,580
3,500	1,700	1,780	1,550	1,580
4,000	1,700	1,780	1,850	1,880
5,000	1,900	1,980	1,850	1,880
6,000	2,000	2,080	1,950	1,980
7,000	2,150	2,250	1,950	1,990
8,000	2,150	2,250	2,250	2,290
10,000	2,150	2,250	2,900	2,950
12,000	2,150	2,250	3,400	3,450

Other sizes available on request.

pk, 3,048


Rectangular tanks

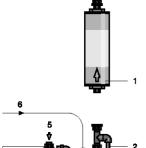
- Material: polyethylene PE-HD or polypropylene PP
- Base design: flat base or sloping base, full-face contact with foundation
- Roof design: flat roof or open, suitable for operation at atmospheric pressure at operating temperatures
 of up to 80 °C
- Surrounding steel tube reinforcement, PE or PP coated
- Standard equipment: 4 crane lifting eyes on rectangular tanks with usable volumes above 2,000 litres.
- Prices on request according to application


Usable volume 95 % fill level	Internal dimensions (L x W x H)	External dimensions (L x W x H)
_1	mm	mm
500	950 x 750 x 750	1,100 x 900 x 770
750	1,000 x 1,000 x 800	1,150 x 1,150 x 820
1,000	1,000 x 1,000 x 1,060	1,150 x 1,150 x 1,080
1,250	1,250 x 1,000 x 1,060	1,400 x 1,150 x 1,080
1,500	1,500 x 1,000 x 1,060	1,750 x 1,250 x 1,090
2,000	1,500 x 1,250 x 1,130	1,750 x 1,500 x 1,160
2,500	1,750 x 1,250 x 1,210	2,000 x 1,500 x 1,240
3,000	1,750 x 1,250 x 1,450	2,000 x 1,500 x 1,480
3,500	1,750 x 1,500 x 1,410	2,000 x 1,750 x 1,440
4,000	2,000 x 1,500 x 1,410	2,250 x 1,750 x 1,440
5,000	2,500 x 1,500 x 1,410	2,750 x 1,750 x 1,440
6,000	2,500 x 1,750 x 1,450	2,750 x 2,000 x 1,480
7,000	2,500 x 1,750 x 1,700	2,750 x 2,000 x 1,730
8,000	2,500 x 2,000 x 1,700	2,750 x 2,250 x 1,730
10,000	3,000 x 2,000 x 1,760	3,350 x 2,350 x 1,800
12,000	3,500 x 2,000 x 1,810	3,850 x 2,350 x 1,850
15,000	4,000 x 2,000 x 2,000	4,350 x 2,350 x 2,050

Other sizes available on request.

2.3.4 Drip Trays for PE Supply Drums

Usable capacity	Material	External dimensions (L x W x H)	Internal dimensions (L x W x H)	Order no.
1		mm	mm	
40	PE black	500 x 400 x 266	450 x 350 x 260	791726
70	PE black	500 x 430 x 378	470 x 400 x 370	740309


Usable capacity	Material	D2	D1	L	Order no.
1		mm	mm	mm	
250	PE-neutral	840	800	508	791727

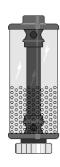
Tanks and Transfer P

Storage Tanks

2.3.5 **PVC Batch Box**

For concentrated fluid metering solutions, e. g. hydrazine, ammonia, caustic soda, etc. The batch box is designed for attachment to our 140 and 250/500 litre metering tanks.

Batch Box	Usable capacity	Tanks	Order no.
	I		
Disposable drums	2	140	1020438
Disposable drums	5	250/500 I	1020441
Reusable drums	2	140	1020443
Reusable drums	5	250/500 I	1020455


	Order no.
Activated charcoal filter with bracket	1020442

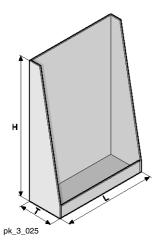
pk_3_023

- Activated charcoal filter Bleed line
- Batch box
- Gas displacement tubing Water intake
- Fluid concentrate

2.3.6

Chemical Vapour Lock

Compact chemical vapour lock with screw attachment for installation on a gas-tight storage tank. The chemical vapour lock is filled with the binder Cosa C and is ideal for the storage of aluminium chloride, ferric chloride, ferrous chloride, potassium hypochlorite, sodium hypochlorite and hydrochloric acid up to a maximum of 30%. The lifetimes of the binder should be noted. Other chemicals and concentrations are available on request.


	Usable capacity	Exhaust air, max.	Connector nominal diameter	Order no.
	I	l/min		
SDA-90	0.8	25	DN 25	1020457
SDA-160	7.0	158	DN 65	1020458

pk_3_024

2.3.7

PP Mounting Rack

With integrated drip tray for mounting the metering station.

Dimensions H x W x D	Order no.
mm	
1,200 x 800 x 300	1008779
1,200 x 800 x 400	1008780

iks and Transfer Pumps

2.4 Eccentric Screw Pump Spectra

2.4.1 Eccentric Screw Pump Spectra for Pumping Polymer Solutions

Pump ultra-gently, meter precisely and with a wealth of applications.

Capacity range 2.4 to 12,000 l/h, 12 - 3 bar

The eccentric screw pump Spectra meters liquid polyelectrolytes in concentrated and dilute form. It can be used, for example, in waste water treatment or sludge dewatering.

The eccentric screw pump Spectra has been designed for the transport of polymer solutions with a viscosity of up to 5,000 mPas. It is low-maintenance and can even be used if polymer solutions containing

The pumps are equipped with gear motors and external fans and can be operated via an external frequency converter. Protect the pump from running dry.

oil are to be metered.

- Low-pulsation pumping
- Feed rate is proportional to the speed
- Reversible pumping direction

Technical details

- FPM stator
- Stainless steel (Cr-Ni-Mo 17-12-2) rotor
- Stainless steel housing for 12/2 12/100
- Grey cast iron housing for 6/300 3/12000
- Axial face seal
- Voltage: 3-phase, 230/400 VAC
- Degree of protection: IP55

Field of application

Waste water treatment, sludge dewatering

The frequency converters do not form part of the Spectra scope of supply.

Without base plate

	Delivery rate at 3 bar	Maximum back pressure	Power uptake	Order no.
		bar	kW	
Spectra 12/2 F	0.242.4 l/h	12	0.37	1025284
Spectra 12/13 F	1.313.2 l/h	12	0.37	1025285
Spectra 12/33 F	3.333 l/h	12	0.37	1025286
Spectra 12/100 F	10100 l/h	12	0.37	1025287
Spectra 6/300 F	30300 l/h	6	0.37	1025288
Spectra 6/650 F	65650 l/h	6	0.55	1025289
Spectra 5/1400 F	1401,400 l/h	5	0.75	1025290
Spectra 3/3000 F	3003,000 l/h	3	0.75	1025291
Spectra 3/6500 F	6506,500 l/h	3	1.50	1025292
Spectra 3/12000 F	1,20012,000 l/h	3	2.20	1025293

With base plate

	Delivery rate at 3 bar	Maximum back pressure	Power uptake	Order no.
		bar	kW	
Spectra 12/2 FB	0.242.4 l/h	12	0.37	1025294
Spectra 12/13 FB	1.313.2 l/h	12	0.37	1025295
Spectra 12/33 FB	3.333 l/h	12	0.37	1025296
Spectra 12/100 FB	10100 l/h	12	0.37	1025297
Spectra 6/300 FB	30300 l/h	6	0.37	1025298
Spectra 6/650 FB	65650 l/h	6	0.55	1025299
Spectra 5/1400 FB	1401,400 l/h	5	0.75	1025300
Spectra 3/3000 FB	3003,000 l/h	3	0.75	1025301
Spectra 3/6500 FB	6506,500 l/h	3	1.50	1025302
Spectra 3/12000 FB	1,20012,000 l/h	3	2.20	1025303

2.4 Eccentric Screw Pump Spectra

Frequency converters for Spectra

		Recommended for pumps up to	Order no.
SK500E - 550	0.55 kW, 1 ph, 230 V, incl. control panel	0.37 kW	1010980
SK500E - 750	0.75 kW, 1 ph, 230 V, incl. control panel	0.55 kW	1010981
SK500E - 111	1.10 kW, 1 ph, 230 V, incl. control panel	0.75 kW	1025304
SK500E - 151	1.50 kW, 1 ph, 230 V, incl. control panel	1.10 kW	1010982
SK500E - 221	2.20 kW, 3 ph, 400 V, incl. control panel	2.20 kW	1025305

The frequency converters do not form part of the Spectra scope of supply.

2.4.2	Motor	Data		
Electrical connection	Frequency	Enclosure rating	Overheating protection	Cooling
230/400 VAC, 3 ph	4 - 89 Hz	IP 55	3 PTC thermistors in winding	external fan 1~, 230 VAC, 50 Hz

2.4.3	Tec	hnical Data			
	Weight kg	Dimensions L x W x H (mm)	Housing material	Material rot. parts	Suction/discharge connection
Spectra 12/2 F	24	739 x 200 x 182	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/13 F	24	739 x 200 x 182	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/33 F	24	739 x 200 x 182	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/100 F	24	739 x 200 x 182	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 6/300 F	26	874 x 223 x 192	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 6/650 F	26	874 x 223 x 192	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 5/1400 F	26	874 x 223 x 192	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 3/3000 F	36	950 x 223 x 193	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 3/6500 F	56	1,172 x 237 x 224	Grey cast iron	Cr Ni Mo 17 – 12 – 2	DN 50, flange
Spectra 3/12000 F	81	1,487 x 264 x 244	Grey cast iron	Cr Ni Mo 17 – 12 – 2	DN 65, flange
Spectra 12/2 FB	28	739 x 220 x 232	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/13 FB	28	739 x 220 x 232	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/33 FB	28	739 x 220 x 232	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 12/100 FB	28	739 x 220 x 232	Cr Ni Mo 17 – 12 – 2	Cr Ni Mo 17 – 12 – 2	1/2", female
Spectra 6/300 FB	33	874 x 230 x 242	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 6/650 FB	33	874 x 230 x 242	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 5/1400 FB	33	874 x 230 x 242	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 3/3000 FB	44	950 x 230 x 242	Grey cast iron	Cr Ni Mo 17 – 12 – 2	1 1/4", female
Spectra 3/6500 FB	67	1,172 x 237 x 274	Grey cast iron	Cr Ni Mo 17 – 12 – 2	DN 50, flange
Spectra 3/12000 FB	96	1,487 x 265 x 294	Grey cast iron	Cr Ni Mo 17 – 12 – 2	DN 65, flange

2.4 Eccentric Screw Pump Spectra

2.4.4 Spare Parts

1.1.2015

	Order no.
Stator FKM for Spectra 12/2	1025306
Stator FKM for Spectra 12/13	1025307
Stator FKM for Spectra 12/30, 12/33	1025308
Stator made of FKM for Spectra 12/100	1025309
Stator FKM for Spectra 6/300, 6/650	1025310
Stator FKM for Spectra 5/1400	1025312
Stator FKM for Spectra 3/3000	1025313
Stator made of FKM for Spectra 3/6500	1025314
Stator FKM for Spectra 3/12000	1025315
Rotor Cr Ni Mo 17-12-2 for Spectra 12/2	1025316
Rotor Cr Ni Mo 17-12-2 for Spectra 12/13	1025317
Rotor Cr Ni Mo 17-12-2 for Spectra 12/30, 12/33	1025318
Rotor made of Cr Ni Mo 17-12-2 for Spectra 12/100	1025319
Rotor Cr Ni Mo 17-12-2 for Spectra 6/300, 6/650	1025320
Rotor Cr Ni Mo 17-12-2 for Spectra 5/1400	1025322
Rotor Cr Ni Mo 17-12-2 for Spectra 3/3000	1025323
Rotor made of Cr Ni Mo 17-12-2 for Spectra 3/6500	1025324
Rotor Cr Ni Mo 17-12-2 for Spectra 3/12000	1025325
Spare parts kit for axial face seal for Spectra 12/2 - 12/100	1025326
Spare parts kit for mech. seal for Spectra 6/300 - 5/1400	1025330
Spare parts kit for mech. seal for Spectra 3/3000	1025333
Spare parts kit for axial face seal for Spectra 3/6500	1025334
Spare parts kit for mech. seal for Spectra 3/12000	1025335
Spare parts kit for pin joint for Spectra 12/2 - 12/100	1025346
Pin joints spare parts kit for Spectra 6/300 - 5/1400	1025350
Pin joints spare parts kit for Spectra 3/3000	1025353
Spare parts kit for pin joint for Spectra 3/6500	1025354
Pin joints spare parts kit for Spectra 3/12000	1025355

251

pk_3_026

Centrifugal Pump von Taine®

The safe and high-quality solution when liquid media need to be pumped leak-free. Capacity range up to 22,500 l/h, discharge lift up to 23.5 mWs

The solenoid-coupled centrifugal pump vonTaine® for the pumping of liquid media works safely and reliably: liquid media are pumped leak-free.

The von Taine® pump is a solenoid-coupled centrifugal pump. Thanks to the solenoid coupling, the pump transports the liquid medium from storage tank to storage tank without any leaks or even from a tank to a discharge line. The von Taine® centrifugal pump transports media at up to 22,500 l/h and up to a discharge lift of 23.5 metres. As the pump capacity is highly dependent on the back pressure, always observe the performance curve.

Important note

Check the material tolerability when selecting your pump. Take into consideration the density, viscosity and temperature of the medium to be transported. Please also note: The transported media should not contain any solid fractions. The pump is not self-priming and requires a feed.

Your benefits

- Safe and reliable: Leak-free pumping of liquid chemicals
- Coupling between motor and impeller via magnetic coupling

Technical details

- Pump head made of PP or PVDF
- FPM or EPDM housing seal
- The pump is not self-priming and requires a feed
- Protect the pump from running dry
- Hydraulic connectors with pipe threadings as per DIN ISO 228-1

Field of application

Leak-free pumping of liquid chemicals

von Taine®, PP/FKM version

	Feed rate at max. pressure I/h	Feed lift max. m	Power uptake kW	Voltage/frequency	Weight	Order no.
von Taine® 0502 PP/FKM	1,800	4.5	0.06	1~/230 V/50 Hz	2.7 kg	1023089
von Taine® 0807 PP/FKM	6,600	7.9	0.25	3~/400 V/50 Hz	5.0 kg	1023090
von Taine® 1010 PP/FKM	9,600	10.0	0.37	3~/400 V/50 Hz	7.6 kg	1023091
von Taine® 1313 PP/FKM	13,200	13.2	0.65	3~/400 V/50 Hz	8.7 kg	1023092
von Taine® 1820 PP/FKM	19,500	18.1	1.10	3~/400 V/50 Hz	16.0 kg	1023093
von Taine® 2323 PP/FKM	22,500	23.5	1.50	3~/400 V/50 Hz	17.0 kg	1023094

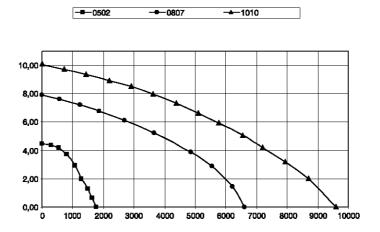
von Taine®, PVDF/FKM version

	Feed rate at max. pressure	Feed lift max.	Power uptake	Voltage/frequency	Weight	Order no.
	l/h	m	kW			
von Taine® 0502 PVDF/FKM	1,800	4.5	0.06	1~/230 V/50 Hz	2.8 kg	1023095
von Taine® 0807 PVDF/FKM	6,600	7.9	0.25	3~/400 V/50 Hz	5.2 kg	1023096
von Taine® 1010 PVDF/FKM	9,600	10.0	0.37	3~/400 V/50 Hz	8.0 kg	1023097
von Taine® 1313 PVDF/FKM	13,200	13.2	0.65	3~/400 V/50 Hz	9.0 kg	1023098
von Taine® 1820 PVDF/FKM	19,500	18.2	1.10	3~/400 V/50 Hz	16.7 kg	1023099
von Taine® 2323 PVDF/FKM	22,500	23.5	1.50	3~/400 V/50 Hz	17.7 kg	1023100

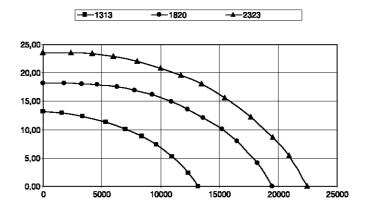
von Taine®, PP/EPDM version

	Feed rate at max. pressure	Feed lift max.	Power uptake	Voltage/frequency	Weight	Order no.
	l/h	m	kW			
von Taine® 0502 PP/EPDM	1,800	4.5	0.06	1~/230 V/50 Hz	2.7 kg	1028551
von Taine® 0807 PP/EPDM	6,600	7.9	0.25	3~/400 V/50 Hz	5.0 kg	1028552
von Taine® 1010 PP/EPDM	9,600	10.0	0.37	3~/400 V/50 Hz	7.6 kg	1028553
von Taine® 1313 PP/EPDM	13,200	13.2	0.65	3~/400 V/50 Hz	8.7 kg	1028564
von Taine® 1820 PP/EPDM	19,500	18.1	1.10	3~/400 V/50 Hz	16.0 kg	1028565
von Taine® 2323 PP/EPDM	22,500	23.5	1.50	3~/400 V/50 Hz	17.0 kg	1028566

von Taine®, PVDF/EPDM version

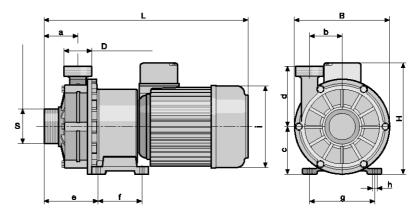

	Feed rate at max. pressure	Feed lift max.	Power uptake	Voltage/frequency	Weight	Order no.
	l/h	m	kW			
von Taine® 0502 PVDF/EPDM	1,800	4.5	0.06	1~/230 V/50 Hz	2.8 kg	1028567
von Taine® 0807 PVDF/EPDM	6,600	7.9	0.25	3~/400 V/50 Hz	5.2 kg	1028568
von Taine® 1010 PVDF/EPDM	9,600	10.0	0.37	3~/400 V/50 Hz	8.0 kg	1028569
von Taine® 1313 PVDF/EPDM	13,200	13.2	0.65	3~/400 V/50 Hz	9.0 kg	1028570
von Taine® 1820 PVDF/EPDM	19,500	18.1	1.10	3~/400 V/50 Hz	16.7 kg	1028571
von Taine® 2323 PVDF/EPDM	22,500	23.5	1.50	3~/400 V/50 Hz	17.7 kg	1028572

Parameters For Use


	Medium temperature max.	Maximum density	Max. viscosity	Max. system pressure at 20° C
	°C	kg/dm³	mPas	bar
von Taine® 0502 PP	80	1.251.35	20	1.0
von Taine® 0807 PP	80	1.201.80	20	2.5
von Taine® 1010 PP	80	1.602.00	20	2.5
von Taine® 1313 PP	80	1.601.90	20	2.5
von Taine® 1820 PP	80	1.101.80	20	5.0
von Taine® 2323 PP	80	1.002.00	20	5.0
von Taine® 0502 PVDF	95	1.251.35	20	1.0
von Taine® 0807 PVDF	95	1.201.80	20	2.5
von Taine® 1010 PVDF	95	1.602.00	20	2.5
von Taine® 1313 PVDF	95	1.601.90	20	2.5
von Taine® 1820 PVDF	95	1.101.80	20	5.0
von Taine® 2323 PVDF	95	1.002.00	20	5.0

Tanks an

Characteristic Curves


 $\label{eq:pk20801} $$ \text{Delivered quantity [I/h] as a function of the delivery head [mWC]} $$$

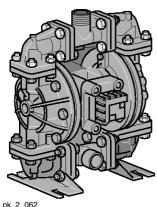
 $\label{eq:pk2115} pk_2_115$ Delivered quantity [I/h] as a function of the delivery head [mWC]

Dimensions

pk_3_027

		von Taine [®] 0502 PVDF	von Taine [®] 0807 PVDF	von Taine [®] 1010 PVDF	von Taine [®] 1313 PVDF	von Taine [®] 1820 PVDF	von Taine [®] 2323 PVDF
Discharge connector (D)		G 1"	G 1 1/4"	G 1 1/2"	G 1 1/2"	G 2"	G 2"
Suction connector (S)		G 1 1/4"	G 1 1/4"	G 2"	G 2"	G 2 1/4"	G 2 1/4"
L	mm	240	283	346	350	455	455
В	mm	120	138	163	163	205	205
Н	mm	145	185	181	191	216	216
а	mm	37.0	45.0	58.5	58.5	70.0	70.0
b	mm	29.5	29.5	56.0	56.0	70.0	70.0
C	mm	60.0	70.0	82.0	82.0	104.5	104.5
d	mm	65.5	86.0	104.0	104.0	134.5	134.5
е	mm	129	50	106	106	115	115
f	mm	78	71	74	74	100	100
g	mm	91	91	114	114	130	130
h	mm	6.5	8.5	8.5	8.5	10.0	10.0
i	mm	92	135	136.5	135	160	160
Enclosure rating		IP 55					
Min. flow	l/h	30	60	60	60	90	120

2.5.2 Spare Parts Kits


	Order no.
PP/FKM liquid end for von Taine® 0502	1023978
PP/FKM liquid end forr von Taine® 0807	1023979
PP/FKM liquid end for von Taine® 1010	1023980
PP/FKM liquid end for von Taine® 1313	1023981
PP/FKM liquid end for von Taine® 1820	1023982
PP/FKM liquid end for von Taine® 2323	1023983
PVDF/FKM liquid end for von Taine® 0502	1023994
PVDF/FKM liquid end for von Taine® 0807	1023995
PVDF/FKM liquid end for von Taine® 1010	1023996
PVDF/FKM liquid end for von Taine® 1313	1023997
PVDF/FKM liquid end for von Taine® 1820	1023998
PVDF/FKM liquid end for von Taine® 2323	1023999
	Order no.
PP/EPDM liquid end for von Taine® 0502	1028573
PP/EPDM liquid end for von Taine® 0807	1028574
PP/EPDM liquid end forvon Taine® 1010	1028575
PP/EPDM liquid end for von Taine® 1313	1028576
PP/EPDM liquid end for von Taine® 1820	1028577
PP/EPDM liquid end for von Taine® 2323	1028578
PVDF/EPDM liquid end for von Taine® 0502	1028579
PVDF/EPDMliquid end for von Taine® 0807	1028580
PVDF/EPDM liquid end for von Taine® 1010	1028581
PVDF/EPDM liquid end for von Taine® 1313	1028582
PVDF/EPDM liquid end for von Taine® 1820	1028583
PVDF/EPDM liquid end for von Taine® 2323	1028584
	Order no.
Motor for von Taine® 0502	1024000
Motor for von Taine® 0807	1024001
Motor for von Taine® 1010	1024002
Motor for von Taine® 1313	1024003
Motor for von Taine® 1820	1024004

2.6 Air-operated Diaphragm Pump Duodos

2.6.

Air-operated Diaphragm Pump Duodos

Duodos pumps are air-driven double diaphragm transfer pumps. No electrical components are required because the pumps are air-driven. Duodos pumps are run-dry safe and self-priming. The pump capacity of the pump can be controlled by changing the pressure in the air supply. The air control is designed for oil-free operation. Duodos pumps are ideally suited for the transport of liquid chemicals. Duodos pumps transport media at up 6,700 l/h and up to a discharge lift of 70 m. As the pump capacity is highly dependent on the back pressure, the performance curve must always be observed. At the same time, the differential pressure between the hydraulic and pneumatic sides should not exceed 2 bar. Higher values reduce the service life of the pump. When selecting pumps, check the material compatibility. In addition, consider the density, viscosity and temperature of the transported medium.

The following materials are available:

- PP pump chambers with Santoprene® diaphragms and valves
- PVDF pump chambers with PTFE diaphragms and valves

Duodos PP

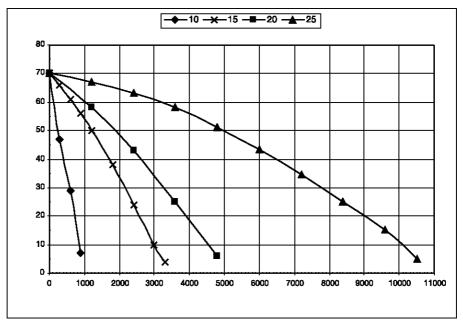
	Housing material	Diaphragms/ valves	Delivery rate (2 bar differential pressure) I/h	Order no.
Duodos 10 PP	PP	Santoprene®	0650*	1010793
Duodos 15 PP	PP	Santoprene®	02,000*	1010794
Duodos 20 PP	PP	Santoprene®	03,000*	1010795
Duodos 25 PP	PP	Santoprene®	06,700 [*]	1010796

^{*} Delivery rate at a differential pressure of 2 bar (0.5 bar back pressure, 2.5 bar air pressure). Santoprene® is a registered trademark of the Monsanto Corporation.

Duodos PVDF

	Housing material	Diaphragms/ valves	Delivery rate (2 bar differential pressure) I/h	Order no.
Duodos 10 PVDF	PVDF	Teflon	0650*	1010797
Duodos 15 PVDF	PVDF	Teflon	02,000*	1010798
Duodos 20 PVDF	PVDF	Teflon	03,000*	1010799
Duodos 25 PVDF	PVDF	Teflon	06,700 [*]	1010800

^{*} Delivery rate at a differential pressure of 2 bar (0.5 bar back pressure, 2.5 bar air pressure).


Parameters For Use

	Min. temperature	Max. temperature	Max. viscosity
	°C	°C	mPas
Duodos 10 PP	5	65	200
Duodos 10 PVDF	-13	93	200
Duodos 15 PP	5	65	200
Duodos 15 PVDF	-13	93	200
Duodos 20 PP	5	65	200
Duodos 20 PVDF	-13	93	200
Duodos 25 PP	5	65	200
Duodos 25 PVDF	-13	93	200

2.6 Air-operated Diaphragm Pump Duodos

Characteristic Curves

pk_2_114

Feed lift [m WC] over feed rate [l/h] at 7 bar air supply

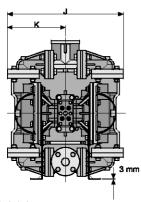
2.6.2 Spare Parts Kits

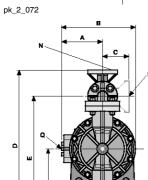
Spare part kits for pneumatics comprising

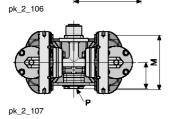
- Seals
- O-rings
- Clamp collars
- Air control valve

	Order no.
Spare parts kit, pneumatics for Duodos 10 PP/PVDF	1010810
Spare parts kit, pneumatics for Duodos 15/20 PP/PVDF	1010811
Spare parts kit, pneumatics for Duodos 25 PP/PVDF	1010813

Spare part kits for the liquid end comprising


- Diaphragms
- Valve balls
- Seals


	Order no.	
Spare parts kit, liquid end for Duodos 10 PP	1010801	
Spare parts kit, liquid end for Duodos 15 PP	1010802	
Spare parts kit, liquid end for Duodos 20 PP	1010803	
Spare parts kit, liquid end for Duodos 25 PP	1010804	
Spare parts kit, liquid end for Duodos 10 PVDF	1010806	
Spare parts kit, liquid end for Duodos 15 PVDF	1010807	
Spare parts kit, liquid end for Duodos 20 PVDF	1010808	
Spare parts kit, liquid end for Duodos 25 PVDF	1010809	



2.6 Air-operated Diaphragm Pump Duodos

Dimensions

		Duodos 10	Duodos 15	Duodos 20	Duodos 25
Α	mm	79	103	103	172
В	mm	140	179	179	296
С	mm	32	44	60	92
D	mm	198	287	339	527
E	mm	167	243	279	435
F	mm	87	140	163	249
G	mm	19	35	46	64
Н	mm	32	44	60	92
I	mm	78	143	143	130
J	mm	178	258	300	433
K	mm	89	129	150	216
L	mm	33	46	57	123
M	mm	66	143	143	102
Discharge connector		1/2"NPT	1" BSP	1 1/2"BSP	1"ANSI flange
Suction connector		1/2"NPT	1" BSP	1 1/2"BSP	1"ANSI flange
Air consumption	m³/h	0.511	3.527	7.034	8.577
Differential pressure	bar	2	2	2	2
Air connection		1/4"NPT	1/4"NPT	1/4"NPT	1/2"NPT
Weight (PP)	kg	2	8	9	24
Weight (PVDF)	kg	2.5	9.0	9.5	29.0

2.7 Barrel Pump DULCO®Trans

2.7.1

Barrel Pump DULCO®Trans

Barrel pumps are the ideal solution for moving liquids.

Pump capacity according to size 900, 2800 or 3750 l/h.

The application range of the DULCO®Trans depends on the chemical resistance of the materials used.


DULCO®Trans is used for bottling, draining and transferring liquids from canisters, hobbocks, drums, storage tanks and containers.

Included in the scope of supply: Metering hose with pump nozzle.

Field of application

Barrel pump for bottling, emptying and transferring liquids from canisters, drums and containers.

The following components come into contact with the liquids:

	PP version	PVDF version
External and internal pipe, tap	Polypropylene	PVDF
Drive shaft	Hastelloy C	Hastelloy C
Rotor	ETFE	ETFE
Mechanical seal	ceramic oxide/PTFE/carbon	ceramic oxide/PTFE/carbon
O-rings	FKM	FKM
Metering hose	PVC	PVC

DULCO®Trans, PP version

	Feed rate max. *	Feed lift max.	Order no.
		m	
DULCO®Trans 25/700 PP	900 l/h *	5.0	1023085
DULCO®Trans 40/1000 PP	3500 l/h *	9.6	1034225
DULCO®Trans 50/1200 PP	4800 l/h *	12.4	1023087

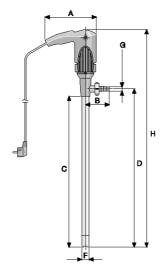
DULCO®Trans, PVDF version

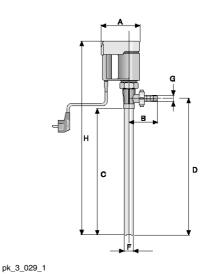
	Feed rate max. *	Feed lift max.	Order no.
		m	
DULCO®Trans 25/700 PVDF	1260 l/h *	5.4	1036145
DULCO®Trans 40/1000 PVDF	3500 l/h *	9.6	1036146
DULCO®Trans 50/1200 PVDF	4800 l/h *	12.4	1036147

^{*} The specified delivery rate includes hose and tap.

Spare parts kit for DULCO®Trans

	Order no.
Spare parts kit for DULCO®Trans 25/700 PP	1024179
Spare parts kit for DULCO®Trans 25/700 PVDF	1036149
Spare parts kit for DULCO®Trans 40/1000 PP/PVDF	1034712
Spare parts kit for DULCO®Trans 50/1200 PP/PVDF	1024181


2.7 Barrel Pump DULCO®Trans


Technical Data

Туре		DULCO®Trans 25/700	DULCO®Trans 40/1000	DULCO®Trans 50/1200
Max. density	kg/dm ³	1.2	1.5	1.8
Max. viscosity	mPas	150	500	500
Media temperature PP	°C	45	50	50
Media temperature PVDF	°C	60	60	60
Suction pipe outer diameter	mm	25	40	50
Hose connection		d 13	d 19	d 25
Discharge hose		1.5 m, PVC, 13/18 mm	2.0 m, PVC, 19/27 mm	3.0 m, PVC, 25/34 mm
Motor rating	W	230	500	800
Enclosure rating		IP 24	IP 24	IP 24
Voltage/frequency		230 V/1~/50/60 Hz	230 V/1~/50/60 Hz	230 V/1~/50/60 Hz
Under-voltage cut-out		none	with	with
Overvoltage safety switch		with	with	with
Temperature monitoring		none	with	none
Speed control		2-stage	Continuous	none
Connection cable		5 m, with EUR plug	5 m, with EUR plug	5 m, with EUR plug
Drum adapter		none	G 2"	G 2"
Weight PP/PVDF	kg	2.4/2.6	5.1/5.4	7.4/8.2
Dimensions H x W x D	mm	927 x 197 x 83	1,272 x 185 x 95	1,489 x 217 x 115

Dimensions

Туре		DULCO®Trans 25/700	DULCO®Trans 40/1000	DULCO®Trans 50/1200
A	mm	197	185	217
В	mm	83	113	113
С	mm	672	961	1,161
D	mm	700	1,006	1,206
F	mm	25	40	50
G	d	13	19	25
Н	mm	927	1,272	1,489

pk_3_028

2.8.1

Peristaltic Pumps DULCO®flex

The virtually universal pump for many applications.

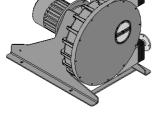
Capacity range up to 15,000 l/h, up to 15 bar

ProMinent® peristaltic pumps operate on a simple functional principle and stand out thanks to their compact and robust design. They are self-priming and operate without seals and valves.

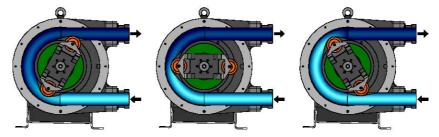
The peristaltic pumps of product range DULCO®flex are ideal for almost all metering and pumping tasks in laboratories and industry. The reason: their extensive pump capacity range and the large number of different hose materials.

This is how they work: The feed chemical is pumped by the rotor clamping the hose in the direction of flow. No valves are needed. Abrasive, viscous and gaseous media can thereby be gently conveyed.

The pumping process is triggered by an elastomer hose, pressed by two rotating rollers or shoes against the pump housing. Once the rollers or shoes have passed by, the hose immediately returns to its original shape and creates a vacuum at the pump inlet. Atmospheric pressure causes the medium to flow in. The feed rate is proportional to the pump speed. A vacuum device can optionally be used to assist the hose to return to its position on product range DFCa and DFDa pumps, improving their suction behaviour and ensuring the even feed of viscose media.


Whereas the pumps are fitted with roller technology for low pressures of up to 8 bar, they have shoes for higher pressures of up to 15 bar.

Your benefits


- Simple to operate
- Reversible pumping direction
- Hose materials suitable for various chemicals
- Simple and quick hose change
- Safeguarded against running dry
- Self-priming
- Ideal for pumping pasty, viscous, abrasive and gaseous media

Field of application

Chemical industry, clarification plants, mining

P_DX_0010_SW1

P_DX_0028_SW3

DULCO® flex peristaltic pumps can be used to convey media with the following properties:

- pasty and solid-containing
- viscous
- abrasive
- shear-sensitive
- outgassing
- corrosive

The pumps can be selected with the aid of an identity code:

Overview:

Type	Application	Feed rate at max. pressure	Max. pressure	Rollers/shoes
		l/h	bar	
DFAa	Laboratory	105	2	Rollers
DFBa	Industry	650	8	Rollers
DFCa	Industry	8,900	8	Rollers
DFDa	Industry	15,000	15	Shoes

2.8.2

Peristaltic Pump DULCO®flex DFA

Precise metering of the smallest volumes

Feed rates of up to 105 l/h at 2 bar

The peristaltic pump DULCO®flex DFAa (designed as a low-pressure pump) is suitable for metering the smallest volumes in laboratories.

It can be used for the precise metering of low feed rates of up to 105 l/h at 2 bar. The rotor is equipped with 3 rollers to reduce pulsation. A quick-release connector aids fast hose replacement.

Your benefits

- Simple to operate
- Reversible pumping direction
- Hose materials suitable for various chemicals
- Simple and quick hose change
- Safeguarded against running dry
 - Self-priming
- Ideal for pumping pasty, high-viscosity, abrasive and gaseous media

Technical details

- Hose diameter: 3.2 to 8 mm
- Feed rates: 1.6 to 10 ml/rev
- Hose materials: SOLVA, silicone, Norprene A60G, Norprene A60F
- Self-priming up to 8 m
- Back pressure up to 2 bar

Options

- Stainless steel base plate
- Single phase motor
- Two pump heads

Field of application

Laboratory applications

DULCO®flex DFAa 003 peristaltic pump

	003	DFAa,	with 3.2	mm hos	se wall	thickness	ss 2 4 m	1.66 ml/revolution)					
		DFAa, with 3.2 mm hose, wall thickness 2.4 mm (1.66 ml/revolution)											
		Drive unit											
		000	without drive unit 0.12 kW, 14 rpm, 1.4 l/h, 2 bar (fixed speed) 0.12 kW, 35 rpm, 3.5 l/h, 2 bar (fixed speed)										
		A11	0.12 kV	V, 35 rp	m, 3.5 l	h, 2 bar	(fixed	ed)					
		A12	0.12 kW, 70 rpm, 7.0 l/h, 2 bar (fixed speed) 0.18 kW, 93 rpm, 9.3 l/h, 2 bar (fixed speed)										
		A13											
		A14	0.18 kW, 140 rpm, 13.9 l/h, 2 bar (fixed speed)										
		A22 A31 A41	0.12 kV	V, 10.9	9 - 57 rpm, 1,1-5.7 l/h, 2 bar (manual adjustment gears)								
			0.25 kV	V, 34 - 1	176 rpm	, 3.4-17	.5 l/h, 2	(manual adjustment gears)					
				,	/, 13 - 130 rpm, 1.3-12.9 l/h, 7-70 Hz, 2 bar (Gear motor with integral frequency converter)								
			0.18 kW, 4 - 105 rpm, 0.4-10.5 l/h, 3-75 Hz, 2 bar (Gear motor, external frequency converter required)										
			Hose material B Norprene A60F (food grade)										
			D	Solva									
				Silicone									
				Base plate									
				0			ate, painted steel						
						plate, stainless steel							
					Batch 0	h controller							
						Without controller							
							al moto	(0.1)					
						0	Standard (3 phase)						
						D	_	Single phase motor, 0.12 kW (only for A10-A13)					
						E	Single phase motor, 0.18 kW (only for A14, A15)						
							Pump head						
							0	ith one pump head					
								Approvals 01 CE					
								1 CE					

DULCO®flex DFAa 008 peristaltic pump

DFAa	Type													
	008	DFAa with 8.0 mm hose, wall thickness 2.4 mm (10 ml/revolution)												
		Drive unit												
		000	I without drive unit											
		B10	0.12 k\	N 14 rn	m 841	h 2 bar	r (fixed speed)							
				W, 35 rpm, 21 l/h, 2 bar (fixed speed)										
		1	0.12 kW, 70 rpm, 42 l/h, 2 bar (fixed speed)											
		B13	0.18 kW, 193 rpm, 55.8 l/h, 2 bar (fixed speed) 0.18 kW, 140 rpm, 84 l/h, 2 bar (fixed speed) 0.12 kW, 10.9 - 57 rpm, 6.5-34.2 l/h, 2 bar (manual adjustment gears)											
		B21 B22 B31 B41												
					176 rpm, 20.4-105 l/h, 2 bar (manual adjustment gears)									
			0.18 kW, 13 - 130 rpm, 7.8-78 l/h, 7-70 Hz, 2 bar (Gear motor with integral frequency converter)											
				0.18 kW, 4 - 105 rpm, 2.4-63 l/h, 3-75 Hz, 2 bar (Gear motor, external frequency converter required)										
			Hose material											
				A Norprene A60G										
			В		Norprene A60F (food grade) Solva									
			С											
			D	Silicone										
				Base p										
				0	Base plate, painted steel									
				1		,	ainless steel							
					Batch	control								
					0	Withou	ut controller							
							al motor							
						0	Standard (3 phase)							
						D	Single phase motor, 0.12 kW (only for B10-B13)							
						E	Single phase motor, 0.18 kW (only for B14, B15)							
							Pump head							
							0 With one pump head							
							Approvals							
							01 CE							

2.8.3

Peristaltic Pump DULCO®flex DFB

Low and medium pump capacities

Feed rates of up to 649 I/h at 8 bar

The peristaltic pump DULCO®flex DFBa is designed for low and medium pump capacities of up to 649 l/h at 8 bar.

The peristaltic pump DULCO®flex DFBa is equipped with rollers and fabric-reinforced hoses for tough industrial use. Pumps with a Halar-coated pump housing can be produced for use in the chemical industry.

Your benefits

- Simple to operate
- Reversible pumping direction
- Hose materials suitable for various chemicals
- Simple and quick hose change
- Safeguarded against running dry
 - Self-priming
- Ideal for pumping pasty, high-viscosity, abrasive and gaseous media

Technical details

- Connector sizes 3/8 1"
- Feed rates of 0.023 0.24 l/rev
- Hose materials NR, NBR, EPDM, NR-A, Norprene, NBR-A, Hypalon, Tygon
- Self-priming up to 8 m
- Back pressure up to 8 bar

Options

- Stainless steel base plate
- Available as a mobile unit
- Various connectors, such as BSP, NPT, Tri-Clamp and DIN 11851

Product Catalogue 2015

- Pulsation damper
- Leakage sensor
- Housing with Halar coating
- Food approval EU 1935/2004

Field of application

- Chemical industry
- Waste water
- Mining

Tanks and Transfer Pumps

2.8 Peristaltic Pumps DULCO®flex

DULCO®flex DFBa 010 peristaltic pump

Online	DFBa	Type													
Drive unit			IDFBa (010. 0.0	23 l/revo	olution									
A00															
A10				_											
A11															
A12			A10	0.12 kV	N, 15 rp	m, 21 l/	h, 8 bar	(fixed s	peed)						
A12			A11	0.12 kV	N. 20 rp	m. 28 l/	h. 8 bar	(fixed s	peed)						
A13								•	. ,						
A14							,								
A15															
A21			A14	0.25 kV	N, 57 rp	m, 79 l/									
A21			A15	0.25 kV	N. 70 rp	m. 97 l/	h. 2 bar	(fixed s	peed)						
A22								•	. ,	diuetma	nt apare	١			
A23								•		•	•	•			
A24															
A31			A23	0.25 kV	N, 10 - 5	3 rpm,	14-73 /	n, 4 bar	(manua	l adjustr	nent gea	ars)			
A32			A24	0.25 kV	N, 15 - 8	30 rpm,	21-110	l/h, 2 baı	r (manu	al adjus	tment ge	ears)			
A32			A31	0.37 kV	N 9 - 34	1 rpm 1	2-47 l/h	20-75 H	lz 8 bar	(Gear	motor w	ith intea	ral frequency converter)		
A41															
A42					,				,	,			· , ,		
A43			A42												
Hose material															
Hose material				0.25 kV	0.25 kW, 3-69 rpm, 4-95 l/h, 3-75 Hz, 4 bar (Gear motor, external frequency converter required)										
NR															
B						ı									
E				-											
R				В	NBR										
R				E	EPDM										
Norprene (max. 2 bar) NBR-A					NR-A										
A						no (mo	(2 har)								
Hypalon						•	k. 2 Dai)								
Hydraulic connections A VA SSP 3/8" B VA NPT 3/8" C PP SSP 3/8" D PVDF BSP 3/8" E PVDF NPT 3/8" F PVC NPT 3/8" G Tri-Clamp, VA, 1/2" DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor U With leakage sensor A S'L' + relay output Rotor Rotor with 2 rollers Batch controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 0 I CE					NBR-A	IBR-A									
A					Hypalo	alon									
A					Hydra										
B															
C															
D PVDF BSP 3/8" E PVDR NPT 3/8" F PVC NPT 3/8" G Tri-Clamp, VA, 1/2" DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor U Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE															
E PVDF NPT 3/8" F PVC NPT 3/8" G Tri-Clamp, VA, 1/2" DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE						PP BS	P 3/8"								
F OVC NPT 3/8" G Tri-Clamp, VA, 1/2" DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE					D	PVDF	BSP 3/8	3"							
F G Tri-Clamp, VA, 1/2" H DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE					F	PVDF	NPT 3/8	3"							
G Tri-Clamp, VA, 1/2" DIN 11851, VA, NW10 Base plate 0 Base plate, stainless steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE															
H DIN 11851, VA, NW10 Base plate 0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 0 OT CE															
Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE															
0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE					Н	DIN 11	851, V	A, NW10)						
0 Base plate, painted steel 1 Base plate, stainless steel 2 Portable unit + painted steel base plate Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE						Base	olate								
1 Base plate, stainless steel 2 Portable unit + painted steel base plate 3 Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE								nlate na	intad sta	امد					
2 Portable unit + painted steel base plate Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE								-							
Portable unit + stainless steel base plate Leakage sensor 0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE															
Leakage sensor U Without leakage sensor With leakage sensor M As "L" + relay output Rotor Rotor Rotor vith 2 rollers Batch controller Without controller Special version O Standard H Halar-coated housing Vacuum system O Without Approvals O1 CE							Portab	ile unit +	painted	steel b	ase plate)			
0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE						3	Portab	le unit +	stainles	s steel	base pla	te			
0 Without leakage sensor L With leakage sensor M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE							Leaka	ae sens	or						
L With leakage sensor As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE										a conc	nr.				
M As "L" + relay output Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE							-		_		וע				
Rotor 0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE									•						
0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE							M	As "L"	+ relay of	output					
0 Rotor with 2 rollers Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE								Rotor							
Batch controller 0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE									Dotor	with O ro	lloro				
0 Without controller Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE								U							
Special version 0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE									Batch						
0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE									0	Withou	ıt contro	ller			
0 Standard H Halar-coated housing Vacuum system 0 Without Approvals 01 CE										Speci	al versio	n			
H Halar-coated housing Vacuum system 0 Without Approvals 01 CE		l	1												
Vacuum system 0 Without Approvals 01 CE		l													
0 Without Approvals 01 CE		l	1							l _H			<u> </u>		
Approvals 01 CE		l	1							1	Vacuu	m syste	em		
Approvals 01 CE		l	1							1					
		l	1							1	١				
		l	1							1					
02 CE+Food approval EU 1935/2004		l	1							1					
		l	1							1		02	CE+Food approval EU 1935/2004		

DULCO®flex DFBa 013 peristaltic pump

DFBa	Type											
	013	IDFRa (013, 0.00	30 I/revo	dution							
	013			JJ 1/1640	JuliOII							
1		Drive (unit									
		000	without	drive ur	nit							
						0 60"	/fixed a	d\				
		B10		V, 15 rpi								
		B11	0.12 kV	V, 20 rpi	m, 46 l/ł	ո, 8 bar	(fixed s	peed)				
		B12	0 18 kV	V, 29 rpi	m 67 l/h	n 8 har	(fixed s	need)				
		B13										
				V, 46 rpi			•	. ,				
		B14	0.25 kV	V, 57 rpı	m, 133 l	/h, 4 baı	r (fixed	speed)				
		B15	0.25 kV	V, 70 rpi	m. 163 l	/h. 2 baı	r (fixed	speed)				
		B21					•	. ,	djustme	at acore	١	
							•			•	•	
		B22	0.25 kV	V, 5 - 29) rpm, 1	1-67 l/h,	8 bar (ı	manual	adjustm	ent gear	s)	
		B23	0.25 kV	V, 10 - 5	3 rpm, 2	23-124 I	/h, 4 bar	r (manu	al adjus	ment ge	ears)	
		B24							al adjus	_		
								•		•	,	
		B31									_	ral frequency converter)
		B32	0.37 kV	V, 16 - 6	30 rpm, 3	37-140 l	/h, 20-7	5 Hz, 4 I	bar (Ge	ar motoi	with int	tegral frequency converter)
		B41	0.18 kV	V 1-34 i	rnm 2-7	78 l/h 3-	75 Hz 8	Bhar (G	ear mot	or exte	rnal fred	juency converter required)
		B42										
												equency converter required)
	1	B43	0.25 kV	v, 3-69 ı	rpm, 7-1	157 l/h, 3	3-75 Hz,	4 bar (Gear mo	otor, ext	ernal fre	equency converter required)
			Hose r	naterial								
			0	NR								
			_									
			В	NBR								
			E	EPDM								
			R	NR-A								
			N	Mornro	ne (max	2 harl						
						. 2 Dai)						
			Α	NBR-A								
			Н	Hypalo	n							
				Hydrai	ulic cor	nection	16					
				A	VA BS		13					
				В	VA NP	T 3/8"						
				С	PP BS	P 3/8"						
				D	PVDF	BSP 3/8						
				E								
						NPT 3/8	'					
				F	PVC N	PT 3/8"						
				G	Tri-Cla	mp, VA,	3/4"					
				Н		851, VA						
							.,					
					Base p							
					0	Base p	late, pa	inted ste	eel			
					1	Base p	late, sta	inless s	teel			
					2				steel ba	see nlate	_	
					3			•				
					3	Portab	ie unit +	stainles	ss steel b	oase pia	te	
						Leaka	ge sens	sor				
						0	Withou	ıt leakad	je sensc	r		
						L		akage s	•			
								_				
						М	As "L"	+ relay o	output			
							Rotor					
							0	Botory	with 2 ro	llers		
							•					
									control			
								0	Withou	t contro	ller	
									Specia	al versi	n	
	1					1	1	1		Standa		
								1	l			
	1					1	1	1	Н		coated h	•
								1		Vacuu	m syste	em
										0	Withou	
	1					1	1	1		١		•
	1					1	1	1			Appro	
								1			01	CE
								1			02	CE+Food approval EU 1935/2004
												THE STATE OF THE S

Tanks 8

Tanks and Transfer Pumps

2.8 Peristaltic Pumps DULCO®flex

DULCO®flex DFBa 016 peristaltic pump

DFBa	Туре											
	016	DFBa (016, 0.09	2 l/revo	lution							
		Drive u	,									
		000	without	drive	nit							
		C10				n 8 har*	(fixed s	speed)				
		C11					r* (fixed	. ,				
		C12					r* (fixed					
		C13			,	,		. ,				
				-			r (fixed					
		C14					r (fixed					
		C15					r (fixed	. ,			,	
		C21					n, 4 bar	•		_	,	
		C22					/h, 2 bar					
		C23					/h, 1 bar					
		C31							•			egral frequency converter)
		C32										egral frequency converter)
		C41							•			equency converter required)
		C42		,		,		,	`	,		equency converter required)
		C43	0.37 kV	V, 3-69 ı	rpm, 16	-381 l/h,	3-75 Hz	z, 2 bar	(Gear m	notor, ex	ternal fr	equency converter required)
			Hose n	naterial								
			0	NR								
			В	NBR								
			E	EPDM								
			R	NR-A								
			N	Norpre	ne (max	(. 2 bar)						
			Α	NBR-A	ı							
			Н	Hypalo	n							
				Hvdrau	ulic cor	nectio	ns					
				Α	VA BS							
				В	VA NP	T 3/4"						
				С	PP BS	P 3/4"						
				D	PVDF	BSP 3/4	."					
				E	PVDF	NPT 3/4	."					
				F	PVC N	PT 3/4"						
				G	Tri-Cla	mp, VA,	. 1"					
				Н	DIN 11	851, VA	, NW20)				
					Base		,					
					0		late, pai	inted ste	eel			
					1	Base p	late, sta	inless s	teel			
					2	Portab	le unit +	painted	steel ba	ase plate	Э	
					3	Portab	le unit +	stainles	s steel b	oase pla	te	
						Leaka	ge sens	sor				
						0	Withou	ıt leakag	je sensc	r		
						L	With le	akage s	ensor			
						M	As "L"	+ relay o	output			
							Rotor					
							0	Rotor v	vith 2 ro	llers		
								Batch	control	ler		
								0	Withou	it contro	ller	
									Specia	al versio	on	
									0	Standa	ard	
									Н	Halar-o	coated h	ousing
										Vacuu	m syste	em
										0	Withou	t
											Appro	vals
											01	CE
											02	CE+Food approval EU 1935/2004

DULCO®flex DFBa 019 peristaltic pump

DFBa	Туре											
Di Da	019	DFBa (019, 0.12	23 l/rev	olution							
		Drive (unit									
		000	Withou	t drive ι	unit							
		D10	0.18 kV	N, 15 rp	m, 110 l	l/h, 2 ba	r (fixed	speed)				
		D11	0.18 kV	N, 20 rp	m, 148 l	l/h, 2 ba	r (fixed	speed)				
		D12	0.25 kV	N, 32 rp	m, 236 l	l/h, 2 ba	r (fixed	speed)				
		D13	0.25 kV	N, 46 rp	m, 339 l	l/h, 2 ba	r (fixed	speed)				
		D14	0.37 kV	N, 57 rp	m, 421 l	l/h, 2 ba	r (fixed	speed)				
		D15	0.37 kV	N, 70 rp	m, 517 l	l/h, 2 ba	r (fixed	speed)				
		D21	0.37 kV	N, 8 - 50	0 rpm, 5	9-369 l/h	n, 2 bar	(manua	ıl adjustr	nent gea	ars)	
		D22	0.37 kV	N, 10 - 6	31 rpm,	74-450 l	/h, 2 baı	r (manu	ıal adjus	tment ge	ears)	
		D23			91 rpm,							
		D31	0.37 kV	N, 9 - 34	4 rpm, 60	6-251 l/h	n, 20-75	Hz, 2 b	ar (Gea	r motor	with inte	egral frequency converter)
		D32										ntegral frequency converter)
		D41										equency converter required)
		D42	0.25 kV	N, 2-48	rpm, 15	-354 l/h,	3-75 H	z, 2 bar	(Gear n	notor, ex	ternal fr	requency converter required)
		D43	0.37 kV	N, 3-69	rpm, 22	-509 l/h,	3-75 H	z, 2 bar	(Gear n	notor, ex	ternal fr	requency converter required)
			Hose r	nateria	ı							
			N	Norpre	ene (max	k. 2 bar)						
			Т	TYGO	N (max.	2 bar)						
				Hydra	ulic cor	nectio	ns					
				Α	VA BS	P 1"						
				В	VA NP	T 1"						
				С	PP BS	P 1"						
				D	PVDF	BSP 1"						
				E		NPT 1"						
				F	PVC N	PT 1"						
				G		mp, VA,						
				Н	DIN 11	851, VA	A, NW25					
					Base p							
					0		olate, pa					
					1		olate, sta					
					2			•	steel b			
					3	Portab	le unit +	stainles	ss steel l	base pla	te	
							ge sens					
						0		-	ge senso	or		
						L		akage s				
						М		+ relay	output			
							Rotor	I D - 4		11		
							0		with 2 ro			
								Batch	control	iler ut contro	llau	
								U				
									Specia 0	al version		
									Н	Standa		anual na
									П		coated h	<u> </u>
										vacuu 0	m syste l Withou	
										0		·
											Appro	
											01 02	CE CE+Food approval EU 1935/2004
											02	0LTI 000 appi0vai E0 1900/2004

DULCO®flex DFBa 022 peristaltic pump

DFBa	Type											
	022	DFBa (022, 0.24	46 l/revo	lution							
		Drive (ınit									
		000		t drive u	nit							
		E10				/h 8 hai	r (fixed	enood)				
		E11					r (fixed					
		E12						. ,				
		E13					fixed:					
							r (fixed	. ,				
		E14					r (fixed					
		E15					r (fixed					
		E21					•			ent gear		
		E22		,				`	•	nent gea	,	
		E23								tment ge		
		E31	0.55 kV	V, 12 - 4	4 rpm,	177-649	l/h, 20-	75 Hz, 4	bar (G	ear moto	or with ir	ntegral frequency converter)
		E32	0.75 kV	V, 18 - 6	7 rpm, 2	266-989	l/h, 20-	75 Hz, 2	bar (G	ear moto	or with ir	ntegral frequency converter)
		E41	0.55 kV	V, 2 - 44	rpm, 30	0-649 l/l	ո, 3-75 Ի	lz, 8 bar	(Gear	motor, e	xternal t	frequency converter required)
		E42	0.75 kV	V, 2-57	rpm, 30	-841 l/h,	3-75 Hz	z, 4 bar	(Gear n	notor, ex	ternal fr	equency converter required)
		E43	1.1 kW	, 3 - 81 ı	pm, 44-	·1196 l/ŀ	ı, 3-75 ⊦	lz, 2 bar	(Gear	motor, e	xternal f	requency converter required)
				naterial					•			
			0			ber=Na	turkauts	schuk)				
			В	NBR				,				
			E	EPDM								
			R	NR-A								
			N		ne (may	2 har l	oack pre	eeura)				
			A	NBR-A	•	. Z bai i	Jack pro	Josuic)				
			Ĥ	Hypalo								
			'''	,,								
					VA BS	nection	15					
				A B	VA BS							
				С	PP BS							
				D	_							
				E		BSP 1"						
				F		NPT 1"						
				· .	PVC N							
				G		mp, VA,						
				Н			, NW25					
					Base p							
					0			inted ste				
					1			inless s				
					2					ase plate		
					3				s steel l	oase pla	te	
							ge sens					
						0		ıt leakag		or		
						L		akage s				
						M		+ relay o	output			
							Rotor					
							0	Rotor v	vith 2 ro	llers		
								Batch	control			
								0	Withou	ıt contro	ller	
									Specia	al versio	n	
									0	Standa	ırd	
									Н	Halar-c	oated h	ousing
										Vacuu	m syste	em
										0	Withou	t
											Appro	vals
											01	CE
											02	CE+Food approval EU 1935/2004

2.8.4

Peristaltic Pump DULCO®flex DFC

High pump capacities and long service life

Feed rates of up to 8,900 l/h at 8 bar

High pump capacities are not a problem with the peristaltic pump DULCO®flex DFCa. It is equipped with extra rollers and fabric-reinforced hoses for industrial use.

It is ideal for heavy-duty industrial applications and pump capacities of up to 8,900 l/h at 8 bar back pressure.

A ball-bearing mounted rotor ensures extremely smooth running and a long service life.

Pumps with a Halar-coated pump housing can be produced for use in the chemical industry.

A vacuum unit can optionally be used to help the hose to return to its original shape with pumps of the product range DFCa, thereby improving their suction behaviour and ensuring the even feed of highviscosity media.

Your benefits

- Simple to operate
- Reversible pumping direction
- Hose materials suitable for various chemicals
- Simple and quick hose change
- Safeguarded against running dry
- Ideal for pumping pasty, high-viscosity, abrasive and gaseous media

Technical details

- Connector sizes 1 1/4"- DN 80
- Feed rates of 0.43 13.44 l/rev
- Hose materials NR, NBR, EPDM, Norprene, NR-A, NBR-A
- Self-priming up to 8 m
- Back pressure up to 8 bar

Options

- Stainless steel base plate
- Available as a mobile unit
- Various connectors, such as BSP, NPT, Tri-Clamp, DIN 11851 and flange
- Pulsation damper
- Leakage sensor
- Housing with Halar coating
- Vacuum system
- Food approval EU 1935/2004

Field of application

- Chemical industry
- Waste water
- Mining

DULCO®flex DFCa 030 peristaltic pump

DFCa	Type									
	030	DFCa (030, 0.4	33 l/revo	olution					
	1	Drive (unit							
	1	000		ıt drive u	ınit					
1	1	A11				l/h 8 ha	r (fixed	sneed)		
		A12					r (fixed	. ,		
		A13						. ,		
		-					r (fixed	. ,		
		A14					ar (fixed			10
		A31								(Gear motor with integral frequency converter)
		A32								r (Gear motor with integral frequency converter)
		A41	0.37 k\	N, 2 - 28	3 rpm, 5	2-727 l/	h, 3-50 F	Iz, 8 bar	(Gear	ar motor, external frequency converter required)
		A42	0.75 k\	N, 3 - 59	7 rpm, 7	8-1533	l/h, 3-65	Hz, 2 ba	ar (Gea	ear motor, external frequency converter required)
			Hose i	material	l					
			0	NR						
			В	NBR						
			E	EPDM						
			R	NR-A						
			Α	NBR-A						
			N		ne (max	v 2 har)				
			1.		ulic cor					
				A		P 1 1/4'				
				В	_	T 1 1/4'				
				С		P 1 1/4'				
				D	_		SP 1 1/4			
				F		IPT 1 1/		•		
				G						
						ımp, VA				
				H			A, NW32			
				! -		ınge VA				
				L			A, 1 1/4"			
				Р			VC, 1 1/4	4"		
					Base					
					0		olate, pa			
					1	Base p	olate, sta	inless s	teel	
					2	Portab	le unit +	painted	steel ba	base plate
					3	Portab	le unit +	stainles	s steel l	el base plate
						Leaka	ge sens	or		
						0		t leakag	e senso	sor
						L	with lea	akage s	ensor	
						M	As "L"	+ relay o	output	
							Rotor		•	
							0	I Rotor v	vith 2 ro	rollers
								Batch	control	oller
								0		out controller
										cial version
									0	Standard
									H	Halar-coated housing
									l''	
										Vacuum system 0 Without
										1
										Approvals
1										01 CE
										02 CE+Food approval EU 1935/2004

DULCO®flex DFCa 040 peristaltic pump

DFCa	Туре											
Di Ca	040	IDFCa (040, 0.8	6 l/revol	ution							
		Drive	,									
		000		ıt drive ι	ınit							
		B11	0.55 k\	N, 18 rp	m, 928 l	/h, 8 bar	r (fixed	speed)				
		B12	0.55 k\	N, 29 rp	m, 1495	i/h, 8 ba	ar (fixed	d speed))			
		B13	0.75 k\	N, 38 rp	m, 1960	I/h, 4 ba	ar (fixed	d speed))			
		B14			n, 2786 I		•	. ,				
		B31										ntegral frequency converter)
		B32										ntegral frequency converter)
		B41							•			I frequency converter required)
		B42				4-2735 l	/h, 3-65	Hz, 2 ba	ar (Gea	r motor,	externa	I frequency converter required)
				materia	l							
			0 B	NR								
			E	NBR EPDM								
			R	NR-A								
			A	NBR-A								
			N		ne (max	(2 bar)						
					ulic cor		าร					
				A		P 1 1/2"	.0					
				В	VA NP	T 1 1/2"						
				С	PP BS	P 1 1/2"						
				D	PVDF/	PTFE B	SP 1 1/2	2"				
				G		mp, VA,						
				Н		851, VA)				
				Į.		nge VA						
				L P		lange V						
				Р		lange P\	/C, 1 1/	2"				
					Base p		lata na	inted ste	ool			
					1			inlea sie inless s				
					2			painted		ase plate	ē.	
					3			stainles				
							ge sens					
						0		t leakag	e senso	r		
						L	with le	akage s	ensor			
						М	As "L"	+ relay o	output			
							Rotor					
							0		vith 2 ro			
									control			
								0		it contro		
									Specia 0	al version Standa		
									Н		oated h	nousina
									l''		m syste	
										0	Withou	
										v		acuum system
											Appro	· ·
											01	CE
											02	CE+Food approval EU 1935/2004

DULCO®flex DFCa 050 peristaltic pump

DFCa	Type											
	050	DFCa (050, 1.4	7 l/revol	ution							
		Drive (
		000	Withou	t drive u	ınit							
		C11	0.55 k\	N, 14 rp	m, 1235	5 l/h, 8 b	ar (fixed	d speed))			
		C12	0.75 k\	N, 21 rp	m, 1852	2 l/h, 8 b	ar (fixed	d speed))			
		C13	1.1 kW	, 30 rpm	n, 2646	l/h, 4 ba	r (fixed	speed)				
		C14	1.5 kW	, 38 rpm	n, 3352	l/h, 4 ba	r (fixed	speed)				
		C15	1.5 kW	, 48 rpm	n, 4234	l/h, 2 ba	r (fixed	speed)				
		C16	2.2 kW	, 58 rpm	n, 5116							
		C31	1.5 kW	, 8 - 29	rpm, 70	6-2558	l/h, 20-7	0 Hz, 4 l	oar (Ge	ar moto	with integral frequency converter)	
		C32	2.2 kW	, 17 - 60) rpm, 1	499-529	92 l/h, 20)-70 Hz,	2 bar (tor with integral frequency converter)		
		C41									xternal frequency converter required)	
		C42	2.2 kW	, 3 - 55	rpm, 26	5-4851	I/h, 3-65	Hz, 2 ba	ar (Gea	r motor,	external frequency converter required)	
				nateria	I							
			0	NR								
			В	NBR								
			E	EPDM								
			R	NR-A								
			A	NBR-A								
			N		ne (max							
				Hydra	ulic cor							
				G		ınge VA ımp, VA						
				Н			۰, ۷ ۵, NW50	1				
				J		inge PP		'				
				K		•	DF/PTF	F DN40				
				l.		•	A, 1 1/2'					
				M		_	P 1 1/2"					
				N		_	VDF/PT	FE 1 1/2				
					Base							
					0		olate, pa	inted ste	eel			
					1	Base	olate, sta	inless s	teel			
					2	Portab	ole unit +	painted	steel b	ase plat		
					3	Portab	ole unit +	stainles	s steel	base pla	te	
						Leaka	ige sens	sor				
						0	withou	t leakag	e senso	r		
						L		akage s				
						M		+ relay o	output			
							Rotor					
							0		with 2 ro			
									contro		H	
								0		it contro		
									Specia 0	al versi IStanda		
									Н		coated housing	
									П		<u> </u>	
										0	m system Without	
										v	With vacuum system	
										1	Approvals	
											101 ICE	
											02 CE+Food approval EU 1935/2004	
											, , , , , , , , , , , , , , , , , , ,	

DULCO®flex DFCa 060 peristaltic pump

DEC-	Type											
DFCa	1 ype 060	IDFCa	060, 3.1	6 l/revol	ution							
	300	Drive	,	- #10VOI								
		000		t drive u	ınit							
		D11				³/h, 8 ba	r (fixed	speed)				
		D12				3/h, 8 ba						
		D13				3/h, 8 ba						
		D14				3/h, 4 ba						
		D15				³/h, 4 ba						
		D16	3.0 kW	, 47 rpm	n, 8.9 m ³	3/h, 2 ba	r (fixed	speed)				
		D31	3.0 kW	, 7 - 25	rpm, 1,3	3-4.7 m ³ /	h, 8 bar	(Gearı	notor wi	th integ	al frequ	ency converter)
		D32	4.0 kW	, 17 - 59	rpm, 3,	,2-11.2 r	n³/h, 2 k	oar (Gea	ar motor	with int	egral fre	equency converter)
		D41	3.0 kW	, 1 - 24	rpm, 0,2	!-4.5 m ³ /	h, 8 bar	(gear n	notor, ex	ternal F	C neces	ssary)
		D42	4.0 kW	, 2 - 55	rpm, 0,4	-10.4 m	³/h, 2 ba	ar (gear	motor, e	external	FC nec	essary)
			Hose r	nateria	I							
			0	NR								
			В	NBR								
			E	EPDM								
			R	NR-A								
			Α	NBR-A								
			N		ene (max							
				Hydra		nection						
				I		nge VA						
				G H		mp, VA,						
				J		851, VA .nge PP	,					
				K		0		ootod .	PVDF ir	oorto D	NEO	
				L		lange VA,		oaleu +	FVDFII	iseris D	1450	
				M		lange PF						
				N		•		coated	+ PVDF	inserts	2"	
					Base p		t, i iaiai	oodiod		moorto	_	
					0		late, pa	inted ste	eel			
					1			inless s				
					2	Portab	le unit +	painted	steel ba	se plate	•	
					3	Portab	le unit +	stainles	s steel b	ase pla	te	
						Leaka	ge sens	sor				
						0	withou	t leakag	e senso	•		
						L		akage s				
						M	As "L"	+ relay o	output			
							Rotor					
							0		with 2 ro			
									control			
								0		t contro		
									Specia 0	l versi		
									H	Standa		aguaina
											coated h	
										vacuu 0	m syste	
										V		acuum system
										١	Appro	•
											01	ICE
											02	CE+Food approval EU 1935/2004

DULCO®flex DFCa 070 peristaltic pump

DFCa	Type											
	070	DFCa (070, 6.7	2 l/revol	ution							
		Drive (unit									
		000		t drive u	ınit							
		E11	2.2 kW	, 13 rpm	ո, 5.2 m ³	³/h, 8 ba	ar (fixed	speed)				
		E12					ar (fixed					
		E13			,	,	ar (fixe	. ,)			
		E14					ar (fixe					
		E15					ar (fixe					
		E16					ar (fixe					
		E31								ar mot	or with in	ntegral frequency converter)
		E32										integral frequency converter)
		E41										al FC necessary)
		E42										
		E42				- 16.9	m³/n, 3-6	55 HZ, 2	bar (ge	ar moto	r, externa	al FC necessary)
				nateria	l							
			0	NR								
			В	NBR								
			E	EPDM								
			R	NR-A								
			Α	NBR-A								
				Hydra	ulic cor							
				Į I		nge VA						
				G		mp, VA	,					
				Н			A, NW65					
				J		nge PP						
				L	ANSI f	lange V	A, 2 1/2"	1				
				M	ANSI f	lange P	P 2 1/2"					
				Q	DIN fla	nge VA	Halar co	oated Di	V65			
				R	ANSI f	lange V	A Halar	coated 2	2 1/2"			
					Base p	olate						
					0	Base	olate, pa	inted ste	el			
					1	Base	olate, sta	inless s	teel			
					2	Portab	ole unit +	painted	steel ba	ase plate	9	
					3	Portab	ole unit +	stainles	s steel l	oase pla	te	
						Leaka	ge sens	or				
						0	Withou	ıt leakaç	je sensc	r		
						L	With le	akage s	ensor			
						M	As "L"	+ relay o	output			
							Rotor					
							0	Rotor v	vith 2 ro	llers		
								Batch	control	ler		
								0	Withou	t contro	ller	
									Specia	al versio	on	
									0	Standa		
									Н	Halar-c	coated h	ousina
											m syste	
										0	Without	
										v		cuum system
										1	Approv	•
											Approv 01	CE
											02	CE+Food approval EU 1935/2004
											02	OLTI 000 appi0vai EO 1900/2004

DULCO®flex DFCa 070D peristaltic pump

DFCa	Type												
	70D	DFCa 70D, 13.44 l/revolution, double head version											
		Drive	unit										
		F11		, 15 rpm	n, 12.1 m	1 ³ /h, 4 b	ar (fixe	d speed)				
		F12			n, 17.7 m								
		F13			n, 25 m³/								
		F14	9.2 kW										
				nateria		,	(p,	<u>'</u>				
				INR									
			В	NBR									
			E	EPDM									
			R	NR-A									
			A	NBR-A									
					ulic con	nection	ıs						
				1		nge VA							
				G									
				G Tri-Clamp, VA, 4" H DIN 11851, VA, NW80									
				L		ange V							
				_	Base p	-							
					0		late pai	inted ste	el				
					1			inless st					
							ge sens						
						0			e senso	or			
						١Ĺ		akage s					
						М		+ relay c					
							Rotor	,					
							0	Rotor v	vith 2 rol	llers			
								Batch	control	ler			
										ut controller			
									Specia	al version			
									0				
										0 Without			
										Approvals			
										01 ICE			
									0	Approvals			

2.8.5

Peristaltic Pump DULCO®flex DFD

Maximum pump capacities and high pressures

Feed rates of up to 15,000 l/h at 15 bar

The peristaltic pump DFDa is designed for maximum pump capacities and high pressures and is winning customers over with its noiselessness and long service life. It is fitted with shoes and fabric-reinforced hoses - perfect for industrial use.

The pump housing is filled with glycerine to reduce friction. A ball-bearing mounted rotor ensures extremely smooth running and a long service life. In tough industrial use, the DFDa conveys volumes of up to 15,000 l/h with back pressures of up to 15 bar.

A vacuum unit can optionally be used to help the hose to return to its original shape with pumps of the product range DFDa, thereby improving their suction behaviour and ensuring the even feed of high-

Your benefits

- Simple to operate
- Reversible pumping direction
- Hose materials suitable for various chemicals
- Simple and quick hose change
- Safeguarded against running dry
- Self-priming
- Ideal for pumping pasty, high-viscosity, abrasive and gaseous media

Technical details

- Connector sizes DN 25 DN 100
- Feed rates of 0.3 20.0 l/rev
- Hose materials NR, NBR, EPDM
- Self-priming up to 8 m
- Back pressure up to 15 bar

- Stainless steel base plate
- Available as a mobile unit
- Various connectors, such as Tri-Clamp, DIN 11851 and flange
- Pulsation damper
- Leakage sensor
- Vacuum system

Field of application

- Chemical industry
- Waste water
- Mining

DULCO®flex DFDa 025 peristaltic pump

DFDa												
	025	DFDa (025, 0.3	I/revolut	tion							
		Drive (unit									
		000		t drive u								
		A11	0.55 kV	N, 18 rp	m, 324 l	/h, 15 ba	ar (fixed	l speed)				
		A12		N, 28 rp								
		A13	0.75 kV	N, 39 rp	m, 702 l	/h, 10 ba	ar (fixed	l speed)				
		A14	0.75 kV	N, 45 rp	m, 810 l	/h, 5 baı	(fixed	speed)				
		A15	1.1 kW	, 55 rpm	ı, 990 l/ŀ	n, 5 bar	(fixed s _l	peed)				
		A31								ar motor with integral frequency converter)		
		A32	1.5 kW	, 18 - 63	3 rpm, 32	24-1134	I/h, 20-	70 Hz, 5	ear motor with integral frequency converter)			
		A41	0.75 kV	N, 4 - 36	rpm, 72	2-648 l/h	ı, 7-65 H	łz, 15 ba	ar (Geai	motor, external frequency converter required)		
		A42 1.1 kW, 6 - 58 rpm, 108-1044 l/h, 7-65 Hz, 5 bar (Gear motor, external frequency converter required)										
		A43	1.5 kW	', 9 - 86 ı	rpm, 162	2-1548 l	/h, 7-65	Hz, 5 ba	ar (Geai	motor, external frequency converter required)		
			Hose r	naterial	l							
			0	NR								
			В	NBR								
			E	EPDM								
				Hydra	ulic con							
				I		nge VA						
				J		nge PP						
				K			OF DN2	5				
				L		ange V	A DN25					
					Base p							
					0		late, pai					
					1		late, sta					
					2					ase plate		
					3				s steel t	pase plate		
							ge sens					
						0			e senso	r		
						L M		akage s				
						IVI		+ relay o	output			
							Rotor 0	l Dotos.	vith 2 sh			
							U					
								0	control	t controller		
								U				
									O Specia	al version I Standard		
									Н	Halar-coated housing		
									' '	Vacuum system		
										0 Without		
										V With vacuum system		
										Approvals		
										01 ICE		

DULCO®flex DFDa 032 peristaltic pump

DFDa	Type									
	032	DFDa (032, 0.62	25 l/revo	olution					
		Drive i	unit							
		000	Withou	t drive u	ınit					
		B11	0.75 kV	V. 21 rp	m. 787 l	/h. 10 b	ar (fixed	d speed)		
		B12			,	,	r (fixed	. ,		
		B13			,	,		d speed)		
		B14			,	,	,	d speed)		
		B15			,	,	,	. ,		
		-					r (fixed			
		B16					r (fixed			
		B31								Gear motor with integral frequency converter)
		B32	2.2 kW	, 19 - 66	3 rpm, 7	12-2475	l/h, 20-	70 Hz, 5	bar (G	ear motor with integral frequency converter)
		B41	1.1 kW	, 4 - 39 ı	rpm, 150	0-1462 I	/h, 7-65	Hz, 10 b	oar (Ge	ar motor, external frequency converter required)
		B42	1.5 kW	, 5 - 49 r	rpm, 190	0-1837 I	/h, 7-65	Hz, 10 b	oar (Ge	ar motor, external frequency converter required)
		B43	2.2 kW	, 8 - 75 ı	rpm, 300	0-2812	/h, 7-65	Hz, 5 ba	ar (Gea	r motor, external frequency converter required)
			Hose n	naterial	i					
			0	INR	2					
			В	NBR						
			E	EPDM						
			-		ulic cor					
				пуша		nge VA				
				J						
				-		nge PP				
				K		-		E DN 32		
				L		•	A, 1 1/4'			
					Base p					
					0			inted ste		
					1			inless s		
					2					ase plate
					3	Portab	le unit +	stainles	s steel	pase plate
						Leaka	ge sens	sor		
						0	Withou	ıt leakag	je senso	or
						L	With le	akage s	ensor	
						М	As "L"	+ relay o	output	
							Rotor		•	
							0	I Rotor v	vith 2 sh	noes
									contro	
								0		it controller
								0		al version
									O Specia	Standard
									-	
									Н	Halar-coated housing
										Vacuum system
										0 Without
										V With vacuum system
										Approvals
										01 CE

DULCO®flex DFDa 040 peristaltic pump

DFDa	Type													
	040	DFDa (FDa 040, 1.33 l/revolution											
		Drive (
		000	Withou	ıt drive ι	unit									
		C11	1.1 kW	, 21 rpn	n, 1676 l	/h, 10 b	ar (fixed	speed))					
		C12	1.1 kW	/, 26 rpm, 2075 l/h, 5 bar (fixed speed)										
		C13	1.5 kW	V, 21 rpm, 1676 l/h, 15 bar (fixed speed)										
		C14	1.5 kW	, 26 rpn	n, 2075 l	2075 l/h, 15 bar (fixed speed)								
		C15	1.5 kW	, 38 rpn	n, 3032 l	/h, 10 b	ar (fixed	d speed))					
		C16	1.5 kW	, 43 rpn	n, 3431 l	/h, 5 ba	r (fixed	speed)						
		C17	2.2 kW	, 48 rpn	n, 3830 l	/h, 5 ba	r (fixed	speed)						
		C31	2.2 kW	', 17 - 60	17 - 60 rpm, 1356-4788 l/h, 20-70 Hz, 5 bar (Gear motor with integral frequency converter)									
		C41	1.5 kW	, 4 - 34	rpm, 320	0-2713 I	/h, 7-65	Hz, 5 ba	ar (Gea	r motor,	external	I frequency converter required)		
		C42	2.2 kW	, 4 - 34	rpm, 320	0-2713 I	/h, 7-65	Hz, 10 l	bar (Ge	ar motor	, extern	al frequency converter required)		
		C43	2.2 kW	, 4 - 49	4 - 49 rpm, 400-3910 l/h, 7-65 Hz, 5 bar (Gear motor, external frequency converter required)									
		C44	3.0 kW	3.0 kW, 7 - 62 rpm, 239-4948 l/h, 7-64 Hz, 5 bar (Gear motor, external frequency converter required)										
			Hose r	materia	ı									
			0	NR										
			В	NBR										
			E	EPDM										
				Hydra	Hydraulic connections									
			ļ	I	F/ /									
				G										
				Н		DIN 11851, VA, NW50								
				J	DIN flange P									
				K		•	nge PVDF DN40							
				L		-	nge VA, 1 1/2" nge PP 1 1/2"							
				M N		-		FF 4 4 /0						
				N		lange PVDF/PTFE 1 1/2"								
					Base p	plate Base plate, painted steel								
					1									
					3	Base plate, stainless steel Portable unit + painted steel base plate Portable unit + stainless steel base plate Leakage sensor								
						Ceaka 0	J		ge sensc	۱r				
						Ľ			•	,,				
						М		Vith leakage sensor .s "L" + relay output						
						'*'	Rotor							
							0	Rotory	with 2 sh	noes				
							Ĭ		control					
								0		it contro	ller			
										al version				
									0	Standa				
									H		coated h	nousing		
											m syste			
										0	Withou			
										V		acuum system		
											Approvals			
											01	CE		

DULCO®flex DFDa 060 peristaltic pump

DFDa														
	060	DFDa	060, 3.10	6 l/revol	lution									
		Drive												
		000	Withou	t drive u										
			2.2 kW	, 22 rpm	n, 4.2 m	³ /h, 5 ba								
		D12		, 26 rpm	om, 4.9 m ³ /h, 5 bar (fixed speed)									
		D13			m, 4.2 m ³ /h, 15 bar (fixed speed)									
		D14				n³/h, 10 bar (fixed speed)								
		D15												
		D16			n, 6.9 m³/h, 5 bar (fixed speed) n, 8.0 m³/h, 5 bar (fixed speed)									
		D17						d speed						
		D31						tor with integral frequency converter)						
		D31												
		D32			rpm, 4.1 - 14.3 m ³ /h, 20-70 Hz, 5 bar (Gear motor with integral frequency converter)									
		1		V, 4 - 34 rpm, 0.9 - 7.4 m ³ /h, 7-65 Hz, 5 bar (gear motor, external FC necessary)										
		D42	7.5 kW, 7 - 61 rpm, 1.5 - 13.2 m ³ /h, 7-65 Hz, 5 bar (gear motor, external FC necessary) Hose material											
			0	NR										
			В	NBR										
			E		EPDM									
				Hydra		ulic connections								
				I	DIN Flansch VA DN65									
				L	ANSI f									
				J M V	DIN fla	flange PP DN65								
					ANSI f	lange P	P DN65							
					DIN fla	ange VA	, Halar o	coated +	PVDF i	nserts D	N65			
					ANSI f	flange VA, Halar coated + PVDF inserts DN65								
					Base	plate								
					0	Base	ase plate, painted steel							
					1	Base	ase plate, stainless steel							
					2	Portal	rtable unit + painted steel base plate							
							akage sensor							
						O L M		ut leakag	e senso					
								eakage s	•					
								•						
							As "L" + relay output Rotor							
							0		with 2 sh	nnes				
							ľ		control					
								0		it contro	llor			
								ľ						
									Specia 0	al version Standa				
									-					
									Н	Halar-coated housing				
											m system			
										0	Without			
										V	With vacuum system			
											Approvals			
											01 CE			
					•									

DULCO®flex DFDa 070 peristaltic pump

DFDa	Type												
	070	DFDa 070, 6.7 l/revolution											
		Drive (unit										
		000	Withou	t drive u									
		E11	3.0 kW	, 13.5 rp	5 rpm, 5.4 m³/h, 5 bar (fixed speed)								
		E12	4.0 kW	, 18 rpm	ո, 7.2 m ³	³/h, 5 ba	r (fixed						
		E13	5.5 kW	, 13.5 rp	om, 5.4 ı								
		E14	5.5 kW	, 26 rpm	m, 10.4 m ³ /h, 5 bar (fixed speed)								
		E15	7.5 kW	, 18 rpm	ո, 7.2 m ³	³/h, 15 b	ar (fixe	d speed)				
		E16	7.5 kW	, 26 rpm	n, 10.4 n	n ³ /h, 10	bar (fix	ed spee	d)				
		E17	7.5 kW	, 32 rpm	n, 12.8 n	n ³ /h, 5 b	ar (fixe	d speed)				
		E18	7.5 kW	, 40 rpm	n, 16 m ³ ,	h, 5 bar	(fixed	speed)					
		E31	7.5 kW	, 10 - 36	7 rpm, 4	- 14.4 m	n³/h, 20-	70 Hz, 5	bar (ge	ear motor with integrated frequency converter)			
		E41	7.5 kW	, 4 - 34	rpm, 1.6	6 - 13.7 r	m³/h, 7-6	65 Hz, 5	bar (ge	ar motor, external FC necessary)			
			Hose r	nateria	ı				,,,	•			
			0	NR									
			В	NBR									
			E	EPDM									
				Hydra	ulic cor								
				T	DIN fla	nge VA							
				J	DIN flange PP DN65								
				L		NSI flange VA, 2 1/2"							
				M Q	ANSI f	lange Pl							
						nge VA							
				R	ANSI flange VA Halar coated 2 1/2"								
					Base								
					0			inted ste					
					1	Base p	olate, sta	ainless s	teel				
						Leaka	ge sens						
						0		ıt leakaç		or .			
						L		akage s					
						М		+ relay	output				
							Rotor						
							0		with 2 sh	***			
									control				
								0		t controller			
										al version			
									0	Standard			
									Н	Halar-coated housing			
										Vacuum system			
										0 Without V With vacuum system			
										Approvals			
										01 CE			

DULCO®flex DFDa 080 peristaltic pump

DFDa	Туре														
	080	DFDa (080, 11.	7 l/revol	ution										
		Drive u	unit												
		000	Withou												
		G11	4 kW, 1	2.5 rpm	ո, 8.7 m ³	, 8.7 m ³ /h, 5 bar (Reduction gear system)									
		G12	5.5 kW	, 17.6 rp	om, 12.3 m³/h, 5 bar (Reduction gear system)										
		G13	7.5 kW	12.5 rpm, 8.7 m ³ /h, 15 bar (Reduction gear system)											
		G14	7.5 kW	5 kW, 17.6 rpm, 12.3 m³/h, 10 bar (Reduction gear system)											
		G15	7.5 kW	V, 20 rpm, 14 m³/h, 7.5 bar (Reduction gear system)											
		G16	7.5 kW	, 27.7 rp	m, 19.4	m ³ /h, 5	bar (Re	eductior	gear sy	/stem)					
		G17	11 kW,	5 kW, 27.7 rpm, 19.4 m ³ /h, 5 bar (Reduction gear system) kW, 30 rpm, 21 m ³ /h, 5 bar (Reduction gear system)											
			Hose n	ose material											
			0	NR											
			В	NBR											
			E	EPDM											
				Hydra	ulic con										
				J L	DIN flange VA DN80										
						IN flange PP DN80									
						ANSI flange VA 3" ANSI flange PP 3"									
				М											
				Q		N flange VA Halar coated DN80									
				R		NSI flange VA Halar coated 3"									
					Base p										
					0		e plate, painted steel								
						Leakag 0 L M	kage sensor								
							Without leakage sensor With leakage sensor								
								+ relay	relay output						
							Rotor 0	ID .	0 1						
			ļ						with 2 sh						
								Batch	contro	l ler it contro	llas				
								U							
									Specia 0	al version IStanda					
									٥						
										vacuu 0	m syste Withou				
										v		acuum system			
										v		•			
											Appro 01	ICE			
											01	OL .			

DULCO®flex DFDa 100 peristaltic pump

DFDa													
	100	DFDa	100, 20.	0 l/revo	lution								
		Drive											
		000		ıt drive ι									
		F11		′, 12.5 r _l									
		F12		kW, 17.6 rpm, 21.1 m ³ /h, 5 bar (fixed speed)									
		F13	15 kW	12.5 rp	m, 15 m	1 ³ /h, 15	bar (fixe						
		F14 F15 F16	15 kW	kW, 17.6 rpm, 21.1 m ³ /h, 10 bar (fixed speed) kW, 23 rpm, 27.6 m ³ /h, 7.5 bar (fixed speed) kW, 27.7 rpm, 33 m ³ /h, 5 bar (fixed speed)									
			15 kW										
			15 kW										
		F17	18.5 k\	N, 30 rp	m, 36 m³/h, 5 bar (fixed speed)								
			Hose	naterial									
			0	NR									
			В	NBR EPDM									
			E										
				Hydra	ulic cor								
				T	DIN flange VA DN100								
				J	DIN fla	DIN flange PP DN100							
				L	ANSI flange VA 4"								
				М	ANSI f	NSI flange PP 4"							
				Q	DIN fla	DIN flange VA Halar coated DN100							
				R	ANSI f	ISI flange VA Halar coated 4"							
					Base p								
			l			Base							
						Leaka	ige sens	sor					
						0	Without leakage sensor						
						L M		akage s					
							As "L"	+ relay	output				
							Rotor						
							0	Rotor	with 2 sh	ioes			
								Batch	control	ler			
								0	Withou	it contro	ntroller		
									Specia	al versio			
									0	Standa	ndard		
										Vacuu	cuum system		
										0	Without		
										V	With vacuum system		
											Approvals		
											01 CE		

2.8.6 Spare Parts

Spare Parts for DFAa 003

	Order no.
DFAa 003 silicone tube	1037107
DFAa 003 Norprene tube A-60-F	1037144
DFAa 003 Solva tube	1037145

Spare Parts for DFAa 008

	Order no.
DFAa 008 silicone tube	1037146
DFAa 008 Norprene tube A-60-G	1037147
DFAa 008 silicone tube	1037148
DFAa 008 Solva tube	1037149

Spare Parts for DFBa 010

	Order no.
DFBa 010 NR tube	1037150
DFBa 010 NBR tube	1037151
DFBa 010 EPDM tube	1037152
DFBa 010 NR-A tube	1037153
DFBa 010 NBR-A tube	1037154
DFBa 010 NORPRENE tube	1037155
DFBa 010 HYPALON tube	1037156

Spare Parts for DFBa 013

	Order no.
DFBa 013 NR tube	1037157
DFBa 013 NBR tube	1037158
DFBa 013 EPDM tube	1037159
DFBa 013 NR-A tube	1037160
DFBa 013 NBR-A tube	1037161
DFBa 013 NORPRENE tube	1037162
DFBa 013 HYPALON tube	1037163

Spare Parts for DFBa 016

Order no.
1037164
1037165
1037166
1037167
1037168
1037169
1037171

Spare Parts for DFBa 019

	Order no.
DFBa 019 TYGON tube	1037172
DFBa 019 NORPRENE tube	1037173

roMinen

2.8 Peristaltic Pumps DULCO®flex

Spare Parts for DFBa 022

	Order no.
DFBa 022 NR tube	1037175
DFBa 022 NBR tube	1037176
DFBa 022 EPDM tube	1037178
DFBa 022 NR-A tube	1037179
DFBa 022 NBR-A tube	1037180
DFBa 022 NORPRENE tube	1037181
DFBa 022 HYPALON tube	1037182

Spare Parts for DFCa 030

	Order no.
DFCa 030 NR tube	1037183
DFCa 030 NBR tube	1037184
DFCa 030 EPDM tube	1037185
DFCa 030 NR-A tube	1037186
DFCa 030 NBR-A tube	1037187
DFCa 030 tube NORPRENE	1045073

Spare Parts for DFCa 040

	Order no.
DFCa 040 NR tube	1037192
DFCa 040 NBR tube	1037193
DFCa 040 EPDM tube	1037194
DFCa 040 NR-A tube	1037195
DFCa 040 NBR-A tube	1037196
DFCa 040 NORPRENE tube	1037198

Spare Parts for DFCa 050

	Order no.
DFCa 050 NR tube	1037199
DFCa 050 NBR tube	1037201
DFCa 050 EPDM tube	1037202
DFCa 050 NR-A tube	1037203
DFCa 050 NBR-A tube	1037204
DFCa 050 tube NORPRENE	1045084

Spare Parts for DFCa 060

	Order no.
DFCa 060 NR tube	1037206
DFCa 060 NBR tube	1037208
DFCa 060 EPDM tube	1037209
DFCa 060 NR-A tube	1037210
DFCa 060 NBR-A tube	1037211
DFCa 060 tube NORPRENE	1045085

Tanks and Transfer Pumps

Tanks and Transfer Pumps

2.8 Peristaltic Pumps DULCO®flex

Spare Parts for DFCa 070/70D

	Order no.
DFCa 070/70D NR tube	1037213
DFCa 070/70D NBR tube	1037214
DFCa 070/70D EFDM tube	1037215
DFCa 070/70D NR-A tube	1037216
DFCa 070/70D NBR-A tube	1037217

Spare Parts for DFDa 025

	Order no.
DFDa 025 NR tube	1037219
DFCa 025 NBR tube	1037220
DFDa 025 EPDM tube	1037221

Spare Parts for DFDa 032

	Order no.
DFDa 032 NR tube	1037225
DFCa 032 NBR tube	1037226
DFDa 032 EPDM tube	1037227

Spare Parts for DFDa 040

	Oluei IIO.
DFDa 040 NR tube	1037230
DFCa 040 NBR tube	1037231
DFDa 040 EPDM tube	1037232

Spare Parts for DFDa 060

	Order no.
DFDa 060 NR tube	1037236
DFCa 060 NBR tube	1037237
DFDa 060 EPDM tube	1037238

Spare Parts for DFDa 070

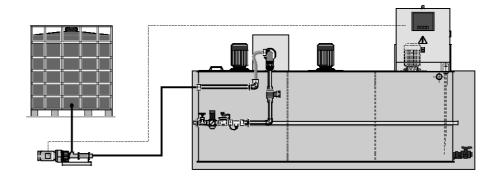
	Order no.
DFDa 070 NR tube	1037241
DFCa 070 NBR tube	1037242
DFDa 070 EPDM tube	1037243

Spare Parts DFDa 080

	Order no.
DFDa 080 hose NR	1041677
DFDa 080 hose NBR	1041678
DFDa 080 hose EPDM	1041679

Spare Parts for DFDa 100

	Order no.
DFDa 100 NR tube	1037247
DFCa 100 NBR tube	1037248
DFDa 100 EPDM tube	1037249


2.9.1 Metering Polymers

Product: Spectra eccentric screw pump
Metering medium: Polymer, liquid concentrate

Industry: Waste water

Application: Treatment of flocculants

Production of a 0.5% polymer solution with the Ultromat[®] AFT 2000 and Spectra 12/33 F. The Spectra pump feeds the polymer concentrate from the disposable tank to the Ultromat[®].

AP_0001_SW3

Task and requirements

Preparation of a 0.1 – 0.5 % polymer solution.

Operating conditions

- Fluctuating water feed
- Automatic activation of progressive cavity pump
- Highly viscous medium

Application information

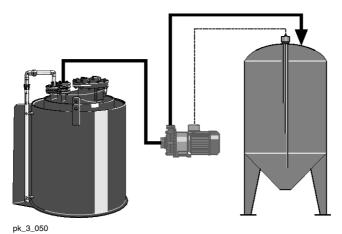
- Gauge capacity of progressive cavity pump during initial operation
- Provide dry-running protection facility for progressive cavity pump
- Proportional metering of liquid polymer as a function of water feed
- Activation of progressive cavity pump by means of a frequency converter

Solution

- Spectra 12/33 F progressive cavity pump for metering liquid concentrate
- \blacksquare ULFa 2000 Ultromat for preparing a 0.1 0.5 % polymer solution

- Constant solution concentration also in connection with fluctuating water feed
- Fully automatic operation with minimum personnel and maintenance requirements
- Flexible process configuration by adapting the pump to different concentration requirements

2.9.2 Filling a Day Tank


Product: von Taine® centrifugal pump

Metered medium: 32 % hydrochloric acid solution

Sector: Food

Application: Chemical transfer

The von Taine® centrifugal pump is switched on and off automatically by the level control facility in the day tank

Task and requirements

Automatically filling service tanks with 32 % hydrochloric acid solution

Operating conditions

- Indoor operation
- Automatic activation of pump

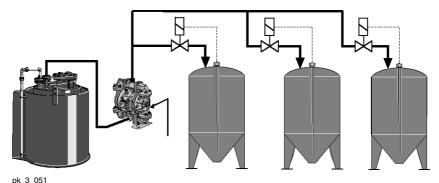
Application information

- Centrifugal pump controlled by level control facility in metering tank
- The centrifugal pump is not self-priming and requires feed
- Hydrochloric acid compatibility of materials must be ensured (PP, PVDF; EPDM)
- Provide dry-running protection facility for centrifugal pump

Solution

- vonTaine® 1820 PP centrifugal pump
- Service tank with level control

- Safe handling of hydrochloric acid
- Fully automatic operation with minimum personnel and maintenance requirements


2.9.3 Filling Day Tanks

Product: Duodos air-operated diaphragm pump

Metered medium: Detergent Sector: Laundry

Application: Chemical transfer

The level control facility for the day tanks opens the solenoid valves when the level drops below minimum. With decreasing back pressure, the Duodos pump automatically begins to pump medium into the metering line and switches off when the maximum level in the tank is reached and the solenoid valve is switched off.

Task and requirements

Automatic filling of day tanks with detergent

Operating conditions

- Compressed air necessary for operating compressed air diaphragm pump
- Automatic filling of day tanks

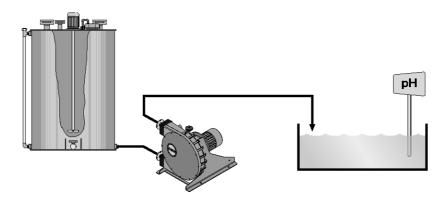
Application information

- Compressed air diaphragm-type pump controlled by level control facility in metering tank
- The compressed air diaphragm pump is self-priming
- Also suitable for viscous media
- The level control facility for the day tanks opens the solenoid valves when the level drops below minimum. With decreasing back pressure, the compressed air diaphragm-type pump automatically begins to pump medium into the metering line and switches off when the maximum level in the tank is reached and the solenoid valve is switched off

Solution

- Duodos air-operated diaphragm pump
- Day tank with level control

- Simplified logistics through central storage
- Fully automatic operation with minimum personnel and maintenance requirements



2.9.4 Deacidification of Potable Water

Product DULCO®flex peristaltic pump

Feed chemical Lime milk 10 % Sector: Potable water

Application Feed of abrasive chemicals

AP_PTW_0001_SW

Problems and requirements

- Feed of abrasive lime milk into potable water tanks
- Deacidification of the potable water

Operating conditions

- The lime milk comes as a 10% suspension
- The pH in the application tank is continuously measured

Notes on use

- The peristaltic pump is self-priming
- The pump is controlled by a pH measuring unit
- Speed reduction to extend the service life of the hose

Solution

- DULCO®flex DFCa 040 type peristaltic pump
- Hose material: NR (natural rubber)

- Reliable feed of lime milk
- Fully automatic operation with minimum personnel and maintenance requirements

3.0 Overview of DULCODOS® and Ultromat® Metering Systems

3.0.1 Selection Guide

Metering systems are ready mounted complete solutions, which are immediately available and ready for use for the most important applications. Whether standard or customised – you'll find the right solution here.

The Ultromat® models in the product range are the right choice for metering liquid polymer solutions.

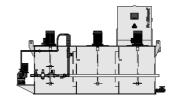
Tip: The table provides a good overview.

Į

Selection Guide for DULCODOS® Metering Systems

Туре	Function	Applications	Capacity range
DULCODOS® eco	Storing, metering	General	35 – 1,000 litres
DULCODOS® panel	Metering	General	0.74 – 1,000 l/h
DULCODOS® Hydrazin	Preparing, metering	Boiler feed water	up to 11 l/h
DULCODOS® PPLA	Mixing, metering	Animal food	_
DULCODOS® custom	Customer-specific	any	-

Selection Guide for Ultromat® Metering Systems


Туре	Application	Polymers	Capacity range
Ultromat® ULFa continuous flow	Waste water	Liquid + powder	400 – 8,000 l/h
system			
Ultromat® ULPa oscillating system	Waste water, paper	Liquid + powder	400 – 4,000 l/h
Ultromat® ULDa double-deck system	Waste water, paper	Liquid + powder	400 – 2,000 l/h
Ultromat® ATR continuous flow system, with round tanks	Waste water	Powder	400 – 2,000 l/h
Ultromat® MT manual mixing station	Waste water	Powder	120 – 3800 l/h
POLYMORE	Waste water, paper	Liquid	120 – 18,000 l/h
PolyRex	Waste water, paper	Liquid + powder	240 - 3820 l/h

DULCODOS® metering systems

See page → 3-2

See page → 3-23

Ultromat® metering systems

3.1 Metering System DULCODOS® eco

3.1.1

Metering System DULCODOS® eco

Choose from a range of different components and adapt the metering station to your requirements.

For storing and metering liquid chemicals Use a selection guide (identity code) to quickly and flexibly adapt your metering station to your metering task.

1

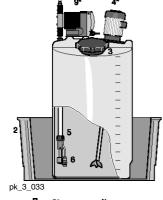
Two hydraulic connection points guarantee simple installation of the metering system. The ready mounted system consists of components that have been perfectly matched to each other to ensure problem-free operation. You obtain a complete system. Individually configure your metering system at the time of ordering. A simple selection system makes ordering easy and guarantees maximum efficiency even at the time of ordering.

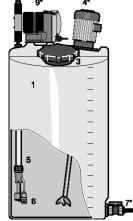
Your benefits

- One to three metering pumps mounted on a storage tank, ready for connection with all the necessary accessories
- Short delivery time
- Outstanding value for money
- Compact construction
- Fast commissioning
- Versatile use
- All the components are perfectly matched to each other and fit precisely
- Environmentally-friendly handling of chemicals

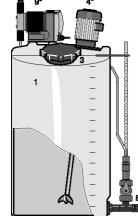
Technical details

- Chemical tank: PE, various colours, 35 1000 litres
- Collecting pan: PE, various colours, 35 1000 litres
- Lock for screw top
- Hand mixer / stirrer PP, PVDF or stainless steel, various outputs
- Suction assembly: PP, PVC, various connectors
- Level switch for suction assembly 1-stage, 2-stage
- Drain tap: PP, PVC, with ball valve
- Metering equipment
- Metering pump: alpha, Beta®, gamma/ L, D_4a, EXtronic®, Sigma/ 1, Sigma/ 2, Sigma/ 3


Field of application


Treatment of cooling, process and swimming pool water

ProMinent® metering systems with PE storage tanks can be selected and ordered with the help of an identity code system. First select the metering pump using the separate pump identity code.


Selectable components

- 1. PE chemical tank (35 1,000 litres)
- 2. Stackable collecting pans (35 1,000 litres)
- 3. Lock for tank screw top
- 4. Hand mixer / stirrer (*)
- 5. Suction assembly
- 6. Level switch for suction assembly
- 7. Drain tap for storage tank (*)
- 8. Metering equipment (*)
- Order metering pump (*) separately (Order the pump separately due to the large number of possible pumps that can be installed on storage tanks. Use the identity code for the pump you require listed in chapters 1, 2 and 5.)
- * These components are ready for subsequent installation, but are supplied separately to avoid damage in transit. Customers should fully install the system on site.

k_3_034

pk_3_035

Metering System DULCODOS® eco

The following table shows the combination option of metering pump and storage tank:

	Storage	tanks					
Metering pumps	35 I	60 I	100 I	140 I	250 I	500 I	1000 l
alpha	X+	X+	X	X+	x	X+	X+
Beta [®]	X+	Х	x	Х	Х	Х	x
gamma/ L / X	X+	x	х	x	x	x	X
D_4a	X+	x	Х	x	x	x	X
Sigma/ 1	-	X+	X+	X+	Х	Х	х
Sigma/ 2	-	-	-	-	Х	X+	х
Sigma/ 3	-	-	_	-	Х	X+	х
delta®	-	X+	X+	X+	x	x	X

- = Direct assembly of the pump without mounting plate
- = Assembly of the pump with mounting plate

3.1.2

Identity Code Ordering System, 35 Litres

Metering system with storage tank, 35 litres

DSBa	DE to	de																
Doba			metori	ng tank,	noutral	colour												
						coloui												
				ng tank,														
				ng tank,														
				ng tank,														
	0035R			ng tank,	red													
			cting pa															
		0		ıt collecti	• .													
		1		ollecting														
		2	with co	ollecting	pan, co	loured (the sam	e coloui	as the t	ank)								
			Version	on														
			0	with Pr	oMinen	t® Logo												
				Lock f	or tank	screw	top											
				0	withou	t lock	•											
					Hand	mixer, s	stirrer											
					0	none												
					Α	with P	P hand r	mixer										
						Meter	etering pump mounting											
						0		t pump	-									
						D	for alp	ha .										
						E	for Bet	ta®. gan	nma/L/	X, D_4a								
										election								
							0			n assemb	lv							
							1				6x4 suction	hose						
							2			•	8x5 suction							
							3			•	2x9 suction							
										mbly ma		111000						
								0	Inone	ilibiy ilic	lenai							
								1	PVC									
								2	PP									
								_			hlu flast s	iaala						
									O		nbly float s float switch							
									1			g, (6 x 4, 8 x 5,12 x 9) for Beta®, gamma/ L / X						
									3			g, (6 x 4, 8 x 5, 12 x 9) for Beta , gamma/ L / X 6x4, 8x5, 12x9) for D_4a						
									3	_								
												charge tap for tank						
										0	without acc							
										1		live PVC, hose grommet d16 **						
										2		live PP, hose grommet d20 **						
												n assembly						
												hout calibration assembly						
											1 with	h metering gauge d6 35/60 I ***						
											Infe	o - pump*						
												e.g.: BT4a 1005 PPE 300AA000						

- Please enter the Identity code of the selected pump
- Ball valve can only be selected if the metering station is ordered without drip pan.
- Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

Metering System DULCODOS® eco 3.1

3.1.3

Identity Code Ordering System, 60 Litres

Metering system with storage tank, 60 litres

DSB	a PE tan	k																	
	0060N	60 I PE	meterin	ig tank,	neutral	colour													
	0060S	60 I PE	meterin	ng tank,	black														
	0060B	60 I PE	meterin	ig tank,	blue														
	0060G	60 I PE	meterin	ig tank,	yellow														
			meterin																
		Collec	ting par	n															
		0		collecti	ing pan														
		1	with co	llecting	pan, ne	utral col	our												
		2	with co	llecting	pan, co	loured (t	the same	e colour	as the t	ank)									
			Versio	n															
			0	with Pr	oMinen	t® Logo													
				Lock f	or tank	screw	top												
				1	with lo		•												
				Hand mixer, stirrer															
					0	none													
					Α	with Pf	P hand r	nixer											
					В	with Pf	P hand s	tirrer											
					Н	with sta	ainless s	steel 0.0	2 kW el	ectric sti	rrer								
					P with PVDF 0.02 kW electric stirrer														
						Meteri	ing pum	np mou	nting										
						0	withou												
						Α			ıma/L/	X, D_4a									
						D	for alpl												
						F	for Sig		1										
						Р	for delt												
										lection	- I								
							0			n asseml	-	tion boo	•						
							2			bly with									
							3			bly with									
							4			bly with bly DN 1		CHOITHO	se						
							5			bly DN 1									
							٦			mbly ma									
								0	Inone	ilibiy ilia	ateriai								
								1	PVC										
								2	PP										
								-		n asser	nhly flo	at ewit	ch						
									0		float sw		31						
									1	2-stage	e, round	plug, (6	x 4, 8 x 5,12 x 9) for Beta®, gamma/ L / X, delta®						
									2	2-stage	, round	plug, (E	DN 10-32) for Sigma/ 1/ 2/ 3, delta®						
									3	1-stage	, flat plu	ig, (6x4	, 8x5, 12x9) for D_4a						
													rge tap for tank						
										0	without	access	ories						
										1	with ba	ll valve	PVC, hose grommet d16 **						
										2	with ba	II valve	PP, hose grommet d20 **						
											Calibra	ation as	ssembly						
											0	withou	t calibration assembly						
											1	with ca	libration assembly d6 35/60 I						
											2	with me	etering gauge d8 60 l ***						
												Info - p							
ı													e.g.: BT4a 1005 PPE 300AA000						

- Please enter the Identity code of the selected pump
- Ball valve can only be selected if the metering station is ordered without drip pan.
- Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

Netering Systems

3.1 Metering System DULCODOS® eco

3.1.4

Identity Code Ordering System, 100 litres

Metering system with storage tank, 100 litres

DSBa	PE tan	k														
	0100N	100 I F	E metering to	ank, neutra	al colour											
	0100S	100 I F	E metering to	ank, black												
	0100B	100 I F	E metering to	ank, blue												
			E metering to		,											
			E metering to													
	0.00		ting pan	,												
		0	without coll	ecting nan												
		1	with collect			our										
		2						th t-	- mls\							
		2	with collect	ing pan, co	nourea (i	ne sam	e colour	as the ta	arik)							
			Version	D M:	401											
				ProMiner												
				k for tank		top										
			1	with lo												
					mixer, s	stirrer										
				0	none											
				Α		P hand r										
				С		P hand s										
				1	with st	ainless s	steel 0.	18 kW el	ectric stir	rrer						
				R with PVDF 0.18 kW electric stirrer												
					Meteri	ing pun	np mou	nting								
					0	withou	t pump									
					Α	for Bet	a®, gan	nma/L/	X, D_4a							
					L	for Sig	ma/ 1									
					N	for alpl	ha									
					Р	for delt	ta®									
						Suction	n asse	mbly se	lection							
						0			assemb	ly						
						1	suction	n assem	blv with 6	6x4 suc	uction hose					
						2			•		uction hose					
						3			•		uction hose					
						4			bly DN 10							
						5			bly DN 15							
									nbly ma							
							0	none	iibiy iila	teriai						
							1	PVC								
							2	PP								
							_			م اکر دا ما	loat switch					
								0	without							
								1			d plug, (6 x 4, 8 x 5,12 x 9) for Beta [®] , gamma/ L / X, delta [®]					
											d plug, (0 X 4, 3 X 3, 12 X 9) for Beta 1, gamma L7 X, deta 1 d plug, (DN 10-32) for Sigma/ 1/ 2/ 3, deta®					
								2								
								3	_		olug, (6x4, 8x5, 12x9) for D_4a					
					1						- discharge tap for tank					
									1		ut accessories					
											pall valve PVC, hose grommet d16 **					
					1						pall valve PP, hose grommet d20 **					
					1						ration assembly					
									1	0	without calibration assembly					
					1					3	with metering gauge d8 100/140 I ***					
											Info - pump*					
											e.g.: BT4a 1005 PPE 300AA000					

- * Please enter the Identity code of the selected pump
- ** Ball valve can only be selected if the metering station is ordered without drip pan.
- *** Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

1.1.2015 Product Catalogue 2015 3-5

Metering System DULCODOS® eco

3.1.5

Identity Code Ordering System, 140 litres

Metering system with storage tank, 140 litres

DSBa	PE tan	k																		
			E meter	ing tank	, neutra	l colour														
	0140S	140 I P	E meter	ing tank	, black															
	0140B	140 I P	E meter	ing tank	, blue															
	0140G	140 I P	E meter	ing tank	, yellow															
	0140R	140 I P	E meter	ing tank	, red															
		Collec	ting par																	
		0	without		• .															
		1				utral col														
		2	with co	llecting	pan, co	loured (t	he sam	e colour	as the t	ank)										
			Versio																	
			0			t® Logo														
				Lock f		screw	top													
				1	with lo															
					Hand 0	mixer, s Inone	stirrer													
					A		hand r	nivor												
					D		hand s													
					K				8 kW ele	ectric stirrer										
					s				ectric sti											
						Meteri	na pun	np mou	ntina											
						0		t pump	.											
						Α	for Bet	a®, gam	ma/ L / :	X, D_4a										
						D	for alpl													
						Н	for Sig													
						Р	for del	ta®												
								uction assembly selection												
							0			a assembly										
							2			bly with 6x4 suction hose bly with 8x5 suction hose										
							3			bly with 12x9 suction hose										
							4			bly DN 10										
							5			bly DN 15										
										mbly material										
								0	none											
								1	PVC											
								2	PP											
										n assembly float switch										
									0	without float switch										
									1	2-stage, round plug, (6 x 4, 8 x 5,12 x 9) for Beta®, gamma/ L / X, delta®										
									2	2-stage, round plug, (DN 10-32) for Sigma/ 1/2/3, delta®										
									3	1-stage, flat plug, (6x4, 8x5, 12x9) for D_4a										
1										Accessories - discharge tap for tank 0 without accessories										
										with ball valve PVC, hose grommet d16 **										
										with ball valve PP, hose grommet d20 **										
										Calibration assembly										
1										0 without calibration assembly										
										3 with metering gauge d8 100/140 I ***										
										Info - pump*										
1										e.g.: BT4a 1005 PPE 300AA000										

- Please enter the Identity code of the selected pump
- Ball valve can only be selected if the metering station is ordered without drip pan.
- Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

3.1 Metering System DULCODOS® eco

3.1.6

Identity Code Ordering System, 250 litres

Metering system with storage tank, 250 litres

DSBa	PE tan	k											
			E meter	ing tank	, neutral	colour							
	0250S	250 I P	E meter	ing tank	, black								
		250 I P											
				•	, yellow								
		250 I P											
	023011				i, ieu								
		Ollec	ting pa		ina non								
		-		t collecti									
		1			pan, ne								
		2			pan, co	iourea (tne sam	e coloui	as the t	ank)			
			Versio										
			0		oMinent								
					or tank		top						
				1	with lo								
						mixer, s	tirrer						
					0	none							
					Α		hand r						
					E		hand s						
					L				8 kW ele		rrer		
					Т	with ele	ectric sti	irrer PVI	OF 0.18	kW			
						Meteri	ng pun	np mou	nting				
						0		t pump					
						Α	for Bet	a®, gam	ma/ L / 3	X, D_4a			
						В	for Sig	ma/ 2/ 3					
						С	for Sig	ma/ 1					
						N	for alpl	na					
						Р	for delt	ta®					
							Suction	n asse	mbly se	lection			
							0	withou	t suction	asseml	bly		
							1	suction	n asseml	bly with	6x4 suc	tion hos	se
							2	suction	n asseml	bly with	8x5 suc	tion hos	se
							3	suction	n asseml	bly with	12x9 su	ction ho	se
							4	suction	n asseml	bly DN 1	10		
							5		asseml				
							7		n asseml				
							8		asseml	•			
							_		n asser	•			
								0	none	y	atoriui		
								1	PVC				
								2	PP				
								1		n acco	mbly flo	at swite	rh
									0		t float sv		UII .
									1				x 4, 8 x 5,12 x 9) for Beta®, gamma/ L / X, delta®
									2				ON 10-32) for Sigma/ 1/ 2/ 3, delta®
									3	_			, 8x5, 12x9) for D_4a
									3			• ,	
										Acces 0		aiscna access	rge tap for tank
										1			PVC, hose grommet d16 **
										2			
										2			PP, hose grommet d20 **
													sembly
											0		t calibration assembly
											4		etering gauge d12 250 I ***
												Info - p	
													e.g.: BT4a 1005 PPE 300AA000

- * Please enter the Identity code of the selected pump
- ** Ball valve can only be selected if the metering station is ordered without drip pan.
- *** Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

Metering System DULCODOS® eco 3.1

3.1.7

Identity Code Ordering System, 500 litres

Metering system with storage tank, 500 litres

DSBa	PE tan	k																
			E meter	ing tank	, neutra	l colour												
			E meter															
	0500B	500 I P	E meter	ing tank	, blue													
			E meter															
			E meter															
	000011		ting pa		, 100													
		0		t collecti	na nan													
		1			• .	utral col	our											
		2		_			he same	oolour	ac tha t	ank)								
		_	Versio		pari, co	iouieu (i	ne same	COloui	as lite li	airik)								
			0		oMinon	t® Logo												
			U															
				1	or tank I with lo	screw	юр											
				1	-		••											
					Hand mixer, stirrer 0 none													
					A) hand m	d mixer										
					F			nd stirrer										
					1 -				E 14/4/ al.									
					M U		ainiess s /DF 0.2!			ectric stirre	ŧI.							
					U					rrer								
							ng pum		nting									
						0 A	withou		/1 /	V D 4-								
						C				X, D_4a								
								ma/ 1, d	ena®									
						D	for alph											
						J P		ma/ 2/ 3										
						Р	for delt											
								n assei	•									
							0			assembly		attan basa						
							2					action hose						
							3					action hose						
							4			•	xy suc	uction hose						
										bly DN 10								
							5 7			bly DN 15								
										bly DN 25								
							8			bly DN 32								
										mbly mate	erial							
								0	none									
								1	PVC									
								2	PP									
												oat switch						
									0	without fl								
									1			d plug, (6 x 4, 8 x 5,12 x 9) for Beta®, gamma/ L / X, delta®						
									2			d plug, (DN 10-32) for Sigma/ 1/ 2/ 3, delta®						
									3			lug, (6x4, 8x5, 12x9) for D_4a						
												- discharge tap for tank						
												ut accessories						
												all valve PVC, hose grommet d16 **						
												all valve PP, hose grommet d20 **						
												ration assembly						
										C		without calibration assembly						
										5	'	with metering gauge d12 500/1,000 I ***						
												Info - pump*						
												e.g.: BT4a 1005 PPE 300AA000						

- Please enter the Identity code of the selected pump
- Ball valve can only be selected if the metering station is ordered without drip pan.
- Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

3.1 Metering System DULCODOS® eco

5.1 Metering System Doloobos ecc

3.1.8

Metering system with storage tank, 1000 litres

Identity Code Ordering System, 1000 litres

DSBa	PE tan	ık																	
	_		PE met	ering ta	nk, neuti	al colou	r												
					nk, blacl														
				_	nk, blue														
					nk, yello	w													
			PE met	_	-														
			cting pa		,														
		0			ting pan														
		1			pan, ne	utral col	our												
		2			pan, bla		.												
			Version		, , ,														
			0		roMinen	t® Logo													
					for tank		top												
				1	with lo		юp												
				'		mixer, s	tirrer												
					0	Inone													
					G		and mixe	er PP											
				Ì	Ň				'5 kW ele	ectric sti	rrer								
					w				ectric sti										
				Ì	1	0	ering pump mounting without pump												
						Α			nma/L/	X, D 4a									
						В		ma/ 2/ 3		, _									
						С		ma/ 1, d											
						D	for alpl												
						Р	for delt												
							Suction	n asse	mbly se	lection									
							0		t suction										
							1	suction	n assem	bly with	6x4 suc	ction hos	se						
							2	suction	n assem	bly with	8x5 suc	ction hos	se						
							3	suction	n assem	bly with	12x9 su	ction ho	ose						
							4	suction	n assem	bly DN 1	10								
							5	suction	n assem	bly DN 1	15								
							7	suction	n assem	bly DN 2	25								
							8	suction	n assem	bly DN 3	32								
					1				n asser	•									
								0	none										
				Ì	1			1	PVC										
				Ì	1			2	PP										
									Suctio	n assei	mbly flo	at swit	ch						
									0	withou	t float sv	vitch							
				Ì	1				1	2-stage	e, round	l plug, (6	6 x 4, 8 x 5, 12 x 9) for Beta®, gamma/ L / X, delta®						
					1				2				DN 10-32) for Sigma/ 1/ 2/ 3, delta®						
									3	1-stage	e, flat pl	ug, (6x4	, 8x5, 12x9) for D_4a						
					1					_			arge tap for tank						
				Ì	1					0		t access							
										1			PVC, hose grommet d16 **						
				Ì	1					2	with ba	all valve	PP, hose grommet d20 **						
				Ì	1								ssembly						
					1						0		t calibration assembly						
											5	with m	etering gauge d12 500/1,000 I ***						
				Ì	1								pump*						
				Ì	1								e.g.: BT4a 1005 PPE 300AA000						

- * Please enter the Identity code of the selected pump
- ** Ball valve can only be selected if the metering station is ordered without drip pan.
- *** Metering gauge can only be selected if the metering station is ordered without drip pan and without suction fitting.

Metering Systems

3.2 Metering System DULCODOS® panel

3.2.1

12

pk_7_070

Metering System DULCODOS® panel

A large number of metering tasks are similar or are repeated. This modular system offers a complete ready mounted solution.

11

Metering systems are immediately available and ready for use for the most important applications. Sensors, controller and metering pumps form a single unit with the required storage tanks, which can take over your work without any installation effort.

Two hydraulic connection points guarantee simple installation of the metering system. The ready mounted systems consist of components that have been perfectly matched to each other to ensure problem-free operation. You obtain a complete system. Individually configure your metering systems at the time of ordering. A simple selection system makes ordering easy and guarantees maximum efficiency even at the time of ordering.

Your benefits

- DULCODOS® panel plate-mounted metering systems Ready assembled on a mounting plate, with pipework fitted and complete with all hydraulic and electrical accessories
- Compact construction
- Fast project planning
- Flexible thanks to modular construction
- Proven many times over

Field of application

- Metering of biocides and inhibitors in cooling water
- Metering of lyes and acids for pH regulation
- Metering of coagulants (iron-III-chloride) for waste water treatment
- Metering of detergents (CIP (cleaning in place) systems and bottle washing machines)

Panel-mounted metering systems can be selected and ordered with the help of an identity code system.

First of all, select and order the metering and standby pump using the separate pump identity code.

The following options can be selected:

- 1. Assembly frame with pipework for installation of a metering pump
- 2. Extension for installation of a standby pump (same type as the metering pump)
- 3. Pipework material
- 4. Seal material
- 5. Vacuum cylinder
- 6. Vacuum pump
- 7. Pulsation damper
- Manometer
- Overflow device
- 10. Terminal box
- Leakage sensor
- 2. Connections for the suction and discharge side

5 3 4 9 9 9 1 1,2

Metering system with simple pump

pk_7_061
Metering system with stand-by pump

Technical Data

Туре		B410	B510	GL10	S110	S115	S215	S220	S325	S332
Nominal width of pipework		DN 10	DN 10	DN 10	DN 10	DN 15	DN 15	DN 20	DN 25	DN 32
Nominal width of flushing connector		DN 10	DN 15	DN 20	DN 25					
Connector return line		DN 10	DN 15	DN 20	DN 25					
Dimensions H x W x D	mm	1,200 x 800 x 300	1,200 x 800 x 300	1,200 x 800 x 300	1,400 x 900 x 450	1,400 x 900 x 450	1,400 x 900 x 450	1,400 x 900 x 450	1,600 x 900 x 500	1,600 x 900 x 500
Dimensions H x W x D with 2 pumps	mm	1,400 x 1,000 x 300	1,400 x 1,000 x 300	1,400 x 1,000 x 300	1,600 x 1,200 x 450	1,600 x 1,200 x 450	1,600 x 1,200 x 450	1,600 x 1,200 x 450	1,600 x 1,200 x 500	1,600 x 1,200 x 500
Max. capacity	l/h	19	32	32	65	120	130	350	324	1,000
Max. operating pressure (25 °C)	bar	10	10	10	10	10	10	10	10	8*/10
Max. operating pressure (40 °C)	bar	6	6	6	6	6	6	6	6	6

^{*} with pulsation damper option

ProMinent

3.2.2

Identity Code Ordering System for Beta® and gamma/ L, DN 10

Panel-mounted metering systems for Beta® and gamma/ L, DN 10

DSWa	Mounti B410								tering p	ump (o	rder me	tering _l	pump separately)			
	B510						20: 0.74 - 19 l/h) 32: 4.1 - 32 l/h)									
	GL10				(GALa 1				1)							
		_			ation of					nug vdb	np sepa	rately)				
		0	none				, p	, (-14			,					
		1	with ex	xtension	for stan	dby pur	np (sam	e type a	s meter	ng pum	p)					
				naterial												
			PC	PVC												
			PP	PP												
				Seal n	naterial I EPDM											
				A	FKM											
				^		m cylin	nd o r									
					0	none	iuei									
					1		acuum c	vlinder								
							ım pum	•								
						0	none	•								
						1	with va	acuum p	ump							
								tion da	nper							
							0	none								
							1				(inci. ba	ck pres	sure valve)			
								0	ure gau Inone	ge						
								1		essure d	nauge ar	nd dianh	nragm seal unit			
											ssembl		nagin ocai aini			
									0				lve (for 1 pump of Type: 1000 - 1605)			
									1	with m	ultifuncti	onal val	lve (for 1 pump of Type: 0708 - 0232)			
									2				ve (for 1 pump)			
									3				lve (for 2 pumps of Type: 1000 - 1605)			
									4				lve (for 2 pumps of Type: 0708 - 0232)			
									5			sure val	ves (for 2 pumps)			
										0	nal box without	tormin	al hav			
										1			ox for 1 pump			
										2			ox for 2 pumps			
										3			ox + master switch for 1 pump			
										4	with ter	minal b	ox + 2 master switches for 2 pumps			
											Leakag	ge sens	sor in drip tray			
											0		t leakage sensor			
											1		akage sensor			
													on/discharge side connection parts			
												0	with solvent/fusion weld sockets			
												2	with 6x4 hose barb with 8x5 hose barb			
												3	with 12x6 hose barb			
												4	with 12x9 hose barb			
												5	with DN 10 hose barb			
													Info - pump*			
													e.g.: BT4b 1005 PPE 300AA000			

^{*} Please enter the Identity code for your chosen pump

3.2.3

Identity Code Ordering System for Sigma/ 1, DN 10

Panel-mounted metering systems for Sigma/ 1, DN 10

S110	-	,	,			07065:		,						
			r instal	lation o	f a stan	dby pur	np (ord	er stand	lby pun	np sepa	rately)			
	0	none				,								
	2				ndby pui	mp (sam	e type a	s meteri	ng pump))				
			nateria	ı										
		PC	PVC											
		PP	PP											
				materia										
			E	EPDM										
			Α	FKM										
					um cylii	nder								
				0	none									
				2	with vacuum cylinder									
					Vacui	ım pum	р							
					0	none								
					1	with va	acuum p	ump						
							tion dar	nper						
						0								
						2		ulsation	damper	(incl. ba	ck pres	sure valve)		
								ure gau	ge					
								none						
									_	•		hragm seal unit		
									valve as	ssembl	у			
								6	with rel	ief valve	assem	nbly		
									Termin	nal box				
									0	without				
									1			oox for 1 pump		
									2	with ter	minal b	oox for 2 pumps		
									3			ox + master switch for 1 pump		
									4	with ter	minal b	oox + 2 master switches for 2 pumps		
										Leakag	ge sens	sor in drip tray		
										0	withou	t leakage sensor		
										1	with lea	akage sensor		
											Suction	on/discharge side connection parts		
											0	with straight solvent/fusion sockets		
											6	with DN 10 hose connector		
												Info - pump*		
												e.g.: S1Ba H12017 PVT0110M000		

^{*} Please enter the Identity code for your chosen pump

3.2 Metering System Dolcobos paner

3.2.4

Panel-mounted metering systems for Sigma/ 1, DN 15

Identity Code Ordering System for Sigma/ 1, DN 15

S115	_	gma/ 1, DN 15 (S1Cb/S1Ba 07042 - 04120: 50 - 120 l/h) tension for installation of a standby pump (order standby pump separately)												
	0	none	าเกรเสม	ation of	a stant	uby pur	iip (ora	er stand	aby pun	ih seba	irately)			
	3		vtancion	for etan	dhy nur	nn (com	e type o	e motori	ng pump	2)				
					aby pui	ווף (שמוו	c type a	o meten	ng punik	,				
		Pipe r	nateria l IPVC											
		PP	PP											
		FF												
				naterial I EPDM										
			E A	FKM										
			A											
					ım cylir									
				0	none									
				3		acuum c	•							
						ım pum	p							
					0	none								
					1		acuum p							
							tion dar	nper						
						0 3	none with pu							
										(incl. ba	ck pres	sure valve)		
									ge					
							0	none						
							1					nragm seal unit		
									valve a	ssembl	У			
								6		lief valve	e assem	bly		
										nal box				
									0		t termina			
									1			ox for 1 pump		
									2			ox for 2 pumps		
									3			ox + master switch for 1 pump		
									4			ox + 2 master switches for 2 pumps		
												sor in drip tray		
										0		t leakage sensor		
										1		akage sensor		
												n/discharge side connection parts		
											0	with straight solvent/fusion sockets		
											7	with DN 15 hose connector		
												Info - pump*		
	1	1			1				l			e.g.: S1Ba H07042 PVT0110M000		

^{*} Please enter the Identity code for your chosen pump

3.2.5

Identity Code Ordering System for Sigma/ 2, DN 15

Panel-mounted metering systems for Sigma/ 2, DN 15

S215			ne with pipework for installation of one metering pump (order metering pump separately) 2, DN 15 (S2Cb/S2Ba 16050 – 16130: 60 – 130 l/h)													
0210	_		•			dby pur			hv nun	nn sena	rately)					
	0	none	motan	4.1011 0	a Stair	aby pui	p (01u	o. stant	y pan	.p sepa	acciy)					
	4		xtensior	n for star	ndby pui	mp (sam	e type a	s meteri	ng pumi	o)						
			nateria		, , .	1 (71		31.	,						
		PC	IPVC	-												
		PP	PP													
			Seal	materia												
			E	EPDN	1											
			Α	FKM												
				Vacuu	ım cylii	nder										
				0	none											
				4	with v	acuum c	ylinder									
					Vacui	ım pum	р									
					0	none .										
					1	with va	acuum p	ump								
						Pulsa	tion dar	nper								
						0	Pressu 0									
						4		ulsation	damper	(incl. ba	ck pres	sure valve)				
								ure gau	ge							
								none								
							1					nragm seal unit				
										ssembl						
								6		lief valve		ibly				
										nal box		-1				
									0		t termina					
									1			ox for 1 pump				
									2			ox for 2 pumps				
									4			ox + master switch for 1 pump ox + 2 master switches for 2 pumps				
									4			• •				
										Leaka		sor in drip tray t leakage sensor				
										1		akage sensor				
										'		<u> </u>				
											0	on/discharge side connection parts with straight solvent/fusion sockets				
											8	with DN 15 hose connector				
											3	Info - pump*				
												e.g.: S2Ba HM16050 PVT0110M000				
1												C.g., 625411W100001 V10110W000				

^{*} Please enter the Identity code for your chosen pump

ProMinent

3.2.6

Identity Code Ordering System for Sigma/ 2, DN 20

Panel-mounted metering systems for Sigma/ 2, DN 20

S220	Sigma/ 2, DN 20 (S2Cb/S2Ba 07120 – 04350: 120 – 350 l/h) Extension for installation of a standby pump (order standby pump separately)													
	0	Inone	ilistali	ation 0	a Sidfi	սոչ բա	iib (ora	ei SidNi	սոչ բաո	iih seba	irately)			
	5		vtension	for star	ndhy nu	mn (sam	e type s	s meter	ing pum	2)				
	آ		nateria		.GDy Pui	np (san	.c type c	io moteri	g puili	<i>-</i> ,				
		PC	IPVC											
		PP	PP											
		l		nateria	1									
			E	IEPDN										
			Ā	FKM										
			1,,		ım avli	adar								
				0	ım cylinder İnone									
				5	with vacuum cylinder									
						um pum	•							
					0	Inone	ıμ							
					1		acuum p	umn						
					1.		tion da							
						0	Inone	lipei						
						5		ulsation	damper	(incl_ba	ck pres	sure valve)		
										(o p. 00.			
								Inone	ge					
									essure o	nauge ar	nd diaph	nragm seal unit		
									valve a					
								6		lief valve		bly		
										nal box		· ,		
									0		t termina	al box		
									1	with ter	rminal b	ox for 1 pump		
									2			ox for 2 pumps		
									3	with ter	rminal b	ox + master switch for 1 pump		
									4			ox + 2 master switches for 2 pumps		
										Leaka	ae sens	sor in drip tray		
										0		t leakage sensor		
										1	with le	akage sensor		
												on/discharge side connection parts		
											0	with straight solvent/fusion sockets		
											9	with DN 20 hose connector		
												Info - pump*		
l	1											le.g.: S2Ba HM07120 PVT0110M000		

^{*} Please enter the Identity code for your chosen pump

3.2.7

Identity Code Ordering System for Sigma/ 3, DN 25

Panel-mounted metering systems for Sigma/ 3, DN 25

S325	ISigma	me with pipework for installation of one metering pump (order metering pump separately) / 3, DN 25 (S3Cb 120145 - 120330: 174 - 324 l/h)															
0020						dby pur			dby pun	np sepa	rately)						
	0	none	o.un		a olum	, pui	p (51 u	J. Olain	, pai	Jopa	y)						
	6	with ex	ktensior	for star	ndby pui	mp (sam	e type a	s meteri	ng pum	o)							
			nateria							,							
		PC	PVC														
		PP	PP														
			Seal ı	nateria													
			E	EPDM	1												
			Α	FKM													
				Vacu	ım cylir	nder											
				0	none												
				6	with v	acuum c	ylinder										
					Vacuu 0 1	ım pum	р										
						none											
						with va	acuum p	ump									
							tion dar	nper									
						0	Pressu 0										
						6				(incl. ba	ck pres	sure valve)					
									ge								
								none									
							1					nragm seal unit					
										ssembl		Lh.					
								6		lief valve		idiy					
									0	nal box	t termina	al hav					
									1			ox for 1 pump					
									2			ox for 2 pumps					
									3			ox + master switch for 1 pump					
									4			ox + 2 master switches for 2 pumps					
									7			sor in drip tray					
										0		t leakage sensor					
										1		akage sensor					
												on/discharge side connection parts					
											0	with straight solvent/fusion sockets					
											A	with DN 25 hose connector					
												Info - pump*					
												e.g.: S3Ba H120145 PVT0110M000					
												3 222323 23 23 23 23 23 23 23 23 23 23 23 23 2					

^{*} Please enter the Identity code for your chosen pump

3.2.8 Identity Code Ordering System for Sigma/ 3, DN 32

Panel-mounted metering systems for Sigma/ 3, DN 32

Sigma/ 3, DN 32 (S3Cb 070410 - 041030: 492 - 1000 l/h) Extension for installation of a standby pump (order standby pump separately)													
0	Inone	motali	ation 0	ı a sıdıı	aby pui	טוט) קוו	er sidili	aby pull	ih seha	natery)			
7		ktensior	for star	ndby pui	mn (sam	e type s	s meter	ing pump	2)				
ľ		nateria		pui	(5411	, po c		a baık	-,				
	PC	IPVC	•										
	PP	PP											
			materia	ı									
		E	IEPDM	="									
		Ā	FKM	•									
			Vacu	um cylii	nder								
			0	none									
			7	with v	acuum c	vlinder							
					um pum	•							
				0	none	•							
				1	with va	acuum p	ump						
					Pulsa	tion da	mper						
					0	none	•						
					7	with p	ulsation	damper	(incl. ba	ck pres	sure valve)		
						Press	ure gau	ge					
						0 1	none						
							with pr	essure g	gauge ar	nd diapl	nragm seal unit		
								valve a					
							6		lief valve	e assem	ıbly		
								-	nal box				
								0	without				
								1			ox for 1 pump		
								2			ox for 2 pumps		
								3			ox + master switch for 1 pump		
								4			ox + 2 master switches for 2 pumps		
											sor in drip tray		
									0		t leakage sensor		
									['		akage sensor		
										Suction	on/discharge side connection parts with straight solvent/fusion sockets		
										B	with DN 32 hose connector		
										P			
											Info - pump* e.g.: S3Ba H070410 PVT0110M000		
											e.g.: 53ba no/0410 PV10110M000		

^{*} Please enter the Identity code for your chosen pump

DULCODOS® Hydrazin Metering Systems

3.3.1

Metering System DULCODOS® Hydrazin

Corrosion is the last thing you need with the majority of applications. That is why Hydrazin protects hot water and steam boilers.

Chemical tank ranging from 140 to 250 litres

DULCODOS® Hydrazin batching and metering systems are used for manual batching and automatic metering of diluted hydrazine solutions. And, of course, they also comply with all environmental and safety requirements.

Hydrazine acts as an oxygen binding agent, is volatile in steam and prevents corrosion. As it is carcinogenic, the dispensing and metering systems need to be gas-tight so that no hydrazine vapours can escape. Our systems comply with these requirements.

Your benefits

- Gas-tight design
- Precise metering
- Protects the environment

Field of application

- Steam circuits
- Power plants

Hydrazine is used as an oxygen binding agent in the process water sector, predominantly with steam generation. It is a carcinogenic agent and special care is therefore needed when handling

It therefore has to be ensured that the activation threshold for hydrazine is not exceeded with correct and proper use of closed and gas-tight systems.

Ready-to-use assembled metering system

■ essentially consisting of:

- Gas-tight chemical tank made of PE with a litre scale, with lockable screw lid and manual stirrer
- Each with a dispensing and metering pump with suction assembly, level switch, as well as complete rigid PVC pipework with two ball valves, the measuring tank and activated charcoal filter

Accessories

5 m metering line 8/12 mm Ø and stainless steel metering valve 8 mm Ø/1/2"

Electrical connection 230 V ±10 %, 50...60 Hz

The metering system is supplied with a hose connection, which fits on a conventional drain system. This drain system is produced by MicroMatic, Gräfelfing/Munich.

- pk 7 078 Activated charcoal filter Bleed/vent line
- Apportioning unit Metering tank
- Hydrazin 15 returnable canister
- Quick release coupling
- Metering line Gas shuttle line
- Refilling pump
- Metering pump Fill water

Hydrazine dispensing and metering system, completely ready mounted

Metering Tank Contents	Metering pump Capacity	J	Transfer Pump Discharge Flow	Order no.
130 I	7.1 l/h	7.0 bar	17 l/h	913018
250 I	11.0 l/h	7.0 bar	32 l/h	913019

Accessories

	Order no.
Sampling set, stainless steel	1003964

3.4 DULCODOS® PPLA Liquid Enzyme Metering Systems

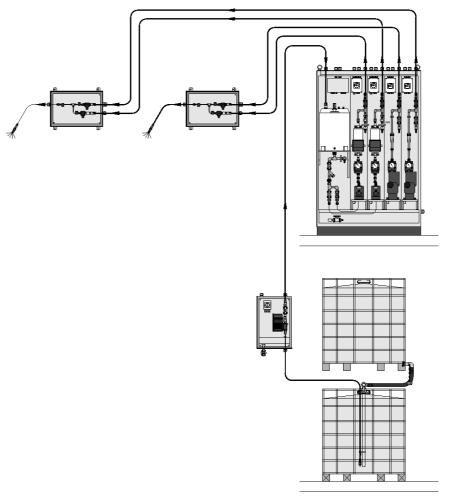
ProMinent

3.4.1

Metering System DULCODOS® PPLA

For the animal feed industry: Ensuring pet food is further enriched with essential nutrients.

DULCODOS® PPLA systems "enhance" animal feeds: Liquid additives are coated on the pressed feed pellets. The systems operate on a modular principle: extensions and additions are possible at all times. And at the same time a complete solution for storage, dispensing and application of all types of additives.


The metering of liquid products plays a decisive role in the production of animal feed. Vitamins and enzymes are probably the best known types of liquid additives. The raw materials for the feed are milled, mixed and then pressed into pellets. DULCODOS® PPLA metering stations apply liquid additives to the feed after pelleting. The liquid products are stored in a container and transported by means of a filling pump into the metering station's daily storage tanks. Water is used as a carrier substance to guarantee the necessary even distribution of additives in the feed. One pump is used for the additives, a second pump for the dilution water. The additives and the water are combined in the mixing station and thoroughly mixed by a static mixer. The diluted additives are sprayed onto the animal feed through a nozzle. Standard solutions within a range of less than 50 ppm to over 1000 ppm are possible.

Your benefits

- Fast project planning
- Precise metering

Field of application

- Continuous flow processes
- Batch processes

pk_4_PPLA

Prices and delivery time on request

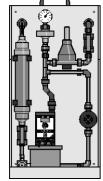
3.5 Metering System DULCODOS® custom

3.5.1

Metering System DULCODOS® custom

ProMinent supplies customer-specifically designed, complete ready-to-use systems.

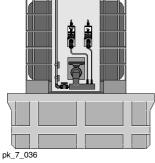
On request, ProMinent can equip the systems with measuring and control technology, terminal boxes, control cabinets or, with larger systems, PLC programmable logic controllers. We would be happy to meet your process requirements with tailor-made functional blocks.


Every system is hydraulically and electrically tested in the factory. A team of experts would be happy to offer you advice.

Your benefits

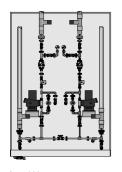
In addition to the standard PVC, PP, PVDF and stainless steel materials, non-standard materials like PFA are also possible.

Portable metering systems


Metering system with pumps and accessories, portable.

pk_7_035 Fig. A: Portable metering stations

Metering systems on gitter boxes


Metering system with pumps and accessories, can be suspended from a gitter box.

pκ_7_036
Fig. B: Metering stations, can be suspended from wire frame

Panel-mounted metering systems

Metering system with pumps and accessories, mounted on a plate for wall mounting.

pk_7_038
Fig. C: Panel mounted system

Metering System DULCODOS® custom

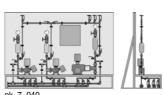


Fig. D: Frame mounted metering systems

Frame-mounted metering systems

Metering system with pumps and accessories, mounted on a frame.

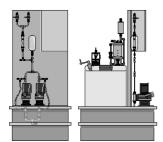
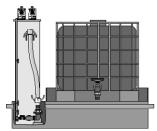



Fig. E: Metering stations mounted onto me-

Metering systems on storage tanks

Metering system with pumps and accessories, mounted on a storage tank.

pk_7_041

Fig. F: Metering system with collecting pan and chemical feed tank

Metering systems with collecting pan and storage tank

Metering system with pumps and accessories, with collecting pan and storage tank.

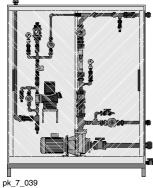


Fig. G: Metering system in metering cabinet

Metering systems accommodated in a metering cabinet

Metering system with pumps and accessories, mounted in a cabinet.

Metering Systems

3.6 Modular Metering System DULCODOS®

3.6.1

Modular Metering System DULCODOS®

Modular and flexible for precise metering

Capacity: 40 to 1,000 l/h, other capacities on request

The ready-wired modular metering system DULCODOS® is used for the ultra-precise metering of chemicals. It has a modular design and can be flexibly integrated into the most varied applications.

The modular construction of the modular metering systems DULCODOS® enables them to be practically and flexibly coordinated with your process. The metering systems are delivered ready mounted and can be quickly and easily installed. Metering systems DULCODOS® are winning customers over with their precise output all by themselves!

Your benefits

- Simple and quick to install, thanks to ready-wired design
- Modular construction for flexible, practical process integration
- Minimal stock of spare parts and short delivery times due to the use of standard parts and components
- Minimal space requirements due to compact construction
- Metering is controlled by pump electronics

Technical details

Basic design

- Modular configuration options
- Plastic or stainless steel brackets
- Pipework: PP, PVC or PVDF
- Motor-driven metering pump Sigma
- Other capacities on request
- Extensive optional accessories
- Relief valve and non-return valve
- Shut-off device with flushing connector (discharge side)
- Repair switch

Options for advanced design

- Pulsation damper with back pressure valve
- Manometer
- Routed pipework for suction and relief lines
- Terminal box with repair switch
- Splash guard

Field of application

Metering of chemicals: Cleaning agents, disinfectants, additives and auxiliary agents

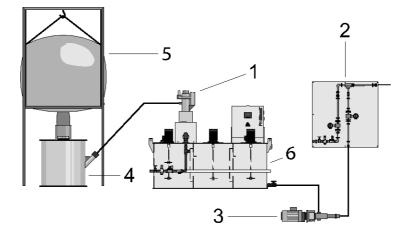
Metering Systems Ultromat® for the Metering of Liquid Polymer 3.7.1 **Solutions**

Ultromat® systems have been designed specifically for the production of ordinary or standard solutions of synthetic polyelectrolytes and have proved themselves many times over. The use of polyelectrolytes as flocculation aids have a very wide range of applications. They can be used in all applications where colloidal solids need to be economically separated from liquids.

Preferred fields of application include:

- Potable water treatment
- Waste water treatment
- Sludge de-watering
- Treatment of process water and circulation water
- Paper production
- Chemical industry, power plants etc.

3 different automatic system concepts are available:


- Continuous flow system (identity code ULFa)
- Oscillating system (identity code ULPa)
- Double-decker system (identity code ULDa)

The systems differ primarily due to the construction of the storage tank. The storage tank in the continuous flow system is sub-divided into 3 chambers, largely preventing the mixing of fresh and matured polymer. The oscillating and double-decker systems consist of two completely separate storage tanks, preventing the mixing of fresh and matured polymer.

Powder metering units and liquid concentrate pumps can be freely selected by means of the identity code. Powdered or liquid polymers can therefore be prepared depending on the application.

Ultromat® unit types ULFa, ULPa and ULDa are equipped with a PLC compact controller and touch screen. Optionally the PLC compact controller can be fitted with a PROFIBUS® or PROFINET module. Input of the solvent concentration, as well as calibration of the powder metering unit and liquid concentrate pump is user-managed. Alarm messages and warnings are shown on the display. The feed of dilution water is continuously detected by a flow meter and shown on the display. The control calculates the polymer requirement based on the set solvent concentration and proportionately controls the powder metering unit or concentrate pump so that the concentration of polymer solution is always kept constant even if there are fluctuations in the water supply.

Application examples for complete polymer dissolving systems

- Powder delivery unit Re-dilution
- Transfer pump
- Powder storage tank
- Big-Bag

AP_0002_SW

3.7.2

Continuous Flow Systems Ultromat® ULFa

Many applications are unthinkable without polymers. Practical when production is integrated directly in the workflow: The Ultromat® ULFa continuous flow system ends the process chain.

Extraction rates of up to 8,000 l/h

Polymer batching station Ultromat[®] ULFa (continuous flow system): This metering system can be used to batch flocculation aids for the preparation of a ready-to-use polymer solution. The system was designed for the fully automatic batching of polymer solutions.

These systems can be used to process both liquid and powdered polymers. The storage tank, which is subdivided into three chambers, largely prevents the carry-over of freshly batched polymer.

Ultromat[®] ULFa systems are equipped with a PLC Programmable Logic Controller S7-1200 and touch panel.

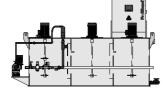
Your benefits

- Processing of liquid polymer (0.05 1.0%) and powdered polymer (0.05 0.5%)
- Minimal carry-over of product and thus higher-quality results
- Extraction of the polymer solution and drainage of the chambers through the front of the storage tank
- Operator-controlled input of solvent concentration and calibration of powder metering unit and liquid concentrate pump
- Version with terminal box available on request
- Gentle mixing of the polymer solution (electric stirrer)

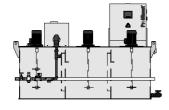
Technical details

Siemens S7-1200 compact control system and KTP 400 touch panel

- Optionally fitted with PROFIBUS® and DP/DP coupler
- Optionally fitted with Profinet and PN/PN coupler


Field of application

Many different uses, for example in water treatment, waste water treatment or in paper production.


The following types of polymer can be processed:

- Liquid polymer (0.05 1.0 %)
- Powdered polymer (0.05 0.5 %)

Quickly and flexibly adapt your continuous flow system to your metering task using the ULFa identity code.

Ultromat® ULFa for liquid polymers

Ultromat® ULFa for powder polymers

P_UL_0022_SW1

P_UL_0024_SW1

Selectable components:

- Storage tank size / Extraction rate
- Construction (normal or mirror image)
- Electrical connection
- S7-1200 control (with and without PROFIBUS / PROFINET)
- Options
- Powder metering unit
- Vibrator for powder metering units (promotes the movement of polymer)
- FG205 powder feeder / Top hopper (for filling and feeding the powder metering unit)
- Liquid concentrate pump
- Monitor for liquid concentrate pump (float switch/flow monitor)
- Flush valve (Y-flush inlet or wetting cone)
- Stirrer for 3rd chamber
- Language (pre-set language for the control panel)

P_UL_0023_SW1

Ultromat® ULFa for powder and liquid polymers

The standard scope of supply contains among other things:

- S7-1200 control and KTP 400 touch panel
- Pressure sensor for measuring the liquid level
- Pause function/operating message
- Monitoring of the re-dilution unit
- Lifting lugs for transport
- Socket for FG205 feeder unit (only when powder metering unit is selected)

Technical Data

Discharge volume	l/h	400	1,000	2,000	4,000	6,000	8,000
Tank volume	I	400	1,000	2,000	4,000	6,000	8,000
Diluent water max.	l/h	1,500	1,500	3,000	6,000	9,000	12,000
Water pressure	bar	3 – 5	3-5	3 – 5	3-5	3-5	3 – 5
Powdered polymer	kg/h	0.5-11	0.5–11	0.8–18	3.6-55	3.6-55	4.8–110
Length	mm	1,999	2,643	3,292	3,301	4,120	4,605
Width	mm	918	1,002	1,186	1,456	1,651	1,910
Height	mm	1,390	1,740	1,890	2,182	2,182	2,290
Water connection	"	1	1	1	1 1/2	1 1/2	2
Discharge nozzle DN	mm	25	25	32	40	40	50
Concentrate feed DN	mm	15	15	15	20	20	20
Voltage/Frequency	VAC/Hz	400/50	400/50	400/50	400/50	400/50	400/50
Power uptake	kW	1.5	2.6	3.2	5.0	5.0	9.5

Identity Code Ordering System for Continuous Flow Systems Ultromat® ULFa

0400		ious flo	w syste	em / 400	I / 400 l							
1000			•	em / 100								
2000				em / 200								
4000 6000				em / 400 em / 600								
8000				em / 800								
3000	Design		Jyou	, 500	J 17 JUU	J 1/11						
	N	standa	ırd									
	S	mirror-	image	t								
		Electr		nnectio								
		Α			60 Hz (3	Bph, N, P	E)					
			Conti		37-1200							
			1			with PR	OFIBLIS	® (DP/D	P count	er)		
			2								OFINET	(PN/PN coupler)
				Optio	ns							
				0	none							
				1		arge pip						
				2		arge pip			,	۸		
				4		arge pip arge pip				,		
				'	Dry fe	•	оноп Г	. 5 (500				
					P0	none						
					P1	,	eder (04	,	0)			
					P2	_	eder (20	,				
					P3 P4	,	eder (40	,))			
					P4		eder (80		and a			
						0	or for p	owder 1	eeuer			
						1		orator fo	r powde	r feeder		
							Add-o	n hoppe	er, hopp	er load	ler FG 2	205
							0	none				
							1					, 1000, 2000)
							2			pper 75 pper 10		
							4					der delivery unit FG205 (0400, 1000, 2000)
							5					der delivery unit FG205 (4000, 6000)
							6					wder delivery unit FG205 (8000)
						7	with ac	lapter co	over + p	owder d	lelivery unit FG205	
										ntrate p	ump	
								L0 L1	none with Si	ama		
								L2	with Sp	-		
								L3		ed for S	igma	
								L4	prepar	ed for S	pectra	
Langu				•							r liquid	concentrate pump
BG	bulgaria								0	none		
CN CZ	chinese	9							1			tor (only Spectra)
DA	czech danish								3			tor (only Spectra) th and flow monitor (only Spectra)
DE	german	ı							ا ً			ork with wetting fitting
EL	greek									1		ing fitting, PVC (0400, 1000, 2000)
EN	english									2		ing fitting, PVC (4000, 6000)
ES	spanish									3		ing fitting, PVC (8000)
ET	estonia	n								4		g cone, PVC (0400, 1000, 2000)
FI FR	finnish french									5 6		g cone, PVC (4000, 6000) g cone, PVC (8000)
HR	croatia	า								7		g cone, PVC (8000) g cone, PP (0400, 1000, 2000)
HU	hungar									8		g cone, PP (4000, 6000)
IT	italian									9		g cone, PP (8000)
LT	lithuani	an										r for 3 rd chamber
LV	latvian										0	none
MS NL	malay										1	Stirrer for storage tank 400, 0.18 kW
NC NO	dutch norweg	ian									2	Stirrer for storage tank 1000, 0.55 kW Stirrer for storage tank 2000, 0.75 kW
PL	polish	iaii									4	Stirrer for storage tank 2000, 0.75 kW Stirrer for storage tank 4000/6000, 1.1 kW
PT	portugu	iese									5	Stirrer for storage tank 8000, 2.2 kW
RO	romania	an										,
RU	russian											
SK	slovaki											
SL	sloveni											
SV	swedis turkish	1										
TR					1	1	1	1	1	1	i .	

3.7.3

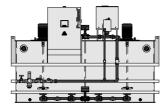
Metering System Ultromat® ULPa

A good solution when microscopically small substances need to be separated for further processing - and this is no longer possible mechanically: Polymer solutions can help here as flocculation aids.

Extraction rates from 400 to 4,000 l/h

The metering system Ultromat® ULPa (oscillating system) is ideal for batching flocculation aids for the preparation of a ready-to-use polymer solution.

Ultromat® ULPa units consist of two separate chambers, which can be successively filled with polymer solution, eliminating the risk of product carry-over. Both liquid and powdered polymers can be processed depending on the product range.


Your benefits

- Processing of liquid polymer (0.05-1.0 %) and powdered polymer (0.05-0.5 %).
- No mixing of fresh and matured polymer.
- Operator-controlled input of the solvent concentration and the calibration of powder metering unit and liquid concentrate pump.
- Gentle mixing of the polymer solution (electric stirrer).
- Version with terminal box available on request.

Technical details

Siemens S7-1200 compact control system and KTP 400 touch panel.

- Optionally fitted with PROFIBUS® and (DP/DP coupler)
- Optionally fitted with Profinet and PN/PN coupler

Ultromat® ULPa for liquid polymers

P UL 0026 SW1

P UL 0028 SW1

P UL 0027 SW1 Ultromat® ULPa for powder polymers

Field of application

Many different uses, for example in water treatment, waste water treatment or in paper production.

The following types of polymer can be processed:

- Liquid polymer (0.05 1.0 %)
- Powdered polymer (0.05 0.5 %)

Selectable components:

- Storage tank size / Extraction rate
- Construction (normal or mirror image)
- Electrical connection
- S7-1200 control (with and without PROFIBUS / PROFINET)
- Options
- Powder metering unit
- Vibrator for powder metering unit (promotes the movement of polymer)
- FG205 powder feeder / Top hopper (for filling and feeding the powder metering unit)
- Liquid concentrate pump
- Monitor for liquid concentrate pump (float switch/flow monitor)
- Flush valve
- Language (pre-set language for the control panel)

Ultromat® ULPa for powder and liquid poly-

■ S7-1200 control + KTP 400 touch panel

- Pressure sensor for measuring the liquid level
- Pause function/operating message
- Monitoring of the re-dilution unit
- Lifting lugs for transport
- Socket for FG205 feeder unit (only when powder metering unit is selected)

The standard scope of supply contains among other things:

Technical Data

Discharge volume	l/h	400	1,000	2,000	4,000
Tank volume	1	2 x 400	2 x 1,000	2 x 2,000	2 x 4,000
Diluent water max.	l/h	1,600	4,000	8,000	14,000
Water pressure	bar	3 – 5	3 – 5	3 – 5	3-5
Powdered polymer	kg/h	0.5–11	0.8–18	3.6–55	4.8–110
Length	mm	2,040	2,840	3,340	4,540
Width	mm	1,253	1,733	1,918	2,583
Height	mm	1,635	1,739	2,178	2,384
Water connection	II	1	1 1/4	1 1/2	2
Discharge nozzle DN	mm	25	32	40	50
Concentrate feed DN	mm	15	15	20	20
Voltage/Frequency	VAC/Hz	400/50	400/50	400/50	400/50
Power uptake	kW	2.5	3.2	5.5	7.0

Identity Code Ordering System for Oscillating Systems Ultromat® ULPa

1000		ting syst				I/h					
1000		ting syst									
2000 4000		0,	em / 2x2,000 I / 2,000 I/h								
7000	Oscillating system / 2x4,000 I / 4,000 I/h Construction										
1	N	standar	d								
	S	mirror-ii									
			rical connection 400 VAC, 50/60 Hz (3ph, N, PE)								
			Control								
			0		7-1200						
			1			with PR					
			2			mable Lo	ogic Cor	ntroller S	57-1200	with PR	OFINET (PN/PN coupler)
				Option							
				0	none						
					Dry fe	none					
					P1		eder (04	00)			
					P2	-	eder (10	,			
					P3	,	eder (20				
					P4	-	eder (40	,			
						Vibrat	or for d	ry feed	er		
1					1	0	none				
1					1	1	with vi	brator fo	r dry fee	eder	
1					1			eder FC	3205, a	dd-on h	opper
					1		0	none	ا ا		1/0400 1000\
					1		1 2				1 (0400, 1000) 5 (2000)
					1		3				0 I (4000)
							4				1 + powder delivery unit FG205 (0400, 1000)
							5				i I + powder delivery unit (2000)
					1		6				00 I + powder delivery unit (4000)
1					1		7				owder delivery unit
					1				conce	ntrate p	ump
1					1			L0	none		
								L1	with Si		
								L2	with S		
								L3 L4		ed for S	<u> </u>
								L4		ed for S	
									0	Inone	quid concentrate pump
									1		pat switch for concentrate tank
									2		ow monitor (only Spectra)
									3		pat switch and flow monitor (only Spectra)
Langu	age	1									pipework with wetting fitting
BG	bulgari									0	without wetting cone (liquid version)
CN	chines	е			1					1	Wetting cone, PVC (0400)
CZ	czech				1					2	Wetting cone, PVC (1000, 2000)
DA	danish									3	Wetting cone, PVC (4000)
DE EL	germa	11			1					4 5	Wetting cone, PP (0400) Wetting cone, PP (1000, 2000)
EN	greek english	,								6	Wetting cone, PP (1000, 2000) Wetting cone, PP (4000)
ES	spanis				1						(TOUR)
ET	estonia				1						
FI	finnish										
FR	french				1						
HR	croatia	n									
HU	hungai	rian			1						
IT	italian										
LT	lithuan										
LV	latvian				1						
MS	malay										
NL NO	dutch norweg	nian			1						
PL	polish	yıaıı									
PT	portug	uese			1						
RO	roman										
RU	russiar				1						
SK	slovak										
SL	sloven				1						
SV	swedis										
	1						1	1		1	
TR	turkish										

Metering Systems

3.7 Polymer Batching and Metering Systems Ultromat®

3.7.4

P UL 0029 SW1

P_UL_0030_SW1

Ultromat® ULDa for liquid polymers

Metering Systems Ultromat® ULDa

A good solution when microscopically small substances need to be separated for further processing – and this is no longer possible mechanically: Polymer solutions can help here as flocculation aids.

Extraction rates of up to 2,000 l/h

The ProMinent metering system Ultromat[®] ULDa is an automatic polyelectrolyte preparation system. It is useful wherever polymers need to be automatically prepared as polymer solutions to act as flocculation aids.

Ultromat[®] ULDa double-decker systems are used to process liquid and powdered polymers. The system consists of two separate PP storage tanks, stacked above each other, preventing product carry-over. The polymer solution is batched in the upper storage tank and can be transferred to the lower storage tank once the maturing time has elapsed.

Your benefits

- Processing of liquid polymer (0.05-1.0 %) and powdered polymer (0.05-0.5 %).
- No mixing of fresh and matured polymer.
- Wide range of versions for specific applications.
- Operator-controlled input of the solvent concentration and calibration of powder metering unit and liquid concentrate pump.
- Water fitting with flow meter and fitting set for the dilution water.
- Gentle mixing of the polymer solution (electric stirrer).
- Version with terminal box available on request.

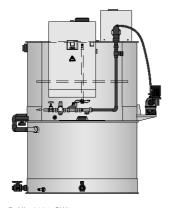
Technical details

- Siemens S7-1200 compact control system and KTP 400 touch panel.
- PLC Programmable Logic Controller optionally fitted with PROFIBUS® and DP/DP coupler.

Field of application

Many different uses, for example in water treatment, waste water treatment or in paper production.

The following types of polymer can be processed:


- Liquid polymer (0.05 1.0 %)
- Powdered polymer (0.05 0.5 %)

Selectable components:

- Storage tank size / Extraction rate
- Construction (normal or mirror image)
- Electrical connection
- S7-1200 control (with and without PROFIBUS / PROFINET)
- Options
- Powder metering unit
- Vibrator for powder metering units (promotes the movement of polymer)
- FG205 powder feeder / Top hopper (for filling and feeding the powder metering unit)
- Liquid concentrate pump
- Monitor for liquid concentrate pump (float switch/flow monitor)
- Flush valve (Y-flush inlet or wetting cone)
- Language (pre-set language for the control panel0

The standard scope of supply contains among other things:

- S7-1200 control + KTP 400 touch panel
- Pressure sensor for measuring the liquid level
- Pause function/operating message
- Monitoring of the re-dilution unit
- Lifting lugs
- Socket for FG205 feeder unit when the powder metering unit is selected

Ultromat® ULDa for powder polymers

P_UL_0031_SW1 Ultromat® ULDa for powder and liquid polymers

Metering Systems

3.7 Polymer Batching and Metering Systems Ultromat®

Technical Data

Discharge volume	l/h	400	1,000	2,000
Tank volume	I	2 x 400	2 x 1,000	2 x 2,000
Diluent water max.	l/h	1,600	4,000	8,000
Water pressure	bar	3 – 5	3 – 5	3 – 5
Powdered polymer	kg/h	0.5–11	0.8–18	3.6-55
Length	mm	1,638	1,902	2,288
Width	mm	1,351	1,615	2,005
Height	mm	2,030	2,514	3,149
Water connection	ш	1	1 1/4	1 1/2
Discharge nozzle DN	mm	25	32	40
Concentrate feed DN	mm	15	15	20
Voltage/Frequency	VAC/Hz	400/50	400/50	400/50
Power uptake	kW	1.5	2.6	3.2

Identity Code Ordering System for Double-deck System Ultromat® ULDa

ULDa		Tank size											
	0400 Double-deck system / 2x400 I / 400 I/h 1000 Double-deck system / 2x1,000 I / 1,000 I/h												
	2000	Double-deck system / 2x1,000 I/1,000 I/h											
	2000	Construc			-x = ,000	., _,							
		N standard											
		S m	nirror-im	imaged									
					connection								
		Α		400 VAC, 50/60 Hz (3ph, N, PE)									
				Contro		C S7-1200							
			1				with PR	SEIBI IS	® (DP/D	D couple	or)		
			2									OFINET (PN/PN coupler)	
					Option	•		g					
					0	none							
						Dry fe							
						P0	none						
						P1 P2	_	eder (04) eder (10)					
						P3	_	der (20					
							_		ry feed	er			
							0	none	., .cca				
							1	with vib	orator fo	r dry fee	der		
										205, ac	ld-on h	opper	
								0	none	latina. T			
								1			pper 50 pper 75		
								3			pper 10		
								4				I + powder delivery unit	
								5				I + powder delivery unit	
								6	with ac	ith add-on hopper 100 l + powder delivery unit			
								7				owder delivery unit	
										iquid concentrate pump none with Sigma			
									L1				
									L2	with Sp			
									L3	prepared for Sigma prepared for Spectra			
									L4				
										Monitor for liquid concentrate pump			
										0	none		
										1		at switch for concentrate tank	
										3		w monitor (only Spectra) at switch and flow monitor (only Spectra)	
	Langu	age								Ü		pipework with wetting fitting	
	BG	bulgarian									1	Y-wetting fitting, PVC (0400)	
	CN	chinese									2	Y-wetting fitting, PVC (1000)	
	CZ	czech									3	Y-wetting fitting, PVC (2000)	
	DA	danish									4	Wetting cone, PVC (0400)	
	DE EL	german									5 6	Wetting cone, PVC (1000)	
	EN	greek english									7	Wetting cone, PVC (2000) Wetting cone, PP (0400)	
	ES	spanish									8	Wetting cone, PP (1000)	
	ET	estonian									9	Wetting cone, PP (2000)	
	FI	finnish											
	FR	french											
	HR	croatian	_										
	HU IT	hungariar italian	n										
	LT	lithuanian	1										
	LV	latvian	•										
	MS	malay											
	NL	dutch											
	NO	norwegia	n										
	PL	polish											
	PT	portugues											
	RO	romanian											
	RU SK	russian slovakian											
	SL	slovakian											
	SV	swedish	•										
	TR	turkish											

3.7.5

Metering System Ultromat® ATR

The complete solution: Produces polymer solutions. Automated and reliable.

Extraction rates of up to 2,000 l/h

The metering system Ultromat® ATR (continuous flow system with round tank) is used for processing powdered polymers into ready-to-use polymer solutions.

Ready-mounted, automatic triple chamber batching systems for powdered flocculants to prepare a 0.05 to 0.5% polymer solution. The Ultromat® consists of 3 individual cylindrical PP storage tanks that serve as batching, maturing and storage tanks. The cylindrical storage tanks are hydraulically coupled via overflow channels. The storage tanks are extremely stable and do not require any additional reinforcement. The shipping weight of the Ultromat® ATR metering system is thus considerably reduced.

Your benefits

- Ready-for-use assembled systems
- Three individual cylindrical PP cylindrical tanks serve as batching, maturing and storage tanks
- Cylindrical storage tanks are hydraulically coupled via overflow channels
- Dry feeder with drive motor, metering pipe heating and powder funnel with seal tight lid
- Flushing system for flushing and wetting of the powder
- Gentle mixing of the polymer solution with two electric stirrers

Control cabinet for automatic control of the entire system Reliable and precise: Siemens LOGO control

P UL 0020 SW

Field of application

Many different uses, for example in water treatment, waste water treatment or in paper production.

The Ultromat® basically consists of the following components:

- Ultromat storage tanks made of 3 individual cylindrical PP storage tanks that serve as batching, maturing and storage tanks.
- Dry feeder with drive motor, metering pipe heater and powder funnel with seal tight lid
- Flushing system for flushing and wetting the powder with flush valve, flow meter and fitting set for the dilution water.
- Two slow-running electric stirrers
- Control cabinet for the automatic control of the entire system

Ultromat® ATR

	Process solution	Order no.
	I/h	
Ultromat® ATR 400	400	1033810
Ultromat® ATR 1000	1,000	1033811
Ultromat® ATR 2000	2,000	1033812

Options

	Order no.
3 rd stirrer for 0.18 kW for ATR 400	1033794
3 rd stirrer for 0.55 kW for ATR 1000	1033795
3 rd stirrer for 0.75 kW for ATR 2000	1033803
Overflow sensor for Ultromat® tank	1021604
Vibrator for powder feeder	1033808

Technical Data

Discharge volume	l/h	400	1,000	2,000
Tank volume	I	400	1,000	2,000
Diluent water max.	l/h	1,500	1,500	3,000
Water pressure	bar	3 – 5	3 – 5	3 – 5
Powdered polymer	kg/h	0.8–18	0.8–18	0.8–18
Length	mm	2,164	2,464	2,950
Width	mm	883	983	1,157
Height	mm	1,216	1,566	1,716
Water connection	п	1	1	1
Discharge nozzle DN	mm	25	25	32
Voltage/Frequency	VAC/Hz	400/50	400/50	400/50
Power uptake	kW	1.5	2.6	3.2

etering Systems

3.7 Polymer Batching and Metering Systems Ultromat®

3.7.6

Metering Systems POLYMORE

The POLYMORE in-line batching station creates homogeneous and ready-to-use polymer solutions.

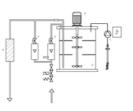
Capacity range of up to 18,000 l/h

The metering system POLYMORE is the inline batching station in which the liquid polymer is introduced into the pressure-encapsulated multi-zone mixing equipment through a peristaltic pump. The result is a prepared and homogeneous polymer solution.

The POLYMORE metering system is an inline polymer batching system for processing liquid polymers. The unit was designed for wall-mounting and requires little space. Only water, liquid polymer and supply voltage need to be connected to the unit for commissioning. If the maturing time is not sufficient for certain applications, a maturing tank with stirrer and metering pump can be fitted downstream.

Your benefits

- Wall mounting: Saves space
- Low-maintenance peristaltic pump for metering the liquid polymer
- Simple and quick to connect Requires only water, liquid polymer and power
- Downstream installation of a maturing tank with stirrer and metering pump is possible if the maturing time is insufficient for certain applications
- Automatic control
- Pressure-encapsulated mixing system for the effective production of polymer solutions
- Waterside equipment includes pressure reducer and solenoid valve
 - Re-dilution unit with static mixer and manometer
 - Manual or 4-20 mA control of the peristaltic pump


Technical details

- Peristaltic pump for metering liquid polymer
- Water apparatus includes pressure reducer and solenoid valve
- Pressure-encapsulated mixing system for the effective production of polymer solution
- Re-dilution unit with static mixer and manometer
- Controller for the automated control of the device. Manual or 4-20 mA control of the peristaltic pump

Field of application

- Waste water treatment
- Sludge de-watering
- Paper production

	Diluent water max. I/h	Metering output liquid polymer kg/h	Order no.
POLYMORE mini 2-0.08	120	0.08	1029568
POLYMORE mini 3-0.6	180	0.60	1029570
POLYMORE mini 5-0.6	300	0.60	1029571
POLYMORE mini 5-1.2	300	1.20	1029572
POLYMORE mini 10-1.2	600	1.20	1029574
POLYMORE mini 10-2.4	600	2.40	1029575
POLYMORE mini 30-3.0	1,800	3.00	1029576
POLYMORE duo 40-6.0	2,400	4.00	1029577
POLYMORE duo 65-9.0	3,900	8.00	1029579
POLYMORE midi 100-12	6,000	12.00	1029580
POLYMORE midi 160-24	9,600	20.00	1029581
POLYMORE maxi 300-54	18,000	50.00	1029584

Peristaltic pump
 Mixer unit

3 Stirrer

4 Diluent water5 Diluent water

6 Static mixer

AP_UL_0002_SW

3.7.7

Metering System PolyRex

PolyRex can do more: Processes liquid and powdered polymers.

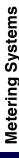
Capacity range of up to 3,820 l/h

The metering system PolyRex is a double-decker batching station for the processing of liquid and powdered polymers. It consists of the feed and mixer unit and the two stainless steel double-decker tanks. The polymers used are ideally utilised.

The upper storage tank is the batching/maturing tank. The lower tank is the storage tank for the prepared polymer solution. The powdered polymer is transported to the powder metering unit by a vacuum conveyor and mixed with water in the underlying mixer unit. The solution is then transferred to the upper storage tank (batching/maturing tank) using the water pressure of the diluting water. After maturing, the solution can be transferred to the bottom storage tank via the motorised valve. If liquid polymers are used, a switch is made to the Spectra eccentric screw pump. The system is automatically controlled by a Siemens PLC Programmable Logic Controller S7.

Your benefits

- Optimum utilisation of the polymer used
- Double screw metering unit enables low-pulsation metering with a high level of metering precision
- Optimal re-dilution with highly effective static mixers
- Optional: Automatic filling of the powder silo by vacuum filler
- Pressure reducer provides for a constant water supply
- Effective mixing of the polymer solution with the stainless steel design
- The system is automatically controlled by a Siemens PLC Programmable Logic Controller S7.


Technical details

- Vacuum conveyor and powder metering unit for the metering of powdered polymers and an eccentric screw pump to meter liquid polymers
- Water apparatus with wetting cone and injector to produce an effective and homogeneous polymer solution from powdered polymers (modified apparatus when using liquid polymers)
- Double-decker storage tank made of stainless steel for maturing and storing the polymer solution
- Motorised valve to dispense the solution into the storage tank
- Stirrer in the upper storage tank for the gentle mixing of the polymer solution
- Control cabinet with S7 control for the automatic control of the system

Field of application

- Waste water treatment
- Sludge de-watering
- Paper production

	Tank volume	Discharge volume	Metering output liquid polymer
	m³	l/h	kg/h
PolyRex 0.6	2 x 0.3	240	1.2
PolyRex 1.0	2 x 0.6	460	2.3
PolyRex 2.0	2 x 1.0	940	4.7
PolyRex 3.0	2 x 1.5	1,280	6.4
PolyRex 4.0	2 x 2.0	1,900	9.5
PolyRex 5.4	2 x 2.7	2,400	12.0
PolyRex 6.6	2 x 3.3	3,200	16.0
PolyRex 8.4	2 x 4.2	3,820	19.2

3.7.8

P UL 0025 SW1

Metering System Ultromat® MT

This manual polymer batching station is worthwhile if you only work with small quantities or only prepare polymer solutions now and again.

Capacity range from 120 to 3800 l/h

Manual polymer batching station Ultromat® MT: Perfect metering system for the processing of small quantities of liquid and powdered polymers: extremely robust and cost-effective.

The Ultromat® MT is ideal for individually batching polymer solutions where there is no need for automatic operation. The powdered polymer is added manually through the wetting cone to the maturing tank and mixed by the stirrer. After the maturing time, the flocculant solution can then be metered into the application.

- Ideal for use where there is no need for continuous operation
- Manual addition of flocculants
- Robust and cost-effective
- Round polypropylene batching tank
- Flushing system with wetting cone and injector
- Gentle mixing of the polymer solution

Technical details

- Slowly-running stirrer
- Flushing system
- Level switch (Low flow, Min, Max contact)
- Terminal box

Field of application

Waste water treatment, sludge dewatering

The systems consist of:

- 1 PP batching tank
- 1 Flushing system for flushing and wetting the powder with wetting cone, injector and fitting set for the dilution water
- Slow-running electric stirrer
- 1 Level switch with three switching points
- Terminal box

Ultromat® MT

	Order no.
MT 140, stirrer 0.18 kW	1037073
MT 250, stirrer 0.55 kW	1037094
MT 500, stirrer 0.75 kW	1037095
MT 1000, stirrer 1.1 kW	1037096
MT 2000, stirrer 2.2 kW	1037097
MT 3000, stirrer 2.2 kW	1037098
MT 4000, stirrer 3 kW	1037099

Technical Data

Туре		MT 140	MT 250	MT 500	MT 1000	MT 2000	MT 3000	MT 4000
Discharge volume	l/h	120	210	440	920	1,890	2,850	3,800
Tank volume	1	120	210	440	920	1,890	2,850	3,800
Diameter of tank	mm	640	650	850	1,260	1,460	1,770	1,650
Height of tank	mm	714	1,116	1,018	1,016	1,518	1,620	2,072
Height	mm	1,003	1,405	1,309	1,320	1,875	1,998	2,496
Water connection DN	mm	20	20	20	25	32	40	40
Discharge nozzle DN	mm	20	20	20	25	32	40	40
Voltage/Frequency	VAC/Hz	400/50	400/50	400/50	400/50	400/50	400/50	400/50
Power uptake	kW	0.18	0.55	0.75	1.10	2.20	2.20	3.00

The systems are also available with flushing water fitting, level indicator and switchgear.

Metering Systems

3.7 Polymer Batching and Metering Systems Ultromat®

3.7.9

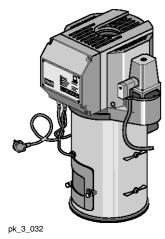
Ultromat® Accessories

Ultromat® VS dilution unit

Ultromat[®] dilution units are pre-assembled turnkey units for the dilution of polymer solutions, essentially comprising:

- 1 Water fitting for the dilution water with manual stop tap, pressure release valve, solenoid valve 24 V DC and flow meter float including minimum contact
- 1 Pipe for the polymer solution to be diluted including non-return valve
- 1 Static mixer for mixing stock solution with the dilution water

	Process solution	Order no.
VS 1000	1,000 l/h	1021386
VS 2000	2,000 l/h	1021387
VS 5000	5,000 l/h	1021388
VS 10000	10,000 l/h	1021389
VS 20000	20,000 l/h	1021390
VS 30000	30,000 l/h	1021391
VS 50000	50,000 l/h	1021392

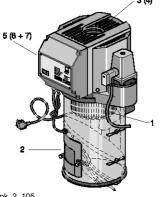

pk 7 031

Ultromat® VS-IP dilution unit with flow meter

The Ultromat[®] dilution units are pre-assembled turnkey units for the dilution of polymer solutions, essentially comprising:

- 1 Water fitting for the dilution water with manual stop tap, pressure release valve, solenoid valve 24 V DC and flow meter float including minimum contact
- 1 Pipe for the polymer solution to be diluted including non-return valve and inductive flow meter
- 1 Static mixer for mixing stock solution with the dilution water

	Process solution	Order no.
VS 1000 IP	1,000 l/h	1021490
VS 2000 IP	2,000 l/h	1021491
VS 5000 IP	5,000 l/h	1021492
VS 10000 IP	10,000 l/h	1021493
VS 20000 IP	20,000 l/h	1021494
VS 30000 IP	30,000 l/h	1021495
VS 50000 IP	50,000 l/h	1021496



Ultromat® hopper loader FG 205

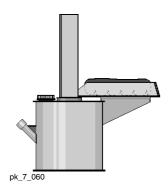
The Ultromat® hopper loader 205 is used to refill the dry feeder in Ultromat® systems with commercially available powdered polymers. With the aid of a suction hose and suction lance, the powder is sucked out of the storage container (Big-Bag, powder storage tank) into the powder conveyor and via a flap into the powder feed screw of the polymer diluting station. The powder conveyor is self-operating and simply requires a 230 V DC terminal. External control contacts are not necessary. Depending upon the powder quality, approx. 75-90 kg of powder polymer can be conveyed per hour. The 4 m feed tube and suction nozzle are included as standard.

U		Feed rate	Order no.	
Hopper loader FG 205 75 – 90 kg/h 1000664	Hopper loader FG 205	75 – 90 kg/h	1000664	

Spare parts for the FG 205 hopper loader

	Order no.
Filter cartridge 0.2 m ²	1010773
Filter insert	1010774
Fan	1036770
Set of carbon brushes	1036771
Control	1050453
Set of carbon brushes (till 2012/08)	1010769

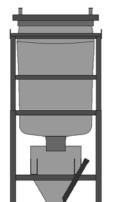
pk_2_105


- Filter cartridge
- Filter mat
- Carbon brushes, set Control

pk_7_033

Powder pre-storage tank

The powder pre-storage tank is used for interim storage of powdered polymers that are delivered in Big-Bags. The Big-Bag is suspended over the tank on a frame and emptied into the powder pre-storage tank.


	Tank volume	Order no.
Powder pre-storage tank	280	1005573

Powder pre-storage tank with sack tipper

The powder pre-storage tank with sack tipper is used for interim storage of powdered polymers delivered in 25 kg sacks.

	Tank volume	Order no.
Powder pre-storage tank with sack tipper	280	1025137

Big Bag Emptying Unit

This emptying unit is used to accommodate and empty Big Bags weighing up to 1,000 kg. The Big Bags are suspended in the frame with the aid of a lifting cross bar. The 30-litre powder storage tank is used to transfer the powder into a feed unit.

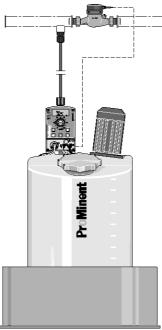
The emptying unit consitst of the following components:

- Frame 1570 x 1300 x 2540 mm (WxLxH). The height can be adjusted up to 2040 mm
- Suspension cross bar
- Powder storage tank with powder filling sensor, 30-litre content

	Tank volume	Order no.
Big Bag Emptying Unit	301	-

P_UL_0021_SW

1.1.2015 Product Catalogue 2015


Application Examples

3.8.1 **Proportional Metering of Phosphate**

Product: DULCODOS® eco Feed chemical: **Phosphate** Industry: Potable water

Potable water conditioning Application:

The liquid phosphate is added to the potable water proportional to the volume. The flow meter sends pulses to the gamma/ L pump. The metering volume is adjusted by increasing or decreasing the incoming pulses.

pk_7_093

Tasks and requirements

Metering of phosphate to potable water to prevent lime deposits and corrosion in the piping

Operating conditions

- Treatment of potable water
- Fluctuating water demand
- Water temperature between 4 30 °C

Application information

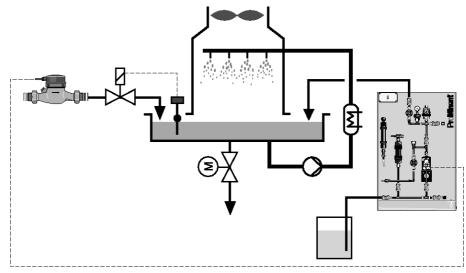
- Proportional metering of phosphate depending on the water supply
- Control of the metering pump by a contact water meter
- Measurement of the metering pump capacity during commissioning

Solution

- DULCODOS® eco with 140-litre metering tank and drip pan
- gamma/ L with contact input and pulse control
- Contact water meter

Benefits

- Constant solution concentration even minimal fluctuating water supply
- Fully-automatic operation with minimal staff and maintenance
- Flexible process design thanks to adaptation of the pump to various concentration demands


3.8 Application Examples

3.8.2 Inhibitor Metering in Cooling Water

Product: **DULCODOS® panel**Feed chemical: **Corrosion inhibitor**

Industry: Process industry, power stations
Application: Cooling water conditioning

The corrosion inhibitor is added to the fresh water in proportion to the volume. The water meter detects the supply water volume and sends the pulses to the gamma/ L pump.

pk_7_060_1

Tasks and requirements

Metering of corrosion inhibitors to supply water to prevent lime deposits and corrosion in the cooling water circuit.

Operating conditions

- Treatment of flow water
- Fluctuating water demand
- Water temperature between 4 20 °C

Application information

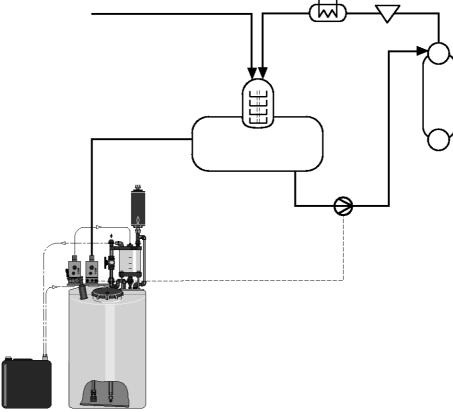
- Proportional metering of inhibitor depending on the water supply
- Control of the metering pump by a contact water meter
- Calibration of the metering pump capacity during commissioning

Solution

- DULCODOS® panel including standby pump
- gamma/ L with contact input and pulse control
- Contact water meter

Benefits

- Protection against corrosion in the pipework and heat exchanger
- Constant solution concentration even with fluctuating water supply
- Fully-automatic operation with minimal staff and maintenance
- Flexible process design thanks to adaptation of the pump to various concentration demands


Application Examples

3.8.3 **Inhibitor Metering in Boiler Feed Water**

Product: **DULCODOS® Hydrazin** Feed chemical: Oxygen binding agent

Industry: Process industry, power stations Application: **Boiser feed water treatment**

The oxygen binding agent is added to the fresh water in proportion to the volume. The water meter detects the supply water volume and sends pulses to the gamma/ L pump on the hydrazine unit.

pk_7_095

Tasks and requirements

Metering of oxygen binding agent to the boiler feed water to prevent oxygen corrosion in the boiler area.

Operating conditions

- Fully desalinated potable water
- Continuous operation

Application information

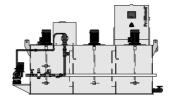
- Proportional metering of oxygen binding agent depending on the boiler feed water
- The 15 % concentrate is metered by a metering pump using a measuring unit into the metering tank and is diluted with water to produce a 1 % metering solution
- Measurement of the metering pump capacity during commissioning

Solution

■ DULCODOS® Hydrazin with 250-litre metering tank

Benefit

- Semi-automatic operation
- Flexible process design thanks to adaptation of the pump to various concentration demands


3.8 Application Examples

3.8.4 **Sludge Dewatering**

Product: **Ultromat®**

Feed chemical: Polymer solution Industry: Waste water Application: Sludge dewatering

The Ultromat® prepares a 0.2 % polymer solution that is metered into the sludge through the Spectra eccentric screw pump. The centrifuge dewaters the sludge to a dry matter content of 30 %.

P UL 0023 SW1

Ultromat® ULFa for powder and liquid polymers

Problems and requirements

Dewatering of sludge by the addition of polymer solution

Operating conditions

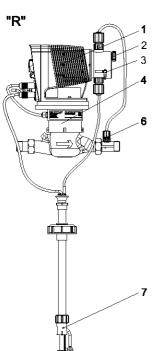
- Sludge max. 12 m³/h with a dry matter content of approx. 3 %
- Temperature up to 60 °C

Notes on use

- The Spectra eccentric screw pump is controlled proportionally to the sludge pump
- Gauge the capacity of the eccentric screw pump during commissioning
- Protect the eccentric screw pump against running dry

Solution

- Ultromat® ULFa 4000 for the preparation of a 0.2 % polymer solution
- Eccentric screw pump of the Spectra 3/3000 FB type


- Fully automatic operation with minimum personnel and maintenance requirements
- Flexible process configuration by adapting the pump to different concentration requirements
- Reduction of sludge disposal costs by higher dewatering ratios (high dry matter content)

4.0 Systems for Domestic Water Installations

4.0.1

Proportional Flow Dosing System for Liquid Dosing

P_NM_0004_SW1

- 1 Metering pump
- 2 Bleed valve
- 3 Bypass hose sleeve 4 Contact water meter
- Contact water mete
 Wall bracket
- Wall bracket
 Injection valve
- 7 Suction lance with level switch

Promatik®

Metering units protect pipework, fittings, and appliances, such as boilers, washing machines and dishwashers, from corrosion and limescale. Active substances, like silicate, phosphate or silicate phosphate mixtures, can be metered here. These active substances form a protective layer in the pipework and reduce aggressiveness and sedimentation in the water.

Silicate

As a corrosion inhibitor to prevent rust formation: "brownish water" in galvanised piping systems, "pitting": needle-like holes in the pipework. Applications include soft, corrosive types of water with a high percentage of aggressive carbonic acid. The silicate is used to raise the pH value closer to a lime-carbonic acid equilibrium. Hydrolysis produces a silica gel that forms a thin protective layer in the pipework and fittings and thus prevents corrosion.

Phosphate

As ortho and polyphosphate to prevent limescale and corrosion in hard water up to max. 20 CH (carbonate hardness). Hard water salts, such as calcium and magnesium ions, responsible for limescale are thereby stabilised, i.e. these ions remain dissolved in the water and do not form limescale on the pipe walls. Growth on the pipes is thus prevented and there are no deposits of limescale on heating coils, dramatically reducing their efficiency. A thin, solid protective layer is formed. Mixtures containing silicate and phosphate act as corrosion and limescale inhibitors for soft and medium-hard water. The continuous top-up of the feed chemical is required to maintain this protective layer, otherwise it will degrade within a few days.

EXACTAPHOS®

EXACTAPHOS® metering solutions are matched to the capacity of the Promatik® and DULCODOS® units. This ensures that the percentages of max 40 mg/l SiO_2 of silicate and/or 6.7 mg/l of phosphate PO_4 (5mg/l P_2O_5) are adhered to, as laid down by the "Drinking Water Ordinance".

Function of the systems

In a flow of water, the contact water meter transmits pulses with a fixed pulse interval corresponding to the pulses to the metering pump in line with the flow. Each of these pulses results in a metering stroke of the metering pump, thereby feeding the metering solution. The metering volume per stroke can thus be adjusted continuously between 100 and 50 % using the stroke adjustment dial. Because of the very low starting limit and the short pulse interval, a constant volume-proportional addition of chemicals can always be maintained, from minimum water flow rate to maximum load, guaranteeing the best process result.

Promatik® proportional flow dosing system

Consisting of a Beta® metering pump with sound insulation plate, contact water meter, suction assembly with foot valve and 2-phase level switch with pre-warning, acting as a low flow contact and empty signal, injection valve and metering line. In the "R" design of the compact metering unit, the metering pump is fitted on the contact water meter; with the "W" design of split system there are wall brackets for mounting the metering pump. Horizontal fitting position of the contact water meter. DVGW-tested in conjunction with the EXACTAPHOS® metering solution. DVGW No. NW-9101 CM 0179.

4.1 Promatik® Metering Unit

4.1.1

Promatik®

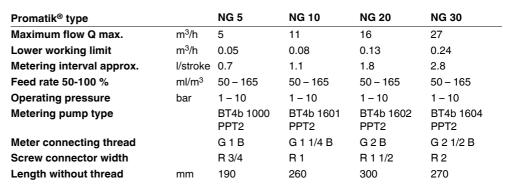
Protects pipework, fittings, and appliances, such as boilers, washing machines and dishwashers, from corrosion and limescale.

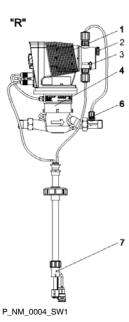
For flows of 5 - 27 m³/h

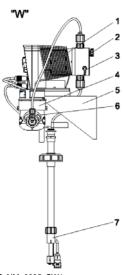
The proportional metering system Promatik® is used in the potable water sector for the flow-dependent, adjustable metering of liquid media, like the EXACTAPHOS®. It consists of the metering pump Beta®, a contact water meter, a suction assembly with foot valve and level switch and an injection valve and metering line.

In a flow of water, the contact water meter transmits pulses with a fixed pulse interval corresponding to the pulses to the metering pump in line with the flow. Each of these pulses results in a metering stroke of the metering pump, thereby feeding the metering solution. The metering volume per stroke can thus be adjusted continuously between 100 and 50 % using the stroke adjustment dial. Because of the very low starting limit and short pulse interval, a constant volume-proportional addition of chemicals can always be maintained from minimum water flow rate to maximum load, thereby guaranteeing the best process result

Your benefits

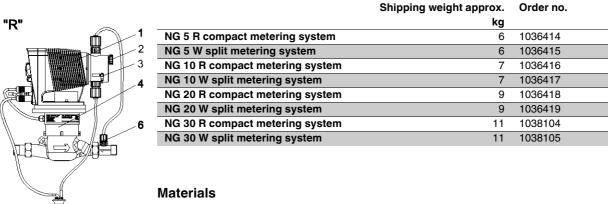

- DVGW-tested in conjunction with the EXACTAPHOS® metering solution. DVGW No. NW-9101 CM 0179.
- The EXACTAPHOS® metering solutions are matched to the capacity of the ProMatik® metering units.


Technical details


- Consisting of a Beta® metering pump, contact water meter, suction assembly with foot valve and 2-phase level switch with pre-warning as low flow contact and empty signal, injection valve and metering line.
- In the "R" design compact metering system, the metering pump is built onto the contact water meter.
- In the "W" design split system there are wall brackets for accommodating the metering pump. Contact cable and PE metering line 2 m long. Horizontal fitting position of the contact water meter.

Field of application

Potable water treatment



- P_NM_0005_SW1
- Metering pump
 Bleed valve
- 3 Bypass hose sleeve 4 Contact water meter
- Contact water r
 Wall bracket
- 5 Wall bracket
 6 Injection valve
- 7 Suction lance with level switch

4.1 Promatik® Metering Unit

Promatik® 4.1.2

Dosing head/valves: Polypropylene (PP) Metering diaphragm EPDM with PTFE insert

Seals: EPDM Valve balls: ceramic Float switches: PP

Suction assembly: flexible PVC

Discharge tube: PE

- P_NM_0004_SW1
- Metering pump Bleed valve
- Bleed valve
 Bypass hose sleeve
 Contact water meter
 Wall bracket
 Injection valve

- Suction lance with level switch

Domestic Water Systems

4.2 Chemicals for Water Treatment

4.2.1 Chemicals

EXACTAPHOS® SP 210

Silicate phosphate liquid metering solution. Drinking water treatment for soft water. Promatik $^{\otimes}$ compact metering system.

	Volume	Order no.
	I	
EXACTAPHOS® SP 210	20	950097
EXACTAPHOS® SP 210	200	950043

EXACTAPHOS® P 612

Phosphate liquid metering solution. Drinking water treatment for medium hard water. Promatik® compact metering system.

	Volume	Order no.
	1	
EXACTAPHOS® P 612	20	950098
EXACTAPHOS® P 612	200	950048

EXACTAPHOS® P 1020

Phosphate liquid metering solution. Drinking water treatment for hard water. Promatik $^{\tiny{\textcircled{@}}}$ compact metering system.

	Volume	Order no.
	1	
EXACTAPHOS® P 1020	20	950099
EXACTAPHOS® P 1020	200	950053

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

S	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see
*	=	For bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered.

** = does not apply to glass fibre reinforced material

(Materials of the types 'o' and '-' are not recommended!)

Concentration data are stated in weight percent, referred to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM** (**Hypalon®**) and **IIR** (**butyl rubber**) used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70 % H ₂ SO ₄ + 5 % K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10 % CrO ₃
Hydrochloric acid	≥ 25 % HCl
Hydrogen peroxide	≥ 5 % H ₂ O ₂
Hydrofluoric acid	≥ 0 % HF

Explanation of abbreviations used as column headings:

Acrylic:	Acrylic resistance
PVC:	PVC, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	PVDF resistance
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
Tygon:	Tygon® R-3603 resistance
Pharmed:	Pharmed® resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WGK:	water endangering class

 $\mathsf{Viton}^{\texttt{@}}$ is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1	=	slightly hazardous to water
2	=	hazardous to water
3	=	severely hazardous to water
(X)	=	No classification. Classification according to conclusion by analogy. To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

The data is taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PΕ	HastelloyC	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	-	+/0	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	-	+	0	+	1
Acetic Ether => Ethyl Acetate														
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	n	+	+	
Acetyl Chloride	CH ₃ COCI	100%	-	+	n	-	0	+	-	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	n	+	+	1
Acetylene Dichloride => Dichlo														
Acetylene Tetrachloride => Te	trachloro Ethane													
Acrylonitril	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	-	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	-	0	+	+/0	2
Aluminium Acetate	AI(CH ₃ COO) ₃	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	S	+	+	+	+	-	+	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+	+/0	1
Aluminium Hydroxide	Al(OH) ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	Al(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	$Al_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	$(NH_4)_2CO_3$	40%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH ₄ Cl	S S	+	+	+	+	-	+	+	+	+	+	+/0	1
Ammonium Fluoride	NH ₄ F	s	+	0	+	+	0	+	+	+	+	+	+	1
Ammonium Hydroxide	"NH ₄ OH"	30%	+	+	+	+	+	-	+	+	+	+	+	2
Animonium nydroxide	NI 14OI 1	JU /6	т	т	т	(25 °C)		_	т	т	т	т	т	_
Ammonium Nitrate	NH ₄ NO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Oxalate	(COONH ₄) ₂ * H ₂ O	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ CIO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	$(NH_4)_2S_2O_8$	s	+	+	+	+	5%	+	+	+	+	+	5%	2
Ammonium Phosphate	(NH ₄) ₃ PO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphate	$(NH_4)_2SO_4$	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphide	$(NH_4)_2S$	s	+	+	+	+	n	+	+	n	n	+	n	2
Ammoniumaluminium	$NH_4Al(SO_4)_2$	S	+	+	+	+	+	+	+	+	+	+	+	1
Sulphate														
Amyl Alcohol	C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCI	s	n	+	+	+	-	+/0	+/0	-	0	+	+	2
Antimony Trichloride	SbCl ₃	s	+	+	+	+	-	+	+	+	+	+	n	2
Aqua Regia	3 HCI + HNO ₃	100%	-	+	-	+	-	-	0	-	-	-	-	2
Arsenic Acid	H ₃ AsO ₄	S	+	+	+	+	+	+	+	20%	0	+	+	3
Barium Carbonate	BaCO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Barium Hydroxide	Ba(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphide	BaS	S	+	+	+	+	+	+	+	+	+	+	+	(1)
Benzaldehyde	C ₆ H ₅ CHO	100%	-	-	+	-	+	+	+	-	-	0	+	1
Benzene	C ₆ H ₆	100%	-	-	0	+	+	0	-	-	-	0	+	3
Benzene Sulphonic Acid	C ₆ H ₅ SO ₃ H	10%	n	n	+	+	+	+	-	-	-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	S	+	+	+	+	+	+	+	-	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI	100%	-	n	0	n	0	+	+	n	n	0	+	2
	561 150001	. 50 /0			,		~				••	•		_

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇	100%	-	-	+	0	+	+	-	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	-	0	+	2
Bitter Salt => Magnesium Sulp	hate													
Bleach => Sodium Hypochlorit	te													
Blue Vitriol => Copper Sulphat	e													
Borax => Sodium Tetraborate														
Boric Acid	H ₃ BO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Brine		S	+	+/0	+	+	+/0	+	+	+	+	+	+	1
Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	-	+	2
Bromine Water	$Br_2 + H_2O$	S	-	+	-	+	-	-	-	n	n	-	n	(2)
Bromo Benzene	C ₆ H ₅ Br	100%	n	n	0	+	+	0	-	-	-	0	+	2
Bromochloro Methane	CH ₂ BrCl	100%	-	-	-	+	+	n	+/0	-	-	0	+	2
Bromochlorotrifluoro Ethane	HCCIBrCF ₃	100%	-	-	0	+	+	+	-	+	+	0	+	(3)
Butanediol	HOC ₄ H ₈ OH	10%	n	+	+	+	+	0	+	+	+	+	+	1
Butanetriol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	0	+	+	+	+	+	1
Butanol	C ₄ H ₉ OH	100%	-	+	+	+	+	0	+/o	-	-	+	+	1
Butyl Acetate	C ₇ H ₁₃ O ₂	100%	-	-	+	+	+	-	-	-	+/0	+	+	1
Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	-	+/o	-	+	1
Butyl Alcohol => Butanol	7 7													
Butyl Amine	C ₄ H ₉ NH ₂	100%	n	n	n	-	+	-	-	n	n	+	+	1
Butyl Benzoate	C ₆ H ₅ COOC ₄ H ₉	100%	-	-	0	n	+	+	+	-	-	0	+	2
Butyl Mercaptane	C ₄ H ₉ SH	100%	n	n	n	+	n	+	-	n	n	n	n	3
Butyl Oleate	C ₂₂ H ₄₂ O ₂	100%	n	n	n	+	+	+	+/0	n	n	n	+	1
Butyl Stearate	C ₂₂ H ₄₄ O ₂	100%	0	n	n	+	+	+	-	n	n	n	+	1
Butyraldehyde	C ₃ H ₇ CHO	100%	-	n	+	n	+	-	+/0		-	+	+	1
Butyric Acid	C ₃ H ₇ COOH	100%	5%	20%	+	+	+	+	+		+/0	+	+	1
Calcium Acetate	(CH ₃ COO) ₂ Ca	S	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Bisulphite	Ca(HSO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Carbonate	CaCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Chloride	CaCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Calcium Cyanide	Ca(CN) ₂	s	+	+	+	+	n	+	+	+	+	+	n	3
Calcium Hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Hypochlorite	Ca(OCI) ₂	s	+	+	0	+	-	0	+	+	+	+	+	2
Calcium Nitrate	Ca(NO ₃) ₂	s	+	50%	50%	+	+	+	+	+	+	+	+	1
Calcium Phosphate	Ca ₃ (PO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphate	•	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphide	CaSO ₄	s	+	+	+	+	n	+	+	+	+	+	+	(2)
Calcium Sulphite	CaSO ₃	S	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Thiosulphate	•	s	+	+	+	+	-	+		+	+	+	+	1
Carbolic Acid => Phenole	CaS ₂ O ₃	5	т	т	т	т	-	т	+	т	т	+	Ŧ	'
Carbon Disulphide	CS ₂	100%	-		0							^	+	2
Carbon Tetrachloride	CCI ₄	100%		-	0	+	+	+	-	-	-	0	+	3
						+	+	+				0		
Carbonic Acid Caustic Potash => Potassium	"H ₂ CO ₃ "	S	+	+	+	+	+	+	+	+	+	+	+	1
	,													
Caustic Soda => Sodium Hydr Chloric Acid	HCIO ₃	200/						_	•			10%		2
		20%	+	+	-	+	-	0	0	+	+	10%	+	2
Chlorinated Lime => Calcium F	* .	0.5%					-		-	_	_			
Chlorine Dioxide Solution	CIO ₂ + H ₂ O		0	+	0	+		0		0		0	+	
Chlorine Water	Cl ₂ + H ₂ O	S	+	+	0	+	-	+	+	0	-	0	+	•
Chloro Benzene	C ₆ H ₅ Cl	100%	-	-	+	+	+	+	-	-	-	0	+	2
Chloro Ethanol	CICH ₂ CH ₂ OH		-	-	+	0	+	-	0	-	+	+	+	3
Chloro Ethylbenzene	C ₆ H ₄ ClC ₂ H ₅	100%	-	-	0	n	+	0	-	-	-	0	+	(2)
Chloro Phenole	C ₆ H ₄ OHCI	100%	-	n	+	+	+	n	-	-	-	+	+	2
Chloro Toluene	C ₇ H ₈ Cl	100%	-	-	n	+	+	+	-	-	-	n	+	2
Chloroacetone	CICH ₂ COCH ₃	100%	-	-	n	n	+	-	+	-	-	n	+	3
Chlorobutadiene	C ₄ H ₅ Cl	100%	-	-	n	n	+	+	-	-	-	n	+	1
Chloroform	CHCl ₃	100%	-	-	0	+	+	+	-	-	0	-	+	2
Chlorohydrin	C ₃ H ₅ OCI	100%	-	n	+	-	+	+	0	-	+	+	+	3
Chloroprene => Chlorobutadie														
Chlorosulphonic Acid	SO ₂ (OH)CI	100%	-	0	-	+	-	-	-	-	-	-	0	1
Chrome-alum => Potassium C														
Chromic Acid	H ₂ CrO ₄	50%	-	+*	0	+	10%	+	-	0	0	+	10%	3

Chemical	Formula	Conc	Acryl		PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Chromic-Sulphuric Acid	K ₂ CrO ₄ + H ₂ SO ₄	S	-	+*	-	+	n	n	n	-	-	-	n	3
Chromium Sulphate	$Cr_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Citric Acid	C ₆ H ₈ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	1
Cobalt Chloride	CoCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
Copper-II-Acetate	Cu(CH ₃ COO) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Arsenite	Cu ₃ (AsO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Carbonate	CuCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Copper-II-Chloride	CuCl ₂	s	+	+	+	+	1%	+	+	+	+	+	+	2
Copper-II-Cyanide	Cu(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(3)
Copper-II-Fluoride	CuF ₂	S	+	+	+	+	+	+	+	+	+	+	+	(2)
Copper-II-Nitrate	Cu(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+/0	2
Copper-II-Sulphate	CuSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	2
Cresols	C ₆ H ₄ CH ₃ OH	100%	0	0	+	+	+	+	-	-	-	+	+	2
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+		+	-		+	+	3
Cubic Nitre => Sodium Nitrate	0113021120110	100 /6	"		т		T		т			т	т	
Cumene => Isopropyl Benzene	<u> </u>													
Cyclo Hexane		100%	+	-	+				_	_	_		0	1
•	C ₆ H ₁₂					+	+	+	-	-	-	+		
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-			+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	-	+	+	1
Cyclohexyl Alcohol => Cyclohe		1000/	n	n .		_			n	_	_	_		2
Cyclohexylamine	C ₆ H ₁₁ NH ₂	100%	n	n . /a	n	n	+	-	n	n	n	n	+	2
Decahydronaphthaline	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-	-	-	0	+	2
Decaline => Decahydronaphth	aiene													
Dextrose => Glucose	011.0	1000/												1
Diacetonalcohol	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+	-	-	+	+	1
Dibromoethane	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	-	-	-	-	+	3
Dibutyl Ether	$C_4H_9OC_4H_9$	100%	-	-	+	+	+	-	0	-	-	+	+	2
Dibutyl Phthalate	C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	0	+	0	+	2
Dibutylamine	$(C_4H_9)_2NH$	100%	n	n	+	+	+	-	-	n	n	+	+	1
Dichloro Acetic Acid	CI ₂ CHCOOH	100%	-	+	+	+	+	-	+	-	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-	-	0	+	+	+	-	-	-	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-	-	0	-	+	2
Dichloroisopropyl Ether	(C ₃ H ₆ Cl) ₂ O	100%	-	-	0	n	+	0	0	-	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	-	0	+	2
Diethyleneglycol	C ₄ H ₁₀ O ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	-	0	+	+	1
Diethylether	$C_2H_5OC_2H_5$		-	-	0	+	+	-	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+	+/0	+	+	3
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	0	+	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	0	+	+	+	1
Diisopropylketone	C ₂₆ H ₁₄ O	100%	-		+	+	+	-	+	-	-	+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%		n	+	+	+	+	-	n	n	+	+	1
Dimethyl Ketone => Acetone	(01130)200	100%	11	11	T	т	Т	т		11	.,	т	-	1
Dimethyl Phthalate	$C \sqcup C$	100%	_	-		_	_	-	1/0	0	_	_	_	1
	C ₁₀ H ₁₀ O ₄		-		+	+	+		+/0	0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%	-	-	+	-	+	-	+	-	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%	n	n	+	n	+	-	+	n	n	+	+	3
Dioctyl Phthalate	C ₄ H ₄ (COOC ₈ H ₁₇) ₂	100%	-	-	+	+	+	-	+/0	0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100%	-	-	0	-	+	-	+/0	-	-	+	+	1
Disodium Hydrogenphosphate Disulfur Acid Oleum	Na ₂ HPO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-	-	-	n	n	
DMF => Dimethylformamide	- 22													
Engine Oils		100 %	n	+/0	+	+	+	+	-	-	-	+	+	2
Epsom salts => Magnesium Su	ulphate	. 55 76		., 5										_
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	-	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%	0	n	+	-	+	-	+/0	-	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%	-	-	35%		+	-	+/0	-	+/0	+	+	1
•														
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%	-	-	+	0	+	-	+/0	-	-	+	+	2

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Ethyl Benzene	$C_6H_5-C_2H_5$	100%	-	-	0	+	+	0	-	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/o	-	+/0	+	+	1
Ethylacrylic Acid	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/0	n	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	n	+	0	2
Ethylene Dibromide => Dibrom														
Ethylene Dichloride => Dichlor														
Ethylene Glycol => Glycol														
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n	+	+	+	n	+/0	-	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0	-	0	+	+	1
Ferric Chloride	FeCl ₃	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	Fe ₂ (SO ₄) ₃	s	+	+	+	+	0	+	+	+	+	+	+	1
Ferrous Chloride	FeCl ₂	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
·	•	0	т	т	T	т	T	т	T	т	-	т	r'	'
Fixing Salt => Sodium Thiosulp Fluoro Benzene		100%		_	_	_	1	0	_	-		0	+	2
	C ₆ H ₅ F			-	+	+	+	0	-			0		
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	25%	0		+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	-	+	+	2
Formalin => Formaldehyde														
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	n	+	+	1
Formic Acid	НСООН	s	-	+/0	+	+	+	-	-	+/0	+/0	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	-	n	-	-	+	+	3
Furane Aldehyde	C ₅ H ₅ O ₂	100%	n	n	n	0	+	-	+/0	-	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	-	+	+	1
Gallic Acid	$C_6H_2(OH)_3COOH$	5%	+	+	+	+	+	+	+/0	+	+	+	+	1
Gasoline		100 %	-	-	+	+	+	+	-	-	-	+	+	2
Glauber's Salt => Sodium Sulp	hate													
Glucose	C ₆ H ₁₂ O ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol	$C_3H_5(OH)_3$	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	$C_3H_5(CH_3COO)_3$	100%	n	n	+	+	+	-	+	n	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+	+/0	+	+	1
Gypsum => Calcium Sulphate	2													
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-		+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	S	n	+	+	+	-	n	+	n	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%	n	n	+	+	+	-	+/0	-	-	+	+	1
Hexane	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n		-	0	+	+	1
Hexantriol									+					1
Hexene	C ₆ H ₉ (OH) ₃	100%	n	n	+	+	+	+	+	n -	n -	+	+	
	C ₆ H ₁₂	100%	n	+	+	+	+	+				+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S	+	+	+	+	+	n	+	-	0	+	+	3
Hydrobromic Acid	HBr	50%	+	+	+	+	-	-	+	+	-	+	0	1
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	+	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40% *	40% **	+	-	+	0	40%	-	40%	+/0	1
Hydrogen Cyanide	HCN	s	+	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H ₂ O ₂	90%	40%	40%*	30%	+	+		30%	30%	+	+	+	1
Hydroiodic Acid	HI	S	+	+	+	+	-	-	n	+	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+	+/0	+	+	2
Hydroxylamine Sulphate	(NH ₂ OH) ₂ * H ₂ SO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	10% S	+	+	0	+	-	+	+/0	+	+	0	+	(1)
lodine		s	0	-	+	+	-	+	+/0	+	+	0	+/0	(1)
Iron Vitriol => Ferrous Sulphate	l ₂	3	U						170	1	,	J	.70	
Isobutanol => Isobutyl Alcohol	, 													
-	C H CH/OH/OH	1009/									0		,	1
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%	-	+	+	+	+	+	+	-	0	+	+	1

1.1.2015 5

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Isopropanol => Isopropyl Alcoh														
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/0	-	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	-	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	-	-	0	+	+	+	-	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	-	0	0	+	1
Kitchen Salt => Sodium Chlorid	de													
Lactic Acid	$C_3H_6O_3$	100%	-	+	+	+	+/0	+	10%	-	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	s	+	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate														
Lead Sulphate	PbSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	Pb(C ₂ H ₅) ₄	100%	+	+	+	+	+	+	-	n	n	+	+	3
Lime Milk => Calcium Hydroxid	de													
Liquid Ammonia => Ammonium	n Hydroxide													
Lithium Bromide	LiBr	s	+	+	+	+	+	+	+	+	+	+	+	1
Lithium Chloride	LiCl	s	+	+	+	+	-	+	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate														
Magnesium Carbonate	MgCO ₃	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium Chloride	MgCl ₂	s	+	+	+	+	0	+	+	+	+	+	+	1
Magnesium Hydroxide	Mg(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate	MgSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	C ₄ H ₄ O ₄	s	+	+	+	+	+	+	+	-	0	+	+	1
Malic Acid	C ₄ H ₆ O ₅	s	+	+	+	+	+	+	+	+	+	+	+	1
Manganese-II-Chloride	MnCl ₂	S	+	+	+	+	_	+	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone	WI1004	•	•	•	•	•	•	•	•	•	•	•	•	
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	S	+	+	+	+	-	+	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	Hg(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide		100%	-	т					+/0	_	т			1
•	C ₆ H ₁₀ O			-	n	n	+	-		-	- 1/0	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0		+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	-	+/0	+	+	-
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	-	0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	-	+/0	+	+	2
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	-	+	+	2
Methyl Catechol	C ₆ H ₃ (OH) ₂ CH ₃	S	+	+	+	+	+	+	-	+	+0	+	+	(1)
Methyl Cellulose		S	+	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	-	+	+	2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%	+	+	+	+	+	+	-	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-	-	+	-	+	-	+	-	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+	-	+/0	-	-	+	+	1
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%	-	-	+	+	+	-	-	-	-	+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	-	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	+	2
Methylene Chloride => Dichlor														
Mirabilit => Sodium Sulphate														
Morpholine	C ₄ H ₉ ON	100%	-	-	+	-	+	n	n	-	-	+	+	2
Muriatic Acid => Hydrochloric														
Natron => Sodium Bicarbonate														
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
		s	+	+	+	+	+	+	+	+	+	+	+/0	2
Nickel-II-Nitrate	NI(NO ₃) ₂	3												
Nickel-II-Nitrate Nickel-II-Sulphate	Ni(NO ₃) ₂ NiSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	2

Chemical	Formula	Conc	Acryl		PP	PVDF					PharMed		HastelloyC	
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	-	-	+	n	+	-	+/0	-	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	+	+	0	-	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+	-	-	-	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n	-	-	+	+	(1)
Oil => Engine Oils														
Oleum	$H_2SO_4 + SO_3$	s	n	-	-	-	+	+	-	+	+	-	+	2
Orthophosphoric Acid => Phos														
Oxalic Acid	(COOH) ₂	s	+	+	+	+	10%	+	+	+/0	+/0	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	-	+	+	1
Pentanol => Amyl Alcohol	- 3 12													
Perchloric Acid	HClO₄	70%	n	10%	10%	+	-	+	+/0	0	+	+	n	1
Perchloroethylene => Tetrach	7													
Perhydrol => Hydrogen Perox	•													
Petroleum Ether	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-	-	-	+	+	1
Phenole	C ₆ H ₅ OH	100%	-	-	+	+	+	+	-	10%	+	+	+	2
Phenyl Ethyl Ether	$C_6H_5OC_2H_5$	100%	-	-	+	n	+	-	-	-	-	+	+	2
Phenyl Hydrazine	C ₆ H5NHNH ₂	100%	-	-	0	+	+	0	-	-	-	0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	+	1
•	POCI ₃	100%	50%	-	+						n			1
Phosphorous Oxychloride	•					+	n	+	+	n		+	+	
Phosphorous Trichloride Phthalic Acid	PCl ₃	100%	-	-	+	+	+	0	+	+	+/0	+	+	1
	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+		+	+	+	1
Picric Acid	C ₆ H ₂ (NO ₃) ₃ OH	S	+	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	-	n	+	2
Potash Alum => Potassium Al														
Potassium Acetate	CH ₃ COOK	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate		S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	S	n	+	+	+	+	+	+	+	+	+	+	1
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	S	+	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	s	+	+	+	+	10%	+	+	+	+	+	0,1	1
Potassium Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	55%	+	+	1
Potassium Chlorate	KCIO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Chloride	KCI	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Potassium Chromate	K₂CrO₄	10%	+	+	+	+	+	+	+	+	+	+	+	3
Potassium Chrome Sulphate	KCr(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN COLUMN	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	s	+	+	+	+	5%	+	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	0 1 10	s	+	+	+	+	25%	+	+	+	+	+	10%	3
Potassium Fluoride	K ₂ Cr ₂ O ₇	s	+			+			+	+	+	+	+	1
Potassium Hydroxyde	KOH	50%	+	+	+	+	+	+	+	10%	10%	+	+	1
i olassium riyuroxyue	KOH	30%	Т	+	Т	+ (25 °C)	+		-	10 /0	10 /6	Т	т	'
Potassium Iodide	KI	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄	s	+	+	+	+	+	+	+	6%	6%	+	+	2
Potassium Persulphate	K ₂ S ₂ O ₈	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => F		•	•			,	1		•	•			,	•
Potassium Sulphate	K ₂ SO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
·														
Proping Acid	K ₂ SO ₃	S 100%	+	+	+	+	+	+	+	+	+	+	+	1
Propionic Acid	C ₂ H ₅ COOH	100%	0	+	+	+	+	+	+	-	+/0	+	+	1
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	-	-	-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	-	+	+	1
Propylene Glycol	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	+	1
Prussic Acid => Hydrogen Cya Pyridine	anide C ₅ H ₅ N	100%	_		0		+				0	+	+	2

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	-	+	+	2
Roman Vitriol => Copper Su	lphate													
Salicylic Acid	HOC ₆ H₄COOH	S	+	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chlo														
Saltpeter => Potassium Nitra														
Silic Acid	SiO ₂ * x H ₂ O	S	+	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	+	1
Silver Chloride	AgCI	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hy	droxide													
Soda => Sodium Carbonate														
Sodium Acetate	NaCH ₃ COO	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate	C ₆ H ₅ COONa	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bicarbonate	NaHCO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphite	NaHSO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate	NaBO ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bromate	NaBrO ₃	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBr	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Carbonate	Na ₂ CO ₃	S	+	+	+	+	+/0	+	+	+	+	+	+	1
Sodium Chlorate	NaClO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Chloride	NaCl	s	+	+	+	+	-	+	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	+	10%	2
Sodium Chromate	Na ₂ CrO ₄	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Cyanide	NaCN	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dithionite	Na ₂ S ₂ O ₄	s	+	10%	10%	+	+	n	n	+	+			1
Sodium Fluoride	NaF	s	+	+	+	+	10%	+	+	+	+	+	+	1
Sodium Hydrogen Sulphate		3	т	т	т	T	10 /0	_		т	т	т		'
Sodium Hydroxide	NaOH	50%	+	+	+	+	+		+	10%	30%	+	+	1
SocialiTiyaroxide	NaOII	30 /6	т	T	Ŧ	(60%/ 25 °C)	т		т	10 /6	30 %	т	т	'
Sodium Hypochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	+	0	> 10%	2
Sodium lodide	Nal	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Metaphosphate	(NaPO ₃) _n	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrate	NaNO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrite	NaNO ₂	S	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Oxalate	Na ₂ C ₂ O ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Perborate	NaBO ₂ *H ₂ O ₂	S	+	+/0	+	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	S	+	+	+	+	+	+	+	n	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	S	+	+	+	+	+	n	n	+	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite	_	s	+	+	+	+	50%	+	+	+	+	+	50%	1
Sodium Tetraborate	Na ₂ SO ₃													1
	Na ₂ B ₄ O ₇ * 10 H ₂ O	S	+	+	+	+	+ 25%	+	+	+	+	+	+ 25%	
Sodium Thiosulphate	Na ₂ S ₂ O ₃	S	+	+	+	+		+	+	+	+	+		1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	S	+	+	+	+	+	+/0	+	+	+	+	+	1
Starch	$(C_6H_{10}O_5)_n$	S	+	+	+	+	+	+	n	+	+	+	+	1
Starch Gum	0.11.011011	S	+	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	-	0	+	2
Sublimate => Mercury-II-Ch														
Succinic Acid	C ₄ H ₆ O ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup		s	+	+	+	+	+	+	+	+	+	+	+	1
Sulphur Chloride => Disulph														
	H₂SO₄	98%	30%	50%	85%	+	20%	+	+	30%	30%	80%	+	1
Sulphuric Acid														
Sulphuric Acid Sulphuric Acid, fuming> C	leum													
Sulphuric Acid, fuming> C Sulphurous Acid	elleum H ₂ SO ₃	S	+	+	+	+	10%	+	+	+	+	+	+	(1)
Sulphuric Acid, fuming> C	eleum H ₂ SO ₃ SO ₂ Cl ₂	s 100%	+	+	+	+	10% n	+	+	+	+	+	+ n	(1) 1
Sulphuric Acid, fuming> C Sulphurous Acid	elleum H ₂ SO ₃													

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloromethane => Carbo	n Tetrachloride													
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	-	0	+	3
Tetralin => Tetrahydro Naphth	alene													
THF => Tetrahydrofurane														
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	s	+	0	+	+	-	+	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	s	n	+	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	s	n	+	+	+	-	+	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	n	+	+	2
Tributyl Phosphate	(C ₄ H ₉) ₃ PO ₄	100%	n	-	+	+	+	-	+	0	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	-	0	0	+	3
Trichloro Methane => Chlorofo														
Trichloroacetaldehyde Hydrate	CCI ₃ CH(OH) ₂	s	-	-	0	-	+	0	0	n	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+	+/0	+	+	1
Tricresyl Phosphate	$(C_7H_7)_3PO_4$	90%	-	-	+	n	+	0	+	0	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	-	0	+	+	1
Trilene => Trichloro Ethane														
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	0	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	S	+	+/0	+	+	+	+	+	20%	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	-	+/o	+	+	2
Water Glass => Sodium Silica	te													
Xylene	$C_6H_4(CH_3)_2$	100%	-	-	-	+	+	0	-	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+	+	+	1
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	+	n	1
Zinc Sulphate	ZnSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+	=	resistant
0	=	conditionally resistant
-	=	not resistant

The data is taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetic acid	50	0
Acetic acid (wine vinegar)		0
Acetic acid anhydride	100	-
Acetic acid, aqueous	10	+
Acetic ester	100	-
Acetone	all	-
Acetylene tetrabromide	100	-
Aluminium salts, aqueous	all	+
Alums of all kinds, aqueous	all	+
Ammonium salts	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Butanol	100	+
Butyl acetate	100	-
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Calcium chloride, aqueous	all	+
Carbon disulphide	100	-
Carbonic acid	all	÷
Caustic potash	15	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Copper sulphate, aqueous	all	+
Creosote		-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Difluorodichloromethane	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Ferric chloride, aqueous	all	+
Fertilizing manure salt, aqueous	all	+
Formaldehyde, aqueous	30	0
Glacial acetic acid	100	-
Glucose, aqueous	saturated	+
Glycerol	100	-
Halogens	all	-

Corrosive agent	Concentration in %	Evaluation
Hydrochloric acid	15	+
Hydrogen bromide	10	+
Hydrogen peroxide	to 10	+
Hydrogen sulphide, gaseous	100	-
Ink		+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Nitric acid, aqueous	25	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+
Silver nitrate	10	+
Sodium chloride, aqueous	all	+
Sodium hydroxide	aqueous	+
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sulphur dioxide, gaseous	all	+
Sulphuric acid	30	+
Tetrachloromethane	100	-
Toluene	100	-
Trichloroethylene	100	-
Urea, aqueous	all	+
Xylene	100	-
Zinc salts	all	+

Product catalogue 2015

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2015.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview

Measuring, control and sensor technology

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2015

Product Catalogue Volume 2

Measuring, Control and Sensor Technology

Precision by design

Precise sensor technology and high-performance measuring and control technology are the guarantee of process safety when metering liquid media.

We deal with it in detail in **Chapter 1!** Discover a huge range of DULCOTEST® sensors for precise recording of different parameters in real time.

The measuring and control devices in **Chapter 2** will introduce consistent quality into your process. From the simple conversion of measuring signals to controllers optimised for complex, application-specific control tasks - the optimum product for every task awaits you here!

Chapter 3 includes fully assembled metering and control systems, designed for the measurement of potable water, cooling water and waste water. The ready-wired plug-and-play modules, with perfectly matched components, are ready for fast and easy installation.

We're there for you!

We're there to help with the selection of your products. We'd be pleased to advise you on the integration of individual components into your individual metering processes.

Give us a call! We look forward to hearing from you.

Monday to Friday 8:00 - 16:30

ProMinent Germany Sales

+49 6221 842-0 info-de@prominent.com

Technical Consulting

+49 6221 842-0 service@prominent.com

We can also support you by phone in selecting the right products and, in many cases, optimising entire applications. For more complex requirements, our consultants will hand the task over to a field sales colleague, who will then clarify your requirements in person on site.

After-sales Service

Our service technicians are on hand to help you. Regardless of whether you need assistance with initial installation or with maintenance and repair – we'd be happy to help!

+49 6221 842-0 service@prominent.com

Note: Local to you around the world. Find contact details for our branch offices around the globe at: www.prominent.com/en/locations

New Measuring, Control and Sensor Technology Products

Ozone Sensor OZR 1-mA

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water
- Suitable also for monitoring the absence of ozone (rupture monitoring on filters) and for discontinuous ozone treatment processes
- Resistance to films of dirt by pore-free diaphragm

For more information see page → 1-78

Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

DULCOTROL® DWCa_P potable water/F&B

Treatment of potable water, water similar to potable water and treatment of rinsing water, industrial and process water in the food and beverage industry

- Disinfection
- Cleaning In Place (CIP)
- pH adjustment
- Monitoring

For more information see page \rightarrow 3-3

DULCOTROL® DWCa_W waste water

Treatment of industrial and municipal waste water

- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitoring

Installation fitting for chlorine sensor CLO

The installation valve permits the installation of the sensor for free chlorine types CLO (part no. 1033870, 1033871, 1033878) for operation in the process line (G 1") or in the bypass to the process line. Use either with a free outlet or return of the sample water to the process line. Sample water temperature up to $70\,^{\circ}\text{C}/2$ bar and $40\,^{\circ}\text{C}/7$ bar. Keep the flow constant.

For more information see page → 1-128

Contents

Meas	uring,	contro	l and sensor technology	page
1	Senso	or Tech	nnology DULCOTEST®	1-1
•	1.0		ew of Sensor Technology DULCOTEST®	1-1
	1.0	1.0.1	Selection Guide	1-1
	1.1	Sensor	Technology DULCOTEST® Measuring Principles	1-4
		1.1.1	Three Measurement Priciples for Reliable Water Treatment	1-4
		1.1.2	Potentiometry - Measures an Electrode's Potential in a	
			Sample Solution	1-4
		1.1.3	Amperometry - A Current Measurement Used to Determine the Concentration of Predetermined	
			Dissolved Solids in Aqueous Solutions	1-5
		1.1.4	Advantages of DULCOTEST® Amperometric Sensors at a	
			Glance	1-6
		1.1.5	Conductometry – The Measurement of Electrolytic Conduct	-
	1.2		P, Fluoride and Temperature Sensors DULCOTEST®	1-8
		1.2.1 1.2.2	pH Sensors With SN6 or Vario Pin Plug-in Head	1-10 1-28
		1.2.2	pH Sensors with Fixed Cable ORP Sensors with SN6 Plug-in Head	1-20
		1.2.4	ORP Sensors with Fixed Cable	1-43
		1.2.5	Fluoride Sensors	1-45
		1.2.6	Temperature Sensors	1-46
	1.3	Ampero	ometric Sensors DULCOTEST®	1-47
		1.3.1	Amperometric Sensors for Chlorine, Bromine,	
			Chlorine Dioxide, Chlorite, Ozone, Dissolved Oxygen,	1 17
		1.3.2	Peracetic Acid and Hydrogen Peroxide Sensors for Chlorine	1-47 1-49
		1.3.2	Sensors for Free Chlorine	1-49
		1.3.4	Sensors for Total Available Chlorine	1-62
		1.3.5	Sensors for Total Chlorine	1-64
		1.3.6	Sensors for Bromine	1-67
		1.3.7	Sensors for Chlorine Dioxide	1-71
		1.3.8	Sensors for Chlorite	1-75
		1.3.9	Sensors for Ozone	1-77
		1.3.10	Sensors for Dissolved Oxygen	1-79
		1.3.11		1-81
		1.3.12		1-82
	1.4		ctivity Sensors	1-85
		1.4.1 1.4.2	Conductivity Sensors 2-Electrode Conductivity Sensors	1-85 1-88
		1.4.2	Inductive Conductivity Sensors	1-108
	1.5	_	ty Measuring Points DULCOTEST®	1-111
	1.0	1.5.1	Measuring Points for Turbidity	1-111
	1.6		ories Sensor Technology	1-113
		1.6.1	Sensor Accessories	1-113
		1.6.2	Consumable Items for Sensors	1-116
		1.6.3	Sensor Fittings	1-119
		1.6.4	Immersion Sensor Fittings	1-122
		1.6.5	Immersion Sensor Fittings/Adaptors	1-126
	1.7	Applica	tion Examples	1-130
2	Meas	uring a	and Control Technology	2-1
	2.0	Measur	ring and Control Units DULCOMETER®	2-1
		2.0.1	Measuring and Control Units DULCOMETER®	2-1
	2.1		ler DULCOMETER® diaLog DACa	2-3
		2.1.1	Controller DULCOMETER® diaLog DACa	2-3
		2.1.2	Identity Code Ordering System for diaLog DACa,	^ ^
		010	Wall Mounting IP 67	2-6
		2.1.3	Retrospective Function Extension for the Controller diaLog DACa	2-7
		2.1.4	DACa Application and Ordering Examples	2-8
		2.1.5	Application Examples, Treatment of Swimming Pool Water	2-9
		2.1.6	Application Examples, Potable Water Monitoring	2-11
		2.1.7	Application Examples, Waste Water Monitoring	2-14
		2.1.8	Application Examples in the Food Industry	2-16

Contents

Measuring,	contro	l and sensor technology	oage
2.2	2.1.9 Measur	Odour Reduction Application Examples (Clarification Plants) ing and Control Unit for all Measured Variables DMETER® D1Cb/D1Cc	2-17
	2.2.1	Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc	2-18 2-18
	2.2.2	Identity Code Ordering System DULCOMETER® D1Cb,	2-10
	2.2.3	Wall Mounting Identity Code Ordering System DULCOMETER® D1Cc,	
	2.2.4	Control Panel Mounting D1Ub Identity Code Ordering System, Subsequent Function	2-21
	2.2.5	Upgrade for D1Cb D1Ub Identity Code Ordering System, Subsequent Function	2-23
	2.2.6	Upgrade for D1Cc D1Cb and D1Cc Application and Ordering Examples	2-23 2-24
	2.2.7	Application Examples, Treatment of Swimming Pool Water	2-25
	2.2.8	Application Examples, Potable Water Monitoring	2-28
	2.2.9	• • • • • • • • • • • • • • • • • • • •	2-30
	_	Application Examples, Waste Water Monitoring	
2.3	2.2.10 Measur	Application Examples in the Food Industry ing and Control Unit for pH/ORP, Chlorine and Conductivity	2-31
	DULCO	METER® Compact	2-32
	2.3.1	Measuring and Control Unit for pH/ORP, Chlorine and Conductivity DULCOMETER® Compact	2-32
	2.3.2	Identity Code Ordering System DULCOMETER® Compact, Wall Mounting IP 67	2-33
	2.3.3	Accessories	2-33
	2.3.4	Application and Ordering Examples for the DULCOMETER® Compact	2-34
	2.3.5	Application Examples, Treatment of Swimming Pool Water	2-34
	2.3.6	Application Examples, Potable Water Monitoring	2-35
	2.3.7	Application Examples, Waste Water Monitoring	2-36
2.4		hannel Multi-Parameter Measuring and Control System MARIN® II	2-38
	2.4.1	Controller DULCOMARIN® II	2-38
	2.4.2	Controller DULCOMARIN® II	2-41
	2.4.3	Identity Code Ordering System DULCOMARIN® II	2-45
	2.4.4	Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II	2-47
	2.4.5	Central Unit	2-49
	2.4.6	Combination Module	2-50
	2.4.7 2.4.8	Functional Module (F Module) Identity Code Ordering System Multi-Channel	2-51
	2.4.0	Multi-Parameter Measuring and Control System DULCOMARIN® II (Central Unit and Combination Module)	2-52
	2.4.9	Measuring Module (M module)	2-54
	2.4.10	Current Input Module (I module)	2-55
	2.4.11	Control Module (A module)	2-56
		,	
	2.4.12 2.4.13	Power Supply Module (N module) Control Module for Chlorine Gas Metering Devices	2-57
		(R module)	2-58
	2.4.14	Limit Value and Alarm Module (G module)	2-59
	2.4.15	Identity Code Ordering System for CANopen Modules	2-60
	2.4.16	Spare Parts and Upgrade Sets	2-61
	2.4.17	Software Upgrades	2-61
	2.4.18	Diaphragm Metering Pumps with CANopen Bus Interface	2-62
	2.4.19	Solenoid Driven Metering Pumps Beta®	2-63
	2.4.20	Multi-Channel Measuring and Control System DULCOMARIN® II, Module Combinations	2-66
	2 / 24		
	2.4.21 2.4.22	Configuration Example 1 Configuration Example:	2-67
	2.4.23	2-Pool System Accessories for the DULCOMARIN® II Measuring and	2-69
	2.4.24	Control System Technical Data for the DULCOMARIN® II Multi-Channel	2-71
	८.4. 24	Measuring and Control System	2-82

Contents

Micao	aring,		and concor toomiciogy	page	
		2.4.25	Application Examples: Treatment of Swimming Pool Water in		
		2.4.26	Public Baths Application Example: Measurement of Key Chemical Water	2-83	
			Parameters at Various Points in the Treatment of Drinking Water	2-87	
	2.5	Control	ler with Integral Metering Pump	2-90	
		2.5.1	Controller with Integral Metering Pump	2-90	
	2.6		METER® Transmitters	2-91	
		2.6.1	DULCOMETER® Transmitter DMTa	2-91	
		2.6.2	Identity Code Ordering System for Transmitter DMTa	2-93	
		2.6.3	Application Example: Measurement of Free Chlorine with Connection to a PLC	2-94	
		2.6.4	DULCOMETER® Transmitter DULCOPAC	2-95	
		2.6.5	Application Examples for DULCOPAC	2-97	
	2.7	Measur	ing and Test Systems	2-98	
		2.7.1	Portable Meter Portamess® Measured Variable pH/ORP	2-98	
		2.7.2	Portamess Portable Meters Measured Variable, Conductivity		
		2.7.3	Photometer	2-100	
	2.8		ories for Measuring and Control Devices	2-102	
		2.8.1	Measuring Transducer 420 mA (Two Wire)	2-102	
		2.8.2	Accessories for Portable Meters Portamess®	2-104	
3			ted Measuring/Control Stations	3-1	
	3.0		w of Panel-Mounted Measuring/Control Stations	3-1	
		3.0.1	Selection Guide	3-1	
		3.0.2	Identity Code Specifications in the DULCOTROL® Ordering System	3-1	
	3.1		ing and Control System DULCOTROL® Potable Water/F&B, TROL® Waste Water	3-3	
		3.1.1	DULCOTROL® Ordering System for Potable Water/F&B	3-3	
		3.1.2	Identity Code Ordering System for DULCOTROL® Measuring and Control Panels DWCA_P: Potable Water/F&I	3 3-4	
		3.1.3	DULCOTROL® potable water/F&B examples	3-5	
		3.1.4	DULCOTROL® Ordering System for Waste Water	3-6	
		3.1.5	Identity Code Ordering System for DULCOTROL® Measuring and Control Panels DWCA_W: Waste Water	3-7	
		3.1.6	DULCOTROL® waste water examples	3-8	
		3.1.7	Permissible measured variable combinations for DULCOTROL® DSWa_P: Potable water/F&B	3-9	
		3.1.8	Permissible measured variable combinations for DULCOTROL® DSWa_W: Waste water	3-10	
		3.1.9	Technical Description of the Scope of Supply for DULCOTROL® DWCa	3-11	
4	DroMi	nant®	Chemical Resistance List	4-1	
- 7	I I OIVII	Resista	nce of Materials Used in Liquid Ends to the Chemicals Most		
			ntly Used w of the Resistance of Soft PVC Hoses (Guttasyn®) to the	4-1	
	Most Common Chemicals				

1.0 Overview of Sensor Technology DULCOTEST®

1.0.1	Selection G	uide	
	DULCOTEST	[®] pH Sensor Sel	ection Guide
Medium	Temperature/pressure	Sensor type	Typical application
	Max. 100 °C/3 bar		
Clear, pH 3 – 14		PHEP-H	Chemical processes
	Max. 25 °C/6 bar		
	Max. 80 °C/	PHEN	Chemically contaminated water, low-conductivity
	no overpressure		water < 50 μS/cm
	Max. 60 °C/3 bar	PHES	Swimming pool water, potable water, glass shaft
	Max. 00 0/0 bai	11120	Owniming poor water, potable water, glass share
Clear, pH 2 - 12		PHEK	Swimming pool, aquarium, plastic shaft
	Max. 80 °C/6 bar	PHEP/PHEPT	Process water
	Max. 80 °C/8 bar	PHED	Chemically contaminated water, e.g. Cr6+, CN-
Calid matter turkiditu	Max. 80 °C/6 bar	PHER	Cooling water waste water
Solid matter, turbidity	Max. 60 C/6 par	PREK	Cooling water, waste water
Solid matter, non-	Max. 100 °C/16 bar	PHEX	Suspensions, sludge, emulsions
translucent			
Clear to turbid,	Max. 50 °C/7 bar	PHEF	Exhaust air scrubber, semiconductor industry,
containing fluoride, pH 0 - 7			electroplating
þ., o ,			

DULCOTEST® ORP sensor selection guide

Medium	Temperature / pressure	Sensor type	Typical applications
	Max. 80 °C / no overpressure	RHEN	Chemically contaminated water, low-conductivity water < 50 $\mu\text{S/cm}$
	Max. 60 °C / 3 bar	RHES	Swimming pool water, potable water, glass shafts
Clear, pH 2 - 12		RHEK	Swimming pools, aquaria, plastic shafts
	Max. 80 °C / 6 bar	RHEP-Pt	Process water
		RHEP-Au	Chemically contaminated water, e.g. CN-, ozone treatment
Solid matter, turbidity	Max. 80 °C / 6 bar	RHER	Cooling water, waste water
Solid matter, non- translucent	Max. 100 °C / 16 bar	RHEX	Suspensions, sludge, emulsions

Important note: All DULCOTEST® pH and ORP sensors are made from lead-free glass (RoHS-compliant)

1.0 Overview of Sensor Technology DULCOTEST®

Selection guide for DULCOTEST® amperometric sensors

Measured variable	Applications	Graduated measuring range	Connection to DULCOMETER®	Sensor type	See page
Free chlorine	Potable water, swimming pools	0.01–100 mg/l	D1C, DACa	CLE 3-mA-xppm, CLE 3.1-mA-xppm	→ 1-51
Free chlorine	Process and waste water	10 - 200 mg/l	D1C, DACa	CLR 1-mA	→ 1-61
Free chlorine	Potable water, swimming pool water	0.01 - 10 mg/l	DULCOMARIN® II	CLE 3-CAN-xppm, CLE 3.1-CAN-xppm	→ 1-54
Free chlorine	Potable water, swimming pool water, in situ electrolysis (without diaphragm)	0.02-10 mg/l	D1C, DACa	CLO 1-mA-xppm	→ 1-56
Free chlorine	Hot water up to 70 °C (legionella), in situ electrolysis (without diaphragm)	0.02-2 mg/l	D1C, DACa	CLO 2-mA-2ppm	→ 1-57
Free chlorine	Potable water, swimming pools	0.01–50 mg/l	DMT	CLE 3-DMT-xppm	→ 1-53
Free chlorine	Potable water, swimming pools	0.05-5 mg/l	COMPACT	CLB 2-µA-xppm	→ 1-58
Free chlorine	Potable water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 3-µA-xppm	→ 1-59
Free chlorine	Cooling, industrial and waste water, water with higher pH values (stable); seawater (free chlorine exists as bromine)	0.01-10 mg/l	D1C, DACa	CBR 1-mA-xppm	→ 1-60
Total available chlorine	Swimming pool water with chlorine- organic disinfectants	0.02-10 mg/l	D1C, DACa	CGE 3-mA-xppm	→ 1-62
Total available chlorine	Swimming pool water with organic chlorine disinfectants, in situ electrolysis (without diaphragm)	0.02 - 10 mg/l	D1C, DACa	CGE 3-mA	→ 1-62
Total available chlorine	Swimming pool water with chlorine- organic disinfectants	0.01–10 mg/l	DULCOMARIN® II	CGE 2-CAN*-xppm	→ 1-63
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	D1C, DACa	CTE 1-mA-xppm	→ 1-64
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	DMT	CTE 1-DMT-xppm	→ 1-65
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	DULCOMARIN® II	CTE 1-CAN-xppm	→ 1-66
Combined chlorine	Swimming pool water	0.02–2 mg/l	DACa	CTE 1-mA-2 ppm + CLE 3.1-mA-2 ppm	→ 1-66
Combined chlorine	Swimming pool water	0.01–10 mg/l	DULCOMARIN® II	CTE 1-CAN-xppm + CLE 3.1-CAN-xppm	→ 1-66
Total available bromine	Cooling water, waste water, swimming pool water, whirlpool water, bromine with BCDMH	0.01-10 mg/l	D1C, DACa	BCR 1-mA (replaces earlier type BRE 1)	→ 1-68
Total available bromine	Cooling water, swimming pool water, whirlpool water with organic or inorganic bromine compounds	0.02-10 mg/l	DULCOMARIN® II	BRE 3-CAN-10 ppm	→ 1-69
Free and bound bromine	Cooling, industrial, waste water, water with higher pH values (stable); seawater	0.02-20 mg/l	D1C, DACa	CBR 1-mA-xppm	→ 1-60
Chlorine dioxide	Potable water	0.01–10 mg/l	D1C, DACa	CDE 2-mA-xppm	→ 1-71
Chlorine dioxide	Bottle washer systems	0.02–2 mg/l	D1C, DACa	CDP 1-mA	→ 1-72
Chlorine dioxide	Hot water up to 60 °C, cooling water, waste water, irrigation water	0.01-10 mg/l	D1C, DACa, DULCOMARIN® II	CDR 1-mA-xppm, CDR 1-CAN-xppm	→ 1-73
Chlorite	Potable, wash water	0.02–2 mg/l	D1C, DACa, DULCOMARIN® II	CLT 1-mA-xppm, CLT 1-CAN-xppm	→ 1-75
Ozone	Potable water, swimming pool water	0.02-2 mg/l	D1C, DACa	OZE 3-mA	→ 1-77
Ozone	Process, service or cooling water	0.02-2 mg/l	D1C, DACa	OZR 1-mA-2 ppm*	→ 1-78
Dissolved oxygen	Potable, surface water	2–20 mg/l	D1C, DACa	DO 1-mA-xppm	→ 1-79
Dissolved oxygen	Activated sludge tank, sewage treatment plants	0.1–10 mg/l	D1C, DACa	DO 2-mA-xppm	→ 1-80
Peracetic acid	CIP, antiseptic food filling process	1–2,000 mg/l	D1C, DACa	PAA 1-mA-xppm	→ 1-81
Hydrogen peroxide	Clear water, fast control	1–2,000 mg/l	DACa	PEROX sensor PEROX-H2.10 P	→ 1-83
Hydrogen peroxide	Process, swimming pool water	2-20,000 mg/l	D1C, DACa	PER1-mA-xppm	→ 1-83

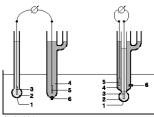
^{*} Available from 2nd quarter of 2015.

1.0 Overview of Sensor Technology DULCOTEST®

Conductivity sensor selection guide

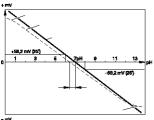
Conductivity > 20 mS/cm or residue-forming medium or chemically aggressive medium? **↓** no yes Inductive conductivity measurement Conductive conductivity measurement Further selection according to summary table: Do the following conditions exist? Chemically corrosive medium or Measuring range Temperatures > 70 °C or Temperature Measured value < 200 μ S/cm or > 1000 mS/cm **Process adjustment Electrical connection ↓** no yes Series ICT 2 Series ICT1 Product ranges LF, LMP, CK Installation in the process line: with stainless steel flange accessory For immersion with accessory: Immersion fitting IMA - ICT 2 Installation in the process line? **↓** No Yes Type ICT 1 Type ICT 1-IMA For installation in For immersion a pipe

1.1 Sensor Technology DULCOTEST® Measuring Principles


1.1.1

Three Measurement Priciples for Reliable Water Treatment

- Potentiometry is used to determine: pH value, ORP and fluoride concentration
- Amperometry is used to determine: chlorine, bromine, chlorine dioxide, ozone, hydrogen peroxide, peracetic acid
- Conductometry is used to determine electrolytic conductivity


1.1.2

Potentiometry - Measures an Electrode's Potential in a Sample Solution

pk_6_001

- Glass membrane
- 2 Internal pH buffer
- Internal derivation
- 4 Electrolyte
- 5 External derivation
- 6 Diaphragms

pk_6_002

- 1 Acid error
 2 Exponential (in practice)
- Exponential (in practice)Theoretical (nominal slope)
- Zero point deviation (asymmetrical potential)
- 5 Alkali error
- 6 Voltage of probe

As the measurement of the potential of a sensor (half chain) is not possible, a measuring chain is used that comprises two half chains. Their potential difference can be measured using a very high resistance voltmeter, i.e. nearly without any current.

A measuring chain always comprises:

A measuring electrode, which reacts as specifically as possible to concentration changes for a particular reactant and a reference electrode (reference), which supplies, as constantly as possible, a voltage that is dependent on the concentration of the reactant.

An example of a measuring system, such as this, is the pH measuring sensor, designed as a two-rod sensor or single rod sensor (Fig. pk_6_001).

pH - is equal to the negative logarithm of the hydrogen ion activity

As hydrogen ion concentrations occur in a wide range of less than 10⁻¹⁴ g/l up to more than 10 g/l (or mol/l) in aqueous solutions and the exponential nomenclature is unwieldy, the pH scale is defined as:

$pH = -log a_{H} +$

For concentrations that are not too high, activity and concentration can be set equally.

Then a concentration of 10^{-14} corresponds to a pH value of 14 and a concentration of $10^0 = 1$ corresponds to a pH value of 0.

pH value 7 is identified as neutral. This means that the effective concentrations of H $^+$ and OH $^-$ ions here, which originate from the dissociation of water (H $_2$ O -> H $^+$ + OH $^-$), are the same size.

If the hydrogen ions are in a majority due to the addition of acid (e.g. HCl) then the pH values are less than 7. If a base (alkali) is added (e.g. NaOH) then the values are greater than 7 and the solution becomes alkaline.

Each change in the pH value by 1 corresponds to a factor of 10 concentration change and results from the logarithmic relationship.

Fig. pk_6_002 shows the theoretical voltage curve for pH glass electrodes. In practice glass electrodes exhibit a greater or lesser deviation from the theoretical curve.

The electrode system generally exhibits a zero-point deviation (asymmetry potential), which is smaller than \pm 0.5 pH, however. The electrode slope (mV/pH) may also deviate from the theoretical value U_N (59.2 mV/pH at 25 °C), which is particularly the case for used glass electrodes.

Other deviations occur at very low pH values, the so-called acid error, while at high pH values allowance must be made for the so-called alkali error (or Na error).

pH measuring amplifiers must be matched to the respective measuring chain by means of zero point and slope calibration

Here the zero point is calibrated using a buffer solution, the value of which is about pH 7 while the slope is calibrated using a buffer in an acidic or alkaline range that has a pH value 2 or 3 above or below the neutral point.

With pH measurements that differ from pH 7, the fluctuating temperature of the measuring medium may result in a need for temperature compensation.

In this respect three questions must be answered:

- 1 What pH value is to be measured?
- 2 How large are the temperature deviations?
- 3 How accurate must the measurements be? Example of the influence of temperature without compensation:

At pH 10, an incorrect indication of approximately + 0.1 pH occurs for a temperature increase of about 10 °C. This effect is greater the greater the pH value differs from pH 7.

1.1 Sensor Technology DULCOTEST® Measuring Principles

Measurement of the redox (ORP) voltage is also a potentiometric measurement

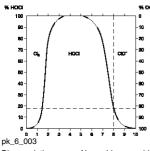
The term "redox" (or ORP - oxidation/reduction potential) stands for the reduction and oxidation that occur alongside each other in aqueous solutions. In general, oxidation involves the removal of electrodes with an oxidising agent acting as an electron acceptor. Reduction is the opposite with electrodes being taken up, with the reducing agent acting as an electron donor.

The redox (ORP) voltage is measured with a precious metal electrode, generally platinum. In an oxidising agent containing liquid (e.g. chlorine) there is a positive redox (ORP) voltage, in a reducing agent (e.g. sodium bisulphite) a negative redox (ORP) voltage.

The level of the redox (ORP) voltage gives an indication of how strongly oxidising or reducing a solution is. Where disinfection is concerned, the redox (ORP) voltage gives an indication of how great the germicidal effect of, for example, chlorine or ozone is.

Consequently the redox (ORP) voltage can be considered as a hygiene parameter in water treatment.

It should be noted that the redox (ORP) voltage varies with the pH value so that qualitative conclusions need to be made at a constant pH value.


Examples of typical applications for redox (ORP) measurements

- Cyanide detoxification at a high pH value by oxidation using gold electrodes.
- Chromate detoxification at a low pH value by oxidation using platinum electrodes.
- Monitoring of the disinfection effect during oxidising agent metering (chlorine/bromine) using platinum electrodes.

1.1.3

Amperometry - A Current Measurement Used to Determine the Concentration of Predetermined Dissolved Solids in Aqueous Solutions

dioxide, chlorite, ozone, hydrogen peroxide, peracetic acid and dissolved oxygen possible.

Disassociation curve of hypochlorous acid (HOCI)

This type of current measurement concentrates on the nA (10^{-9} A) or μ A (10^{-6} A) range. With operating measurements in this range, open or diaphragm-covered 2 or 3-electrode sensors are used. The

Our amperometric DULCOTEST® sensors represent proven diaphragm covered 2-electrodes sensors.

By separating the electrode chamber from the measurement medium using a special diaphragm, clear metrological conditions are created and disturbing influences excluded.

amperometric sensor product range makes determining the concentration of chlorine, bromine, chlorine

ProMinent® DULCOTEST® systems use 2-electrode sensors of gold or platinum as a working electrode (cathode). The counter electrode (anode) is silver with a special coating.

In contrast to open, fault-prone sensors, diaphragm-covered sensors exhibit hardly any flow dependency above a minimum flow (approx. 30 l/h). Consequently there is no need for costly measures to maintain the flow at a constant rate.

The pH value has a decisive influence on the chlorine measurement

It is important to know, in what forms chlorine is present in aqueous solutions. It is only at a very low pH value that chlorine occurs as dissolved chlorine gas Cl_2 in water and above a pH of about 3 as hypochlorous acid HOCI, which with a further rise in the pH value dissociates into hypochlorite (see Fig. pk_6_003).

Compared with hypochlorous acid, hypochlorite is about 100 times less powerful as a disinfectant, therefore it makes no sense to measure it with the chlorine sensor. Yet both hypochlorous acid and hypochlorite are considered to be "free chlorine" and, as such, are also measured by the DPD 1 measuring method, generally used as a comparison measurement.

A corresponding example:

At pH 8 (see Fig. pk_6_003), only some 20 % is in the effective HOCI form, while 80 % is in the nearly ineffective form OCL⁻. However, to obtain a value corresponding to the DPD comparison measurement on the measuring device display, this can be set up using a sensitivity (slope) comparison.

For a worthwhile measurement, the pH value must be kept constant. If not, a new slope calibration must be carried out. The maximum permissible pH value is pH 8.0 for inorganic chlorine and pH 9.5 for organic chlorine.

1.1 Sensor Technology DULCOTEST® Measuring Principles

The influence of temperature on chlorine measurement is significant, therefore automatic temperature compensation occurs in DULCOTEST® chlorine sensors

While there are no problems with chlorine measurements involving inorganic chlorine (chlorine gas CI₂, sodium-calcium hypochlorite NaOCI or calcium hypochlorite Ca(OCI)₂) provided the pH value remains constant, if organic chlorine additives are used (isocyanuric acid) then difficulties may occur, which can be easily overcome using the organic chlorine sensor (CGE).

If organic chlorine stabilisers are added, then not only does hypochlorous acid form, but also chlorine bound to isocyanuric acid. Both species are detected by the organic chlorine sensor (CGE).

If a measurement is made using the DPD 1 method, organic chlorine is also measured in the same way as the practically ineffective hypochlorite (at high pH values). In this case, the DPD measurement can indicate false hygienic safety, which is not in fact the case.

Typical applications for DULCOTEST® chlorine sensors include swimming pool water (also sea water), potable water and process water

The chlorine measurement can be disrupted by bromine, iodine, ozone and chlorine dioxide, but not, however, by dissolved oxygen. The presence of surfactants will block the working of the CLE sensor diaphragm for free chlorine. The sensor cannot then be used, by contrast, however, the CTE combined chlorine sensor can be used in applications such as this.

A sensor that functions according to the same principle as for the inorganic chlorine measurement is used to measure chlorine dioxide. The chlorine dioxide measurement is independent of the pH value and its temperature dependency is compensated. Dissolved oxygen and chlorite do not interfere with the measurement results. The presence of surfactants causes problems with CDE sensors. By contrast, CDP sensors can also be used in media containing surfactants.

In addition amperometric sensors can also be used to measure bromine and ozone dissolved in water.

1.1.4

Advantages of DULCOTEST® Amperometric Sensors at a Glance

Simple to use

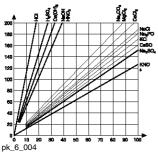
- No zero point calibration necessary
- Sample liquid need not be de-chlorinated with active carbon filter
- Installation and calibration is very quick

Reliable measurement in real-time

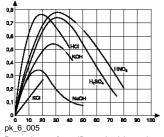
- No cross-sensitivity because of turbidity and colouration
- The DULCOTEST® chlorine measurement can also be used in sea water and brine baths
- The measured value is largely unaffected by the flow rate
- Online measurement

Minimum maintenance

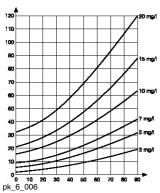
- Maintenance is limited to the 6-12 month replacement of the membrane cap and electrolyte
- Long-term operating costs are therefore low



Sensor Technology DULCOTEST®


Sensor Technology DULCOTEST® Measuring **Principles**

1.1.5


Conductometry - The Measurement of Electrolytic Conductivity

Dependence of electrolytic conductivity on the concentration of dissolved acids, all and salt solutions

Dependence of specific conductivity on the concentration in percentage weight of concentrated acids, alkalis and salt solutions

Conductivity of aqueous solutions of NaCl depending on the temperature of different concentrations

In contrast to metallic conductivity where the electric charge is carried by electrons, in electrolytic conductivity, ions are responsible for carrying the charge, that is positively or negatively charged atoms or groups of atoms which are primarily created by dissolving in or dissociation in aqueous solutions. Conductivity sensors are differentiated according to the following criteria:

The cell constant as a distinguishing feature

An arrangement in which the conductivity of an electrolyte would be measured in a tube of length I = 1 cm and cross section q = 1 cm² has a cell constant of k = 1 cm⁻¹. If the length l = 10 cm (or if the cross section q = 0.1 cm²), then the cell constant would be k = 10 cm⁻¹. By contrast, if the cross section was increased to $q = 10 \text{ cm}^2$ (or I reduced to 0.1 cm), then a cell constant of $k = 0.1 \text{ cm}^{-1}$ is obtained. It can easily be seen that a conductivity sensor with a smaller cell constant is used for measurements of lower conductivity while a cell with a larger cell constant is used for higher conductivities. This is done to increase the measurement sensitivity at lower conductivities (e.g. k = 0.1 cm⁻¹) - or to reduce it at higher conductivities (e. g. $k = 10 \text{ cm}^{-1}$).

Sensor materials

The selection of the correct cell constant is just as important as selection of a suitable electrode material. Stainless steel has shown its suitability in the lower range, up to approximately 500 µS/cm. By contrast in the upper range, where, because of the occurrence of polarisation effects, stainless steel is less suitable, special graphite is primarily used. As errors due to polarisation effects have to be avoided during electrolytic conductivity measurements, measurements can only be carried out using AC voltage. At low conductivities, frequencies of about 50 Hz are favoured and in the higher range up to approximately 5 kHz. Both at very low and also very high conductivities, long measuring lines can result in incorrect results, in the lower range caused by line capacities and in the upper range by line resistance. Therefore the distance between the sensor and measurement amplifier should be kept as

Every conductivity measurement is temperature-dependent

Different dissolved substances mostly have different temperature coefficients a (alpha), leading to a particular temperature curve that can change depending on the concentration and temperature. (Fig. pk_6_006)

As, in general, conductivity measurements are used because we want to draw conclusions about substance concentrations, temperature compensation is used for exact measurements, even with a measured value compensated to an international standard reference temperature of 25 °C. Suitable transducers for temperature compensation are NTC or Pt 100 temperature sensors with the Pt 100 being significantly superior because of its linearity and hence accuracy.

Inductive conductivity measurement

While errors can occur due to polarisation effects and deposits on the electrode surfaces, with open conductivity measurements, errors can be avoided using inductive conductivity measurement where no electrodes are used. Regular cleaning is therefore not necessary and measuring reliability is significantly

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

The following generally applicable points should be noted for optimum functioning of pH and ORP sensors:

- The sensors should never dry out
- The insertion angle must be > 15 ° from the horizontal (except with PHEK-L)
- Maximum flow < 0.8 m/s
- Use of suitable measuring lines
- Measuring lines should be as short as possible
- Use of suitable measuring devices/transducers (high resistance input)
- Calibration using quality buffer solutions
- Selection of electrode type according to the application
- The storage duration should be as short as possible

For Signal leads for pH/ORP measurement see page → 1-113, and for pH quality buffer solutions see page → 1-116

pH sensor selection guide

Temperature/pressure	Sensor type	Typical application
Max. 100 °C/3 bar		
	PHEP-H	Chemical processes
Max. 25 °C/6 bar		
Max. 80 °C/no overpressure	PHEN	Chemically contaminated water, low-conductivity water < 50 $\mu\text{S/cm}$
Max. 60 °C/3 bar	PHES	Swimming pool water, potable water, glass shaft
	PHEK	Swimming pool, aquarium, plastic shaft
Max. 80 °C/6 bar	PHEP/PHEPT	Process water
Max. 80 °C/8 bar	PHED	Chemically contaminated water, e.g. Cr ⁶⁺ , CN ⁻
Max. 80 °C/6 bar	PHER	Cooling water, waste water
Max. 100 °C/16 bar	PHEX	Suspensions, sludge, emulsions
Max. 50 °C/7 bar	PHEF	Exhaust air scrubber, semiconductor industry, electroplating
	Max. 100 °C/3 bar Max. 25 °C/6 bar Max. 80 °C/no overpressure Max. 60 °C/3 bar Max. 80 °C/6 bar Max. 80 °C/6 bar Max. 80 °C/6 bar Max. 80 °C/6 bar	Max. 25 °C/6 bar Max. 80 °C/no overpressure Max. 60 °C/3 bar PHES PHEK Max. 80 °C/6 bar PHEP/PHEPT Max. 80 °C/8 bar PHED Max. 80 °C/6 bar PHED PHER

Important note: All DULCOTEST® pH and ORP sensors are made from lead-free glass (RoHS-compliant)

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

DULCOTEST® ORP sensor selection guide

Medium	Temperature / pressure	Sensor type	Typical applications
	Max. 80 °C / no overpressure	RHEN	Chemically contaminated water, low-conductivity water < 50 $\mu\text{S/cm}$
	Max. 60 °C / 3 bar	RHES	Swimming pool water, potable water, glass shafts
Clear, pH 2 - 12		RHEK	Swimming pools, aquaria, plastic shafts
	Max. 80 °C / 6 bar	RHEP-Pt	Process water
		RHEP-Au	Chemically contaminated water, e.g. CN-, ozone treatment
Solid matter, turbidity	Max. 80 °C / 6 bar	RHER	Cooling water, waste water
Solid matter, non-translucent	Max. 100 °C / 16 bar	RHEX	Suspensions, sludge, emulsions

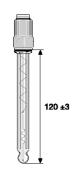
Important note: All DULCOTEST® pH and ORP sensors are made from lead-free glass (RoHS-compliant)

I.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

1.2.1 pH Sensors With SN6 or Vario Pin Plug-in Head

pH sensors with plug-in heads are connected to a shielded coaxial cable with the appropriate socket. The rotatable sensor head sleeve prevents the cable from twisting when inserting and dismantling the sensor (e.g. when calibrating). The cable can therefore remain connected. This avoids the penetration of troublesome water onto the plug-in contacts.

Series								
PHE	pH sens	H sensor						
	Proper	operties Company of the Company of t						
	X	With solid electrolyte and circular gap diaphragm						
	K	With ins	With insensitive plastics shaft					
	N	KCI refi	KCI refillable sensor					
	E	Plug-in	sensor					
	R	With P	ΓFE circι	ılar diap	hragm			
	Р	Pressu	re-tight ι	ıp to 6 ba	ar			
	D	2 ceran	nics diap	hragms	(double	junction		
	S	Swimm	ing pool	sensor				
	F	Resista	int to hyd	drofluorid	c acid			
		Withou	t specific	cation: st	andard	gel sens	or	
	Special equipment							
		Т	T With integral temperature gauge					
		H Temperature up to 100 °C, alkali-resistant L Vertical to horizontal installation						
			pH me	asuring	range			
			112	pH mea	asuring ı	ange: 1	- 12	
				Electri	cal con	nection	at the sensor	
				S	Plug fo	r coax co	onnector SN6	
			V Vario Pin plug					
		Internal thread E Internal thread PG 13.5 for installation						
			L None, laboratory sensor refillable with KCl					
						Diaphr	agm	
						3D	3 ceramic diaphragms	


pH Sensor PHES 112 SE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pk_6_016

1 ... 12 pH range 0 ... 60 °C **Temperature** 3.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft **Shaft diameter** 12 mm **Fitting length** $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Measuring and control

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

All DULCOMETER® controllers and solenoid metering pumps types

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

equipment D 4a and delta®

Typical applications Swimming pools, whirlpools, potable water

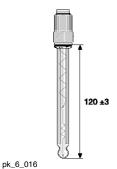
Resistance to

Direct potentiometric measurement, 2 electrodes, gel electrolyte, Measuring principle, technology

ceramic diaphragm, separate temperature measurement for

temperature compensation needed

	Fitting length	Order no.
PHES 112 SE	$120 \pm 3 \text{ mm}$	150702
PHES 112 SE	$225 \pm 3 \text{mm}$	150092


pH Sensor PHES 112 SE 3D

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs and at low electrolytic conductivities of up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Three ceramic diaphragms optimised for low electrolytic conductivities
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 0 ... 60 °C **Temperature** Max. pressure 3.0 bar Min. conductivity 50 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm 3 Ceramic diaphragms

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, mm$ Fitting position Vertical up to +25°

Thread

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Low conductivity water

Resistance to

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, gel electrolyte,

ceramic diaphragm, separate temperature measurement for

temperature compensation needed

	Fitting length	Order no.
PHES 112 SE 3D	120 ± 3 mm	1045759

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

pH Sensor PHEP 112 SE

pH sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_019

 pH range
 1 ... 12

 Temperature
 0 ... 80 °C

 Max. pressure
 6.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

DiaphragmCeramicSensor shaftGlassShaft diameter15 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating, chemical

industries

Resistance to

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, gel electrolyte,

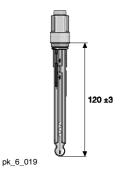
ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEP 112 SE 150041

1.1.2015 Product Catalogue 2015 1-1


pH Sensor PHEP-H 314 SE

pH sensor optimised for use with clear process water, specifically for alkaline process solutions at high temperatures of up to 100 $^{\circ}\text{C}$

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Optimised pH-sensitive glass for high alkali content and high temperatures
- Long service life / excellent precision: Measurement at a high pH value of up to 14
- Long service life: at high temperatures of up to 100 °C
- Stable reference system for high pressure / temperature requirements
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range 3 ... 14 (Note: use below pH 3 shortens the service life)

Temperature 0 ... 100 °C

Max. pressure 6.0 bar up to 25 °C, 3.0 bar up to 100 °C

Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

DiaphragmCeramicSensor shaftGlassShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to $+25^{\circ}$

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Monitoring or control of chemical processes with neutral to highly-

alkaline media and temperatures up to 100 °C

Resistance to

Measuring principle,

technology

Disinfectant, high alkalinity
Direct potentiometric measurement, 2 electrodes, highly alkaline tempered glass, ceramic diaphragm, gel electrolyte, separate

temperature measurement for temperature compensation needed

Order no.

PHEP-H 314 SE 1024882

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

pH Sensor PHER 112 SE

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/cm at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

 $\begin{array}{lll} \textbf{pH range} & 1 \dots 12 \\ \textbf{Temperature} & 0 \dots 80 \, ^{\circ}\text{C} \\ \textbf{Max. pressure} & 6.0 \, \text{bar} \\ \textbf{Min. conductivity} & 50 \, \mu\text{S/cm} \end{array}$

Electrolyte With KCl supply (salt rings in the reference electrolyte)

Diaphragm PTFE ring diaphragm

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Municipal and industrial waste water, cooling water, industrial water,

water in chemicals industry and paper production, generally for water with a solid matter fraction, water with low conductivity, e.g. from

reverse osmosis.

Resistance to Disinfectant, Solids content (turbid types of water)

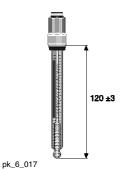
Measuring principle, Direct potentiometric measurement, 2 electrodes, Teflon ring

technology diaphragm, Polymer electrolyte, separate temperature measurement

for temperature compensation needed

Order no.

PHER 112 SE 1001586


pH Sensor PHEX 112 SE

pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 $^{\circ}$ C or 16 bar/25 $^{\circ}$ C

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range $1 \dots 12$ Temperature $0 \dots 100 \,^{\circ}\text{C}$

Max. pressure 16.0 bar up to 25 °C, 6.0 bar up to 100 °C

Min. conductivity 500 μS/cm

ElectrolytePolymer containing potassium chloride (solid)DiaphragmCircular gap diaphragm (solid electrolyte)

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Waste water, industrial water, process chemistry, emulsions,

suspensions, protein-containing media, in general for water with a high solid fraction, not suitable for use in clear water. Not suitable for media

with oxidation agents

Resistance to Solids content (turbid types of water), sludge, emulsions

Measuring principle, technologyDirect potentiometric measurement, 2 electrodes, no diaphragm, polymer electrolyte, separate temperature measurement for

temperature compensation needed

	Fitting length	Order no.
PHEX 112 SE	$120 \pm 3 \text{ mm}$	305096
PHEX 112 SE	225 ± 3 mm	150061

ex HD works

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

pH Sensor PHED 112 SE

pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-

pH range 1 ... 12 **Temperature** 0 ... 80 °C Max. pressure 8.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Double junction

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications

Resistance to

Chemically loaded waste water, industrial water, cooling water

Disinfectant, water-soluble chemicals

Measuring principle, technology

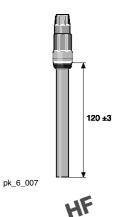
Direct potentiometric measurement, 2 electrodes, double junction, gel electrolyte, separate temperature measurement for temperature

compensation needed

Order no.

PHED 112 SE 741036

1.1.2015 Product Catalogue 2015


pH Sensor PHEF 012 SE

pH sensor optimised for use with acidic water containing fluoride and abrasive water containing solids at up to 50 $^{\circ}$ C/7 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Optimised pH glass for use in the presence of glass-corroding hydrofluoric acid (HF). HF is formed primarily in the presence of fluoride (F⁻) at a pH of < 4. Glass corrosion is promoted by a constant concentration of fluoride, a falling pH value and a rising temperature. The glass composition and structure of the PHEF type reduce the release of SiF₄. Extended service life in the presence of fluoride (F⁻) at a pH of < 7</p>
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- The flat shape of the glass diaphragm and large ring diaphragm facilitate use in contaminated water, which also contains abrasive solids

 pH range
 0 ... 12

 Temperature
 0 ... 50 °C

 Max. pressure
 7.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm HDPE ring diaphragm, flat (Double Junction)

Sensor shaftEpoxyShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications A significantly longer service life can be achieved compared with

standard pH sensors in media containing hydrofluoric acid, e.g. waste water from the semiconductor industry or electroplating applications

and air scrubbers

Resistance to Disinfectant, Solids content (turbid types of water), Hydrofluoric acid

(HF), abrasive particles

Measuring principle,

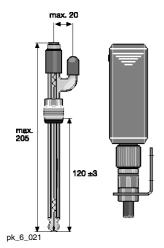
technology

Direct potentiometric measurement, 2 electrodes, PE ring diaphragm, HF-compatible flat glass diaphragm, gel electrolyte, separate

temperature measurement for temperature compensation needed

Order no.

PHEF 012 SE 1010511


pH Sensor PHEN 112 SE

Refillable pH sensor optimised for use with chemically contaminated water at up to 80 °C/without excess

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 1 ceramic diaphragm made of special material and with an optimised size / with optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 **Temperature** 0 ... 80 °C

Atmospheric pressure Max. pressure

Min. conductivity 150 μS/cm

Electrolyte KCL electrolyte, refillable

Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D 4a and delta®

Typical applications

Resistance to

Waste water, cooling waterchemically contaminated water

Disinfectant, only for clear types of water

Measuring principle, technology

Direct potentiometric measurement, 2 electrodes, liquid electrolyte, 1 ceramic diaphragm, separate temperature measurement for

temperature compensation needed

	Order no.
PHEN 112 SE	305090

Supplied without PE storage tank and tube

	Order no.
PE storage tank with connectors and tube	305058

We recommend installation approx. 0.5-1 m above the sample fluid level

	Capacity	Order no.
	ml	
KCI solution, 3 molar	250	791440
KCI solution, 3 molar	1,000	791441

pH Sensor PHEN 112 SE 3D

Refillable pH sensor optimised for use in contaminated water containing solids and water with a low conductivity of > 50 μ S/cm at up to 80 °C/without overpressure

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 3 ceramic diaphragms made of special material, with optimised size and optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in water with low conductivity > 50 μ S/cm and where solids are present
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 0 ... 80 °C **Temperature**

Max. pressure Atmospheric pressure

Min. conductivity 50 μS/cm

Electrolyte 3 molar potassium chloride solution, refillable

Diaphragm 3 ceramic diaphragms

Sensor shaft **Shaft diameter** 12 mm Fitting length 120 ± 3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications

Waste water, water with low conductivity, e.g. from reverse osmosis.

Resistance to

Disinfectant, Solids content (turbid types of water)

Measuring principle, technology

Direct potentiometric measurement, 2 electrodes, liquid electrolyte, 1

ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 112 SE 3D 150078

pH Sensor PHEN 012 SL

Refillable pH sensor for use with manual measuring instruments, optimised for clear and also chemically contaminated water at up to 80 °C/without overpressure

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 1 ceramic diaphragm made of special material and with an optimised size / with optimised pore diameter
- Long service life in the presence of dissolved chemicals, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

0 ... 12 pH range **Temperature** 0 ... 80 °C

Max. pressure Atmospheric pressure

150 μS/cm Min. conductivity

Electrolyte KCl electrolyte, refillable

Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 12 mm $160 \pm 3 \, \text{mm}$ Fitting length **Fitting position** Vertical up to +25°

Thread

Electrical connection SN6 plug-in head

IP 65 Enclosure rating

Installation Immersion by tripod or manually

Measuring and control

equipment

technology

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Manual measurements in laboratories Resistance to Disinfectant, water-soluble chemicals

Measuring principle, Direct potentiometric measurement, 2 electrodes, liquid electrolyte,

1 ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 012 SL 305078

pH Sensor PHEN 012 SL 3D

Refillable pH sensor for use with manual measuring instruments, optimised for contaminated water containing solids and with a low conductivity of > 50 μ S/cm at up to 80 °C/without overpressure

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the electrode
- 3 ceramic diaphragms made of special material and with an optimised size / with optimised pore diameter
- Long service life in water with low conductivity > 50 μS/cm and where solids are present
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range $0 \dots 12$ Temperature $0 \dots 80 \,^{\circ}$ C

Max. pressure Atmospheric pressure

Min. conductivity 50 μS/cm

Electrolyte 3 molar potassium chloride solution, refillable

Diaphragm 3 ceramic diaphragms

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Immersion by tripod or manually

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Laboratories, water with low conductivity, e.g. from reverse

osmosis.Waste water

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle,
technologyDirect potentiometric measurement, 2 electrodes, liquid electrolyte,
3 ceramic diaphragms, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 012 SL 3D 791508

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

pH Sensor PHEK 112 S

pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 0 ... 60 °C **Temperature** Max. pressure 3.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Polycarbonate **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Vertical up to +25° Fitting position

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Measuring and control

Installation Immersion by tripod or manually

equipment D_4a and delta®

Typical applications Hand-held measurement in swimming pools, potable water

Resistance to

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm, separate temperature measurement for

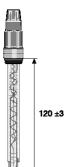
temperature compensation needed

Order no.

All DULCOMETER® controllers and solenoid metering pumps types

PHEK-112-S 305051

1.1.2015 Product Catalogue 2015


pH Sensor PHEK 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pk_6_090

1 ... 12 pH range **Temperature** 0 ... 60 °C 3.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Polycarbonate **Shaft diameter** 12 mm Fitting length $120 \pm 3 \text{ mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications

Swimming pools, potable water, aquaria

Resistance to

Disinfectant

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEK 112 SE

ex HD works

1028457

Product Catalogue 2015 1.1.2015

pH Sensor PHEK-L 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs, horizontal installation possible, at up to 60 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material and optimised size / optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

 $\begin{array}{lll} \textbf{pH range} & 1 \dots 12 \\ \textbf{Temperature} & 0 \dots 60 \ ^{\circ}\text{C} \\ \textbf{Max. pressure} & 3.0 \ \text{bar} \\ \textbf{Min. conductivity} & 150 \ \mu\text{S/cm} \\ \end{array}$

Electrolyte Gel containing potassium chloride

DiaphragmCeramicSensor shaftPolycarbonateShaft diameter12 mmFitting length120 ± 3 mm

Fitting position Vertically to horizontally

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Swimming pools, potable water, aquaria. Horizontal installation

possible.

Resistance to

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEK-L 112 SE 1034918

1.1.2015 Product Catalogue 2015 1-25

pH Sensor PHEE 112 S

pH sensor for use with manual measuring instruments as a puncture sensor for samples that can be punctured

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- pH measuring prod for inserting into solids into which a prod can be inserted
- 3 ceramic diaphragms made of special material for measurement after insertion
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-

pH range 1 ... 12 **Temperature** 0 ... 60 °C

Max. pressure Atmospheric pressure

Min. conductivity 150 μS/cm

Gel containing potassium chloride Electrolyte

Diaphragm 3 ceramic diaphragms

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \text{ mm}$ Fitting position Vertical up to +25°

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Manual insertion

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment D_4a and delta®

Typical applications pH measurement in foodstuffs, e.g. meat, cheese, non sterilisable

Resistance to Mechanical stress when inserting

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology

ceramic diaphragm, separate temperature measurement for temperature compensation needed, mechanically loadable measuring

prod

Order no.

PHEE 112 S 791094

Capacity Order no.

ml

Cleaning fluid Pepsin/hydrochloric acid 791443 250

pH Sensor PHEPT 112 VE

pH sensor with integral temperature measurement, optimised for use with clear process water and changing process temperature of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Integrated Pt 100 temperature sensor for temperature compensation of the pH measurement in higherorder measuring instruments eliminates the need for an additional sensor housing and external temperature sensor
- Vario Pin plug-in head with IP 67 specification
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pk_6_068

pH range 1 ... 12 0 ... 80 °C **Temperature** Max. pressure 6.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Sensor shaft Shaft diameter 15 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

PG 13.5

Electrical connection Vario Pin plug-in head

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting) Tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment D_4a and delta

Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating, chemical

industry, processes with a temperature change.

Resistance to

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology

ceramic diaphragm, integrated temperature measurement for

temperature compensation

	Order no.
PHEPT 112 VE	1004571

Accessories: Measuring line for sensors with Vario Pin plug-in head

Ready-made 6-wire measuring line with Vario Pin plug for connection to sensor type PHEPT 112 VE.

	Length	Order no.
Vario Pin signal lead VP 6-ST/ 2 m	2 m	1004694
Vario Pin signal lead VP 6-ST/ 5 m	5 m	1004695
Vario Pin signal lead VP 6-ST/10 m	10 m	1004696

Product Catalogue 2015

1.1.2015

1.2.2

pH Sensors with Fixed Cable

pH sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head by a rotating sleeve, thereby preventing the cable from twisting when inserting and dismantling the sensor.

Series												
PHE	pH sensor											
	Proper											
	Х	With so	lid electr	trolyte and annular gap diaphragms								
	K	With ins	sensitive	e plastic shaft								
	N	KCl refi	llable se	nsor								
	R	With PT	FE ring	diaphrag	gms							
	Р	Pressur	e-tight u	p to 6 ba	ar							
	D	With do	uble dia	phragm	(double j	unction)						
	S	Swimm	ing pool	sensor								
		Specia	l equipn	nent								
		T	With int	egral ter	nperatur	e gauge						
			pH mea	asuring	range							
			112	pH mea	asuring ra	ange: 1	.12					
					Electrical connection at the sensor							
				F	Fixed cable sensor							
					Interna							
					E	Internal						
					L	-			refillable			
							diamete					
						3		diameter				
						5		diameter	5 mm			
							Cable I					
						01 Cable length in metres						
							Electrical connection at device					
								S	SN6			
								D	DIN			
								В	BNC			
								0	Without connector			
							M SN6 male					

The technical data corresponds to pH sensors with SN6 plug-in head (see page → 1-28)

pH Sensor PHES 112 F

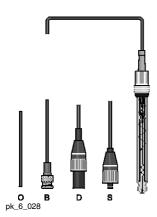
pH sensor for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}\text{C/3}$ bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH sensor, gel-filled, with fixed coaxial cable and device plug, without screw-in thread.

	Cable length	Device plug	Order no.
	m		
PHES 112 F 301 S	1	SN6	304976
PHES 112 F 301 B	1	BNC	304980
PHES 112 F 303 B	3	BNC	304981


pH Sensor PHES 112 FE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

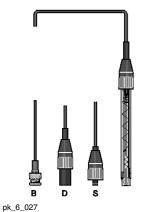
Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHES 112 FE 303 S	3	SN6	304984
PHES 112 FE 310 S	10	SN6	304985
PHES 112 FE 503 D	3	DIN	304986
PHES 112 FE 303 B	3	BNC	304988
PHES 112 FE 310 O	10	without	304990
PHES 112 FE 301 B	1	BNC	150079
PHES 112 FE 301 S	1	SN6	150926
PHES 112 FE 303 O	1	without	150101

Further types on request.

pH Sensor PHEK 112 F



pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

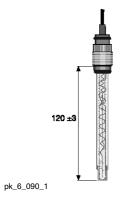
pH sensor with polycarbonate plastic shaft, glass membrane protection, with fixed coaxial cable and device plug, without screw-in thread.

	Cable length	Device plug	Order no.
	m		
PHEK 112 F 301 S	1	SN6	304994
PHEK 112 F 501 D	1	DIN	304995
PHEK 112 F 301 B	1	BNC	304996

pH Sensor PHEK 112 FE



pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60~^{\circ}\text{C/3}$ bar

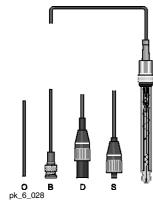

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH sensor with polycarbonate plastic shaft, glass membrane protection, with fixed coaxial cable and device plug, with screw-in thread.

Other types on request.

pH Sensor PHEP 112 FE

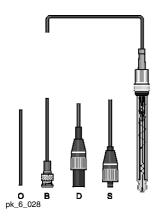


pH sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

-		Cable length	Device plug	Order no.	
		m			
Т	PHEP 112 FE 303 S	3	SN 6	150673	
П	PHEP 112 FE 305 O	5	without	150689	
M	PHEP 112 FE 510 O	10	without	150929	
	Further types on request				


pH Sensor PHER 112 FE

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/ cm at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.	
	m			
Type PHER 112 FE 503 O	3	without	150878	
Type PHER 112 FE 510 O	10	without	150874	

Other types on request.

pH Sensor PHEX 112 FE

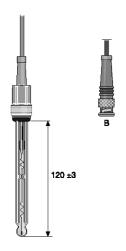
pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 $^{\circ}$ C or 16 bar/25 $^{\circ}$ C

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
Type PHEX 112 FE 510 S	10	SN 6	150025
Type PHEX 112 FE 510 O	10	without	150084
Type PHEX 112 FE 303 S	3	SN 6	150739
Type PHEX 112 FE 302 O	2	without	150086

pH Sensor PHED 112 FE



pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHED 112 FE 303 B	3	BNC	741038

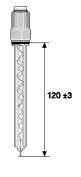
1.2.3

ORP Sensors with SN6 Plug-in Head

ORP sensors with SN6 plug-in head are connected to a shielded coaxial cable with the appropriate socket. The rotating sensor head sleeve prevents the cable from twisting when inserting and dismantling the sensor. The cable can therefore remain connected. This avoids moisture from contacting the plug-in contacts.

Series												
RHE	ORP se	ensor										
	Properties											
	X	with so	lid electr	olyte and	I circular gap diaphragm							
	haft											
	Р	pressur	re tight u	p to 6 ba	r							
	R	with PT	FE circu	lar diaph	ragm							
	N	KCI refi	illable se	nsor								
	S	swimming pool sensor										
	ontal installation											
	Sensor material											
Pt Platinum (pin)												
Au Gold (pin)												
Electrical connection at the sensor												
				Plug for coax connector SN6								
		Internal thread										
					E PG 13.5							

DULCOTEST® ORP sensor selection guide see page → 1-1


ORP Sensor RHES-Pt-SE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}\text{C/3}$ bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_031

 $\begin{array}{lll} \textbf{pH range} & 1 \dots 12 \\ \textbf{Temperature} & 0 \dots 60 \ ^{\circ}\text{C} \\ \textbf{Max. pressure} & 3.0 \ \text{bar} \\ \textbf{Min. conductivity} & 150 \ \mu\text{S/cm} \end{array}$

Electrolyte Gel containing potassium chloride

ORP electrodePlatinumDiaphragmCeramicSensor shaftGlassShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to $+25^{\circ}$

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 6

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control equipment

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

1.1.2015 Product Catalogue 2015 1-33

Typical applications Swimming pools, whirlpools, potable water

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology

ceramic diaphragm

Order no.

RHES-Pt-SE 150703

ORP Sensor RHES-Au-SE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs when electrolysis processes are used for disinfection and with ozone treatment at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to material, which is inert to aggressive disinfectants
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

Electrolyte Gel containing potassium chloride

ORP electrode Gold Ceramic Diaphragm Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment

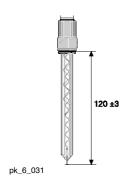
Resistance to

D_4a and delta®

Swimming pools, whirlpools, potable water, with disinfectants from

Typical applications electrolysis processes (electrodes directly in the process water)

Disinfectant, by-products from electrolysis process and from ozone


treatment process

Direct potentiometric measurement, 2 electrodes, gel electrolyte, Measuring principle,

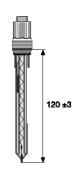
technology ceramic diaphragm

Order no.

RHES-Au-SE 1044544

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**


ORP Sensor RHEP-Pt-SE

ORP sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pk_6_035

pH range 1 ... 12 **Temperature** 0 ... 80 °C Max. pressure 6.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode **Platinum** Diaphragm Ceramic Sensor shaft Glass Shaft diameter 15 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

PG 13.5 Thread

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment

Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating,

Resistance to Disinfectant, not suitable for media containing ozone, cyanides,

electrolysis processes (electrodes directly in the sample water)

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

Order no. RHEP-Pt-SE 150094

ORP Sensor RHEP-Au-SE

ORP sensor optimised for use with clear process water when electrolysis processes are used for disinfection and with ozone treatment and with cyanide detoxification at conditions of up to 80 $^{\circ}$ C/6 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

 pH range
 1 ... 12

 Temperature
 0 ... 80 °C

 Max. pressure
 6.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrodeGoldDiaphragmCeramicSensor shaftGlassShaft diameter15 mmFitting length 120 ± 3 mmFitting positionVertical up to $+25^{\circ}$

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D 4a and delta®

Typical applications Cyanide detoxification, ozone monitoring

Resistance to Disinfectant, by-products from electrolysis process and from ozone

treatment process, cyanides

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, gel electrolyte,

ceramic diaphragm

Order no.

RHEP-Au-SE 1003875

ORP Sensor RHER-Pt-SE

ORP sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/cm at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 **Temperature** 0 ... 80 °C Max. pressure 6.0 bar Min. conductivity 50 μS/cm

Electrolyte with KCI supplement (salt rings in the reference electrolyte) Electrolyte

ORP electrode

Diaphragm PTFE ring diaphragm

Sensor shaft Glass Shaft diameter 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types equipment

D_4a and delta®

Municipal and industrial waste water, cooling water, process water, Typical applications

chemical applications, paper manufacturing. In general for water with a

noticeable solid fraction.

Resistance to Disinfectant, solids content (turbid types of water)

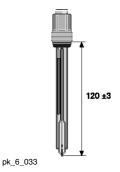
Direct potentiometric measurement, 2 electrodes, teflon ring Measuring principle,

technology diaphragm, polymer electrolyte

Order no.

RHER-Pt-SE 1002534

1.1.2015


ORP Sensor RHEX-Pt-SE

ORP sensor optimised for use with contaminated water with a high solids content at 6 bar/100 °C or 16 bar/25 °C

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 **Temperature** 0 ... 100 °C

16.0 bar up to 25 °C, 6.0 bar up to 100 °C Max. pressure

Min. conductivity 500 μS/cm

Electrolyte polymer containing potassium chloride (solid)

ORP electrode

Diaphragm Circular gap (solid electrolyte)

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

RHEX-Pt-SE

All DULCOMETER® controllers and solenoid metering pumps types

D 4a and delta®

Typical applications Waste water, industrial water, process chemistry, emulsions,

suspensions, protein-containing media, In general for water with a high solid fraction. Not suitable for clear media.not suitable for media with

oxidation agents.

Resistance to Solids content (turbid types of water), sludge, emulsions

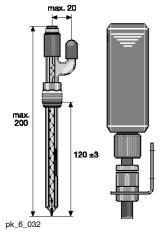
Measuring principle, Direct potentiometric measurement, 2 electrodes, no diaphragm, polymer electrolyte

technology

Order no.
305097

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**


ORP Sensor RHEN-Pt-SE

Refillable ORP sensor optimised for use with chemically contaminated water at up to 80 °C/without excess pressure

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
 - 1 ceramic diaphragm made of special material, with an optimised size and with optimised pore diameter
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHScompliant)

pH range 1 ... 12 0 ... 80 °C **Temperature**

Operation at atmospheric pressure Max. pressure

Min. conductivity 150 µS/cm

Electrolyte KCl electrolyte, refillable

ORP electrode Platinum Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 12 mm Fitting length $120 \pm 3 \, \text{mm}$ Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating

Installation By tripod or manually

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment D_4a and delta®

Typical applications Waste water, cooling waterchemically contaminated water, only clear

types of water

Resistance to Disinfectant, chemicals dissolved in water

Measuring principle, Direct potentiometric measurement, 2 electrodes, liquid electrolyte, technology

1 ceramic diaphragm

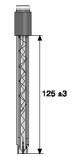
Order no. RHEN-Pt-SE 305091

Supplied without PE storage tank and tube

Accessories

	Capacity	Order no.
	ml	
PE storage tank with connectors and tube	-	305058
KCI solution, 3 molar	250	791440
KCI solution, 3 molar	1,000	791441

We recommend installation approx. 0.5-1 m above the sample fluid level.


ORP Sensor RHEK-Pt-S

ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_036

pH range $1 \dots 12$ Temperature $0 \dots 60 \,^{\circ}\text{C}$

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrodePlatinumDiaphragmCeramicSensor shaftPolycarbonateShaft diameter12 mmFitting length 125 ± 3 mmFitting positionVertical up to $+25^{\circ}$

Thread None

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation by tripod or manually

Measuring and control All DULCOMETER® controllers and solenoid metering pumps types

equipment D_4a and delta®

Typical applications Manual measurement e.g. swimming pools, potable water, aquarium

water

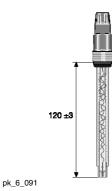
Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

Order no.

RHEK-Pt-S 305052


ORP Sensor RHEK-Pt-SE

ORP sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60~^{\circ}\text{C}/3$ bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

 pH range
 1 ... 12

 Temperature
 0 ... 60 °C

 Max. pressure
 3.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode
Diaphragm
Ceramic
Sensor shaft
Polycarbonate
Shaft diameter
12 mm
Fitting length
120 ± 3 mm
Fitting position
Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid metering pumps types

D 4a and delta®

Typical applications Swimming pool, potable water, aquariums,

Resistance to Disinfectant

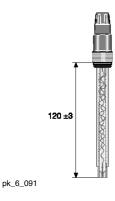
Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

Order no.

RHEK-Pt-SE 1028459

1.1.2015 Product Catalogue 2015 1-4


ORP Sensor RHEK-L Pt-SE

ORP sensor with plastic shaft, optimised for vertical to horizontal installation position for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

 pH range
 1 ... 12

 Temperature
 0 ... 60 °C

 Max. pressure
 3.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrodePlatinumDiaphragmCeramicSensor shaftPolycarbonateShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$

Fitting position Vertical to horizontal

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Measuring and control

equipment

technology

All DULCOMETER® controllers and solenoid metering pumps types

D_4a and delta®

Typical applications Swimming pools, potable water, aquariums, horizontal installation

possible.

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

ceramic diaphragm

 RHEK-L Pt-SE
 1034919

ProMinent

1.2.4

ORP Sensors with Fixed Cable

All ORP sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head by a rotating sleeve. This prevents the cable from twisting when inserting and dismantling the sensor.

Series												
RHE	ORP se	P sensor										
	Proper	ties										
	K	Plastic shaft										
	S	Swimming pool sensor										
		Sensor material										
		Pt	Platinur	n								
			Electric		nection		ensor					
			F	Fixed c	ixed cable sensor							
					Internal thread							
				E	internal	nternal thread PG 13.5						
					Cable	Cable diameter						
					3	cable diameter 3 mm						
					Ca	cable diameter 5 mm						
						Cable I						
						01		ength in metres				
							Electri	cal connection at device				
							S	SN6				
							D	DIN				
							В	BNC				

The technical data corresponds to pH sensors with SN6 plug-in head (see page → 1-33)

ORP Sensor RHES-Pt-FE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Anti-twist mechanism on the fixed cable prevents the cable from twisting when inserting and removing the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
RHES-Pt-FE 301 B	1	BNC	150758
RHES-Pt-FE 303 B	3	BNC	150038
RHES-Pt-FE 301 S	3	SN6	304949

ORP Sensor RHES-Pt-F

ORP sensor for use with manual measuring instruments, optimised for use in swimming pools / hot tubs at up to $60 \, ^{\circ}\text{C} \, / \, 3$ bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	125 ±3

	Cable length	Device plug	Order no.	
	m			
RHES-Pt-F 303 B	3	BNC	304983	

Other types on request.

ORP Sensor RHEK-Pt-F

ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

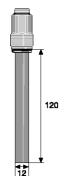
Cable length	Device plug	Order no.
m		
1	SN 6	304997
1	DIN	304998
	•	m 1 SN 6

ProMinent

1.2.5

Fluoride Sensors

DULCOTEST® fluoride sensors are ion selective sensors, which function according to the potentiometric measuring principle and are suitable for determining the concentration of fluoride anions in aqueous solutions. The measuring point with the FPV1 type measuring transducer was optimised for use in monitoring the fluoridation of potable water in waterworks (measurement range up to 10 ppm). The measuring point with the measuring transducer FP 100 V1 with a measurement range up to 100 ppm is used for clear waste water free of solid material.


Fluoride Sensor FLEP 010-SE / FLEP 0100-SE

Highly selective, online fluoride sensor, optimised for the fluoridation of potable water and monitoring of waste water with a pH of up to 9.5

- Highly selective measurement of fluoride by LaF₃ single crystal silicon
- Unique pH range of up to pH 9.5 by optimisation of the electrolyte
- Two measuring ranges available: 0.05 -10 ppm for potable water; 0.5 -100 ppm for waste water

A 4-20 mA measuring transducer, a reference electrode and a temperature sensor for temperature compensation are required as well as the fluoride sensor.

pk_6_095

Measured variable Fluoride ion concentration

Reference method Photometrically, see chapter 2.7.3: Photometer DT2C

Measuring range With measuring transducer FPV1: 0.05...10 mg/l
With measuring transducer FP100V1: 0.5...100 mg/l

pH range $5.5 \dots 9.5$ Temperature $1 \dots 35 \,^{\circ}\mathrm{C}$

Max. pressure 7.0 bar, (no pressure surges)

 $\begin{tabular}{llll} Min. conductivity & 100 μS/cm \\ Shaft diameter & 12.0 mm \\ \hline Fitting length & 120 mm \\ \hline Thread & PG 13.5 \\ \end{tabular}$

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line

Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting)

Tank, channel: Immersion in the immersion tube

Intake flow 10...200 l/

Flow 20 l/h (recommended) Response time T95 max. 30 s (for conc. > 0.5 ppm)

Shelf life 6 months

In-line probe fitting Bypass fitting DLG IV

Measuring and control

equipment

D1C/DAC/DULCOMARIN® II

FLEP 010-SE / FLEP 0100-SE 1028279

Typical applications Monitoring the fluoridation of potable water in waterworksWaste water

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, technologyDirect potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement for

temperature compensation needed

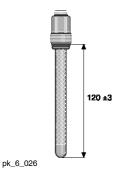
Accessories

	Order no.
Measuring transducer 4-20 mA FPV1	1028280
Measuring transducer 4-20 mA FP 100 V1	1031331
Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122
Reference electrode, REFP-SE	1018458
Pt 100 SE	305063
Polishing paste	559810

Panel-mounted fluoride measuring station

The panel-mounted measuring stations that could be ordered to date with part no.1010602 (230 V) and 1010603 (115 V) can now be ordered as measuring stations of the DULCOTROL® DWCa product line.

DULCOTROL® Ordering System for Potable Water/F&B See page → 3-3


1.2.6 Temperature Sensors

Robust Pt 100/Pt 1000 temperature sensor, compatible with bypass, immersion and installation fittings, for temperature monitoring or temperature compensation of sensors for other measured variables

Your benefits

- Mechanically stable and chemically inert glass surround
- Simple process connection together with all the sensors needed for the overall solution with suitable fittings
- Transmitter with display/operation and without display/operation for transmission/conversion of the primary signal into a 4-20 mA signal and for transmission to a central control unit (PLC)
- Control units with graded performance properties, coordinated to requirements

Temperature0 ... 100 °CMax. pressure10.0 barThreadPG 13.5Electrical connectionSN6

Typical applications Temperature measurement and pH temperature correction

	Order no.
Pt 100 SE	305063
Pt 1000 SE	1002856

1.3.1 Amperometric Sensors for Chlorine, Bromine, Chlorine Dioxide, Chlorite, Ozone, Dissolved Oxygen, Peracetic Acid and Hydrogen Peroxide

The advantages at a glance:

- 12 measuring parameters available with analogue construction, each for simple installation to the same fittings and controllers
- Application-specific sensor models permit optimum operation with varying process conditions
- Efficient process management by precise measurement in real-time
- Amperometric measuring principle means no interference by turbidity or discolouration
- Diaphragm-covered measuring electrodes ensure reliable operation and long service life even under adverse and variable process conditions

Note the following points for optimum operation of amperometric sensors:

- Use of DULCOMETER® controllers
- Installation only in ProMinent fittings type DGM or DLG III
- Specified flow between 30...60 l/h
- Chlorine measurement only with a steady pH: if not possible, see Chapter 3.4
- Regular calibration with a photometer (e.g. type DT)

Important:

No amperometric sensors are galvanically isolated. When using with external devices (e.g. PLC), ensure that the supply voltage and analogue input signal are galvanically isolated.

Selection guide for DULCOTEST® amperometric sensors

Measured variable	Applications	Graduated measuring range	Connection to DULCOMETER®	Sensor type	See page
Free chlorine	Potable water, swimming pools	0.01–100 mg/l	D1C, DACa	CLE 3-mA-xppm, CLE 3.1-mA-xppm	→ 1-51
Free chlorine	Process and waste water	10 - 200 mg/l	D1C, DACa	CLR 1-mA	→ 1-61
Free chlorine	Potable water, swimming pool water	0.01 - 10 mg/l	DULCOMARIN® II	CLE 3-CAN-xppm, CLE 3.1-CAN-xppm	→ 1-54
Free chlorine	Potable water, swimming pool water, in situ electrolysis (without diaphragm)	0.02-10 mg/l	D1C, DACa	CLO 1-mA-xppm	→ 1-56
Free chlorine	Hot water up to 70 °C (legionella), in situ electrolysis (without diaphragm)	0.02-2 mg/l	D1C, DACa	CLO 2-mA-2ppm	→ 1-57
Free chlorine	Potable water, swimming pools	0.01-50 mg/l	DMT	CLE 3-DMT-xppm	→ 1-53
Free chlorine	Potable water, swimming pools	0.05-5 mg/l	COMPACT	CLB 2-µA-xppm	→ 1-58
Free chlorine	Potable water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 3-µA-xppm	→ 1-59
Free chlorine	Cooling, industrial and waste water, water with higher pH values (stable); seawater (free chlorine exists as bromine)	0.01-10 mg/l	D1C, DACa	CBR 1-mA-xppm	→ 1-60
Total available chlorine	Swimming pool water with chlorine- organic disinfectants	0.02-10 mg/l	D1C, DACa	CGE 3-mA-xppm	→ 1-62
Total available chlorine	Swimming pool water with organic chlorine disinfectants, in situ electrolysis (without diaphragm)	0.02 - 10 mg/l	D1C, DACa	CGE 3-mA	→ 1-62
Total available chlorine	Swimming pool water with chlorine- organic disinfectants	0.01–10 mg/l	DULCOMARIN® II	CGE 2-CAN*-xppm	→ 1-63
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	D1C, DACa	CTE 1-mA-xppm	→ 1-64
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	DMT	CTE 1-DMT-xppm	→ 1-65
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	DULCOMARIN® II	CTE 1-CAN-xppm	→ 1-66
Combined chlorine	Swimming pool water	0.02–2 mg/l	DACa	CTE 1-mA-2 ppm + CLE 3.1-mA-2 ppm	→ 1-66
Combined chlorine	Swimming pool water	0.01–10 mg/l	DULCOMARIN® II	CTE 1-CAN-xppm + CLE 3.1-CAN-xppm	→ 1-66

Total available bromine Cooling water, waste water, swimming pool water, whirlpool water, bromine with BCDMH 0.01-10 mg/l D1C, DACa BCR 1-mA (replaces earlier type BRE 1) → 1-68 Total available bromine Cooling water, swimming pool water, whirlpool water with organic or inorganic bromine compounds 0.02-10 mg/l DULCOMARIN® II BRE 3-CAN-10 ppm → 1-69 Free and bound bromine Cooling, industrial, waste water, water with higher pH values (stable); seawater 0.02-20 mg/l D1C, DACa CBR 1-mA-xppm → 1-60 Chlorine dioxide Potable water 0.01-10 mg/l D1C, DACa CDE 2-mA-xppm → 1-71 Chlorine dioxide Bottle washer systems 0.02-2 mg/l D1C, DACa CDR 1-mA-xppm → 1-72 Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa CDR 1-mA-xppm → 1-73 Chlorite Potable, wash water 0.02-2 mg/l D1C, DACa CLT 1-cAN-xppm → 1-75 Chlorite Potable water, swimming pool water 0.02-2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Potable water, swimming pool water 0.02-2 mg/l D1C, DACa </th <th>Measured variable</th> <th>Applications</th> <th>Graduated</th> <th>Connection to</th> <th>Sensor type</th> <th>See</th>	Measured variable	Applications	Graduated	Connection to	Sensor type	See
bromine swimming pool water, whirlpool water, bromine with BCDMH 0.02-10 mg/l DULCOMARIN® II BRE 3-CAN-10 ppm → 1-69 Total available bromine Cooling water, swimming pool water with organic or inorganic bromine compounds 0.02-20 mg/l D1C, DACa CBR 1-mA-xppm → 1-69 Free and bound bromine Cooling, industrial, waste water, water with higher pH values (stable); seawater 0.02-20 mg/l D1C, DACa CBR 1-mA-xppm → 1-70 Chlorine dioxide Potable water 0.01-10 mg/l D1C, DACa CDE 2-mA-xppm → 1-71 Chlorine dioxide Bottle washer systems 0.02-2 mg/l D1C, DACa CDP 1-mA → 1-72 Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa CDR 1-mA-xppm → 1-73 Chlorite Potable, wash water 0.02-2 mg/l D1C, DACa CLT 1-mA-xppm → 1-75 Ozone Potable water, swimming pool water 0.02-2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02-2 mg/l D1C, DACa OZE 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2-20 mg/l D1C, DACa						
bromine water, whirlpool water with organic or inorganic bromine compounds 0.02-20 mg/l D1C, DACa CBR 1-mA-xppm → 1-60 Free and bound bromine Cooling, industrial, waste water, water with higher pH values (stable); seawater 0.02-20 mg/l D1C, DACa CBE 1-mA-xppm → 1-70 Chlorine dioxide Potable water 0.01-10 mg/l D1C, DACa CDP 1-mA → 1-71 Chlorine dioxide Bottle washer systems 0.02-2 mg/l D1C, DACa CDR 1-mA-xppm → 1-73 Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa CDR 1-mA-xppm, DULCOMARIN® II CDR 1-cAN-xppm → 1-73 Chlorite Potable, wash water 0.02-2 mg/l D1C, DACa, DLCOMARIN® II CLT 1-mA-xppm, DLCOMARIN® II CLT 1-cAN-xppm → 1-75 Ozone Potable water, swimming pool water 0.02-2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02-2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2-20 mg/l D1C, DACa D0 1-mA-xppm → 1-80 Dissolved oxygen Activated sludge tank, sewage t		swimming pool water, whirlpool	0.01-10 mg/l	D1C, DACa	` .	→ 1-68
bromine water with higher pH values (stable); seawater 0.01–10 mg/l D1C, DACa CDE 2-mA-xppm → 1-71 Chlorine dioxide Bottle washer systems 0.02–2 mg/l D1C, DACa CDP 1-mA → 1-72 Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa, DULCOMARIN® II CDR 1-mA-xppm, DULCOMARIN® II → 1-73 Chlorite Potable, wash water 0.02–2 mg/l D1C, DACa, DULCOMARIN® II CLT 1-mA-xppm, DULCOMARIN® II → 1-75 Ozone Potable water, swimming pool water 0.02–2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02–2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2–20 mg/l D1C, DACa DO 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l D1C, DACa DO 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P		water, whirlpool water with organic	0.02-10 mg/l	DULCOMARIN® II	BRE 3-CAN-10 ppm	→ 1-69
Chlorine dioxide Bottle washer systems 0.02–2 mg/l D1C, DACa CDP 1-mA → 1-72 Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa, DULCOMARIN® II CDR 1-mA-xppm, DULCOM-xppm → 1-73 Chlorite Potable, wash water 0.02–2 mg/l D1C, DACa, DULCOMARIN® II CLT 1-mA-xppm, CLT 1-mA-xppm, DULCOMARIN® II → 1-75 Ozone Potable water, swimming pool water 0.02–2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02–2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2–20 mg/l D1C, DACa DO 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l D1C, DACa DO 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P		water with higher pH values (stable);	0.02-20 mg/l	D1C, DACa	CBR 1-mA-xppm	→ 1-60
Chlorine dioxide Hot water up to 60 °C, cooling water, waste water, irrigation water 0.01-10 mg/l D1C, DACa, DULCOMARIN® II CDR 1-mA-xppm, DULCOMARIN® II → 1-73 Chlorite Potable, wash water 0.02-2 mg/l D1C, DACa, DULCOMARIN® II CLT 1-mA-xppm, DULCOMARIN® II → 1-75 Ozone Potable water, swimming pool water 0.02-2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02-2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2-20 mg/l D1C, DACa DO 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1-10 mg/l D1C, DACa DO 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1-2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1-2,000 mg/l DACa PEROX sensor PEROX-H2.10 P	Chlorine dioxide	Potable water	0.01-10 mg/l	D1C, DACa	CDE 2-mA-xppm	→ 1-71
waste water, irrigation water DULCOMARIN® II CDR 1-CAN-xppm Chlorite Potable, wash water 0.02–2 mg/l D1C, DACa, DULCOMARIN® II CLT 1-mA-xppm, CLT 1-CAN-xppm → 1-75 Ozone Potable water, swimming pool water 0.02–2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02–2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2–20 mg/l D1C, DACa DO 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l D1C, DACa DO 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P → 1-83	Chlorine dioxide	Bottle washer systems	0.02-2 mg/l	D1C, DACa	CDP 1-mA	→ 1-72
DULCOMARIN® II CLT 1-CAN-xppm Ozone Potable water, swimming pool water 0.02–2 mg/l D1C, DACa OZE 3-mA → 1-77 Ozone Process, service or cooling water 0.02–2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2–20 mg/l D1C, DACa D0 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l D1C, DACa D0 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P → 1-83	Chlorine dioxide	•	0.01-10 mg/l	· · · · · · · · · · · · · · · · · · ·	11 /	→ 1-73
Ozone Process, service or cooling water 0.02–2 mg/l D1C, DACa OZR 1-mA-2 ppm* → 1-78 Dissolved oxygen Potable, surface water 2–20 mg/l D1C, DACa DO 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l D1C, DACa DO 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P → 1-83	Chlorite	Potable, wash water	0.02–2 mg/l	-,,	11 /	→ 1-75
Dissolved oxygen Potable, surface water 2-20 mg/l D1C, DACa D0 1-mA-xppm → 1-79 Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1-10 mg/l D1C, DACa D0 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1-2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1-2,000 mg/l DACa PEROX sensor PEROX-H2.10 P → 1-83	Ozone	Potable water, swimming pool water	0.02-2 mg/l	D1C, DACa	OZE 3-mA	→ 1-77
Dissolved oxygen Activated sludge tank, sewage treatment plants 0.1–10 mg/l treatment plants D1C, DACa D0 2-mA-xppm → 1-80 Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor PEROX-H2.10 P → 1-83	Ozone	Process, service or cooling water	0.02-2 mg/l	D1C, DACa	OZR 1-mA-2 ppm*	→ 1-78
treatment plants Peracetic acid CIP, antiseptic food filling process 1–2,000 mg/l D1C, DACa PAA 1-mA-xppm → 1-81 Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor → 1-83 PEROX-H2.10 P	Dissolved oxygen	Potable, surface water	2-20 mg/l	D1C, DACa	DO 1-mA-xppm	→ 1-79
Hydrogen peroxide Clear water, fast control 1–2,000 mg/l DACa PEROX sensor → 1-83 PEROX-H2.10 P	Dissolved oxygen	3	0.1–10 mg/l	D1C, DACa	DO 2-mA-xppm	→ 1-80
PEROX-H2.10 P	Peracetic acid	CIP, antiseptic food filling process	1-2,000 mg/l	D1C, DACa	PAA 1-mA-xppm	→ 1-81
$\textbf{Hydrogen peroxide} \qquad \text{Process, swimming pool water} \qquad 2-20,000 \text{ mg/l} \qquad \text{D1C, DACa} \qquad \qquad \text{PER1-mA-xppm} \qquad \rightarrow \text{1-83}$	Hydrogen peroxide	Clear water, fast control	1–2,000 mg/l	DACa		→ 1-83
	Hydrogen peroxide	Process, swimming pool water	2–20,000 mg/l	D1C, DACa	PER1-mA-xppm	→ 1-83

^{*} Available from 2nd quarter of 2015.

1.3.2 **Sensors for Chlorine**

Different forms of dissolved chlorine are present in water:

Free (effective) chlorine: Recommended sensors for Cl₂, HOCl (hypochlorous acid), OCl-

(hypochlorite): Types CLE, CLO, CLB, CBR, reference method:

Combined chlorine: Mono-, di-, trichloroamine. The measuring result of type CLE (free

chlorine) is subtracted from the measurement result of type CTE (total

chlorine). Reference method: DPD4 minus DPD1

Total chlorine: Total of free and combined chlorine; recommended sensor: Type CTE,

reference method DPD4

Total available chlorine (organic combined chlorine): Chlorine bound to (iso)cyanic acid/isocyanurate and the free (effective) chlorine resulting from it; recommended sensor: Type CGE, reference

method DPD1

Applications: Chlorine measurement in potable, swimming pool, cooling, service,

process and waste water or water of comparable quality, as well as salt water/seawater with up to 15% chloride content. For chlorine measurements at high pH values (8...9.5), we recommend chlorine sensors CGE and CTE for total chlorine and total available chlorine. We recommend the sensor type CBR or the system for metering pH buffer solution into the sample water bypass (see Chapter 3.4) for measuring

free chlorine at high pH values

Unit connection: Do not use sensors CLE CLO, CLB and CBR in the presence of

isocyanuric acid/chlorine stabilisers! Types CLE 3.1, CBR, CTE and CGE 2 operate incorrectly when chlorinating using electrolysis processes without diaphragm. Sensors with the designation -mA are used for controllers D1Cb, DAC and DULCOMARIN®. Sensors with the designation -4P are used for the former WS controllers and for metering pumps with integral chlorine controllers. Sensors with the designation DMT are used for DMT transducers. Sensors with the designation CAN are used with the swimming pool controller DULCOMARIN® II. Sensors CLB 1 and CLB 2 with the designation -µA do not have a signal

transformer and function solely with the Compact Controller.

Sensor Technology DULCOTEST®

Selection Guide

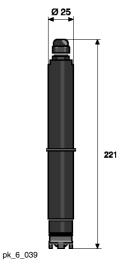
		CLE 3/ [CLR 1]	CLE 3.1	CLO 1	CLO 2	CLB 2/ CLB 3	CBR 1	CGE 2/ [CGE 3]	CTE 1	BCR 1
Measured variable	Free chlorine	x, [x]	Х	Х	Х	Х	x 1)			
	Total available chlorine (cyanuric acid derivatives)							x, [x]		
	Total chlorine								Х	X ²⁾
Selectivity of free chlorine	Raised		х							
	Yes	x, [x]		Х	Х	Х	Х	[x]		
	No							Х	Х	Х
Application	Public swimming pools	Х	Х	(x)		(x)	(x)	x, [x]		
	Private swimming pools	X	Х	Х		Х		x, [x]		
	Potable water	X			Х	Х	Х		Х	
	Cooling water						Х			Х
	Waste water	[x]					Х		Х	х
Disinfectant	Chlorine gas, hypochlorite, electrolysis (with diaphragm)	x, [x]	Х	Х	Х	х	Х		х	
	Electrolysis (without membrane)			х	х	х		[x]		
	Chlorine-containing cyanuric acid derivatives					(x)		x, [x]		
	BCDMH									X
Specifications	Measuring range [ppm]	0.01-100, [10-200]	0.01-10	0.02-10	0.02-2	0.05-5	0.01-10	0.00-0.0 [0.02-10]	0.01-10	0.01 - 10
	pH range	5.5-8.0	5.5-8.0	5.0-9.0	5.0-9.0	5.0-9.0	5.0-9.5	0.0-0.0	5.5-9.5	5.0 - 9.5
	Temperature [°C]	5-45	5-45	5-45	5-70	5-45	5-45	0.0-0.0	5-45	5 - 45
	Max. pressure [bar]	1	1	8	8	3	1	0.0	3	1
Installation	Open outlet	х	х	х	х	х	х	Х	х	Х
	Direct installation in the circuit			х	х	x				

^{* 1)} As well as free and combined bromine (see Chap. 1.3.3: "Bromine Sensors")

²⁾ As well as total available bromine (see Chap. 1.3.3: "Bromine Sensors")

1.3.3

Sensors for Free Chlorine


Sensor for Free Chlorine CLE 3-mA

Standard sensor for measuring free chlorine in clear water. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

Measured variable Free chlorine (hypochlorous acid HOCl)

 Reference method
 DPD1

 pH range
 5.5 ... 8.0

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine, even if there is not an

excess of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1Cb, DAC, delta® solenoid diaphragm metering pump

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, diaphragm-covered

technology

	Measuring range	Order no.
CLE 3-mA-0.5 ppm	0.010.5 mg/l	792927
CLE 3-mA-2 ppm	0.022.0 mg/l	792920
CLE 3-mA-5 ppm	0.015.0 mg/l	1033392
CLE 3-mA-10 ppm	0.1010.0 mg/l	792919
CLE 3-mA-20 ppm	0.2020.0 mg/l	1002964
CLE 3-mA-50 ppm	0.5050.0 mg/l	1020531
CLE 3-mA-100 ppm	1.00100.0 mg/l	1022786

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.1.2015 Product Catalogue 2015 1-51

Sensor for Free Chlorine CLE 3.1-mA

221

pk_6_039

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no cross sensitivity to combined chlorine (chloramines), even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

chlorine; for determining the combined chlorine with a DAC controller

and sensor for total chlorine type CTE 1-mA

 Reference method
 DPD1

 pH range
 5.5 ... 8.0

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal $4...20 \text{ mA} \approx \text{measuring range, temperature-compensated,}$

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine, even if there is an excess

of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1Cb, DAC, delta $\hspace{-0.6em}^{\circledR}$ solenoid diaphragm metering pump

Typical applications Potable water with higher volumes of combined chlorine. Swimming

pools. To determine the combined chlorine from the difference: Total

chlorine minus free chlorine in the controller DACa

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

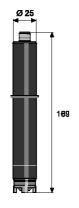
Amperometric, 2 electrodes, diaphragm-covered

	Measuring range	Order no.
CLE 3.1-mA-0.5 ppm	0.010.5 mg/l	1020530
CLE 3.1-mA-2 ppm	0.022.0 mg/l	1018369
CLE 3.1-mA-5 ppm	0.015.0 mg/l	1019398
CLE 3.1-mA-10 ppm	0.1010.0 mg/l	1018368

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-113


Sensor for Free Chlorine CLE 3-DMT

Standard sensor for measuring free chlorine in clear water. For operation on ProMinent transmitters type DMT

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

pk_6_038

Measured variable Free chlorine (hypochlorous acid HOCl)

 Reference method
 DPD1

 pH range
 5.5 ... 8.0

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 3.3 V DC (5 P)

Output signal 0...1 V DC, uncalibrated, not temperature compensated, not

electrically isolated

Temperature measurement About the integrated Pt 1000. The temperature compensation is

carried out in DMT.

Selectivity Free chlorine as against combined chlorine, even if there is not an

excess of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DMT

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, diaphragm-covered

	Measuring range	Order no.
CLE 3-DMT-5 ppm	0.015.0 mg/l	1005511
CLE 3-DMT-50 ppm	0.0550.0 mg/l	1005512

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-113

Sensor for Free Chlorine CLE 3-CAN

Standard sensor for measuring free chlorine in clear water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Operation on the CAN-bus with all the associated benefits

Measured variable Free chlorine (hypochlorous acid HOCI)

Reference method pH range 5.5 ... 8.0 5 ... 45 °C **Temperature** Max. pressure 1.0 bar

Intake flow 30...60 l/h (in the DGM or DLG III) Supply voltage Via CAN interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated Selectivity Free chlorine as against combined chlorine, even if there is not an

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM. DLG III

Measuring and control

equipment

DULCOMARIN® II

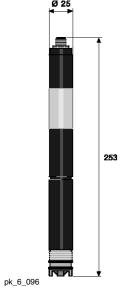
Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Amperometric, 2 electrodes, diaphragm-covered Measuring principle,

technology


Measuring range

Order no.

CLE 3-CAN-10 ppm 0.01...10.0 mg/l 1023425

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for Free Chlorine CLE 3.1-CAN

253

Ø 25

pk_6_096

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no cross sensitivity to combined chlorine (chloramines) even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Operation on the CAN-bus with all the associated benefits

Measured variable Free chlorine (hypochlorous acid HOCI) with large proportions of

bound chlorine; to detect bound chlorine using DULCOMARIN® II and

Sensor for Total Chlorine type CTE 1-CAN

Reference method pH range 5.5 ... 8.0 5 ... 45 °C **Temperature** Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGMa or DLG III) Supply voltage Via CAN interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Free chlorine Selectivity

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control

equipment

DULCOMARIN® II

Typical applications Potable water with higher volumes of combined chlorineSwimming

pools, To determine the combined chlorine from the difference: Total chlorine minus free chlorine in the controller DULCOMARIN® II

Resistance to Salts, acids, alkalis, Not surfactants

Amperometric, 2 electrodes, diaphragm-covered Measuring principle,

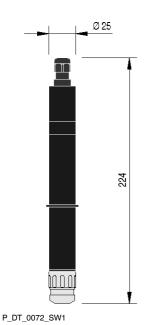
technology

Measuring range Order no.

CLE 3.1-CAN-10 ppm 0.01...10.0 mg/l 1023426

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.


Sensor for Free Chlorine CLO 1-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 $^{\circ}$ C or 8 bar (25 $^{\circ}$ C). For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar is possible

Measured variable Free chlorine (hypochlorus acid HOCl)

Reference method DPD1

 $\begin{array}{lll} \textbf{pH range} & 5.0 \dots 9.0 \\ \textbf{Temperature} & 5 \dots 45 \, ^{\circ} \textbf{C} \\ \textbf{Max. pressure} & 8.0 \, \text{bar} \, (25 \, ^{\circ} \textbf{C}) \\ \end{array}$

Intake flow 30...60 l/h (in DGM or DLG III), constant flow as flow-dependent signal

Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet. Inline: direct installation into the

tubes with the INLI fitting

Sensor fitting DLG up to 1 bar/55 °C; DGM up to 6 bar/30 °C; INLI up to 7 bar/40 °C

Measuring and control

equipment

 ${\rm D1Cb,\,DAC,\,delta}^{\circledast}\ {\rm solenoid\ diaphragm\ metering\ pump}$

Typical applications Swimming pools, uncontaminated potable water and industrial service

water, and can also be used together with diaphragm-free electrolysis

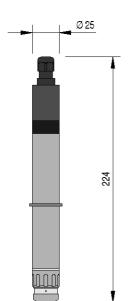
processes

Resistance to Surfactant

Measuring principle,

technology

Amperometric, 2 electrodes, diaphragm-covered


	Measuring range	Order no.
CLO 1-mA-2 ppm	0.022.0 mg/l	1033871
CLO 1-mA-10 ppm	0.1010.0 mg/l	1033870

Sensor for Free Chlorine CLO 2-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 70 °C or 8 bar (25 °C). For use with controllers with 4-20 mA input

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures/temperatures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar is possible

P DT 0073 SW1

Measured variable Free chlorine (hypochlorus acid HOCI) Reference method DPD1

5.0 ... 9.0 pH range **Temperature** 5 ... 70 °C Max. pressure 8.0 bar (25 °C)

Intake flow 30...60 l/h (in DGM or DLG III), constant flow as flow-dependent signal

16...24 V DC (2-wire) Supply voltage

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet. Inline: direct installation into the

tubes with the INLI fitting

Sensor fitting DLG up to 1 bar/55 °C; DGM up to 1 bar/60 °C; INLI up to 2 bar/70 °C.

Prerequisite: constant flow

Measuring and control

equipment

D1Cb, DAC, delta® solenoid diaphragm metering pump

Typical applications Hot water up to 70 °C, combating legionella, uncontaminated potable

water and industrial service water, can also be used together with

diaphragm-free electrolysis processes

Resistance to Surfactants

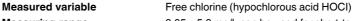
Measuring principle,

technology

Amperometric, 2 electrodes, diaphragm-covered

Measuring range Order no. CLO 2-mA-2 ppm 1033878 0.02...2.0 mg/l

Sensor for Free Chlorine CLB 2-μA


120

pk_6_095

Cost-effective, simple sensor for the measurement of free chlorine in clear water, even with a changing media temperature. Use even when electrolysis processes are used for disinfection at up to $45\,^{\circ}\text{C}/3$ bar. For operation with the Compact controller DCCa

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar by the absence of a diaphragm

Measuring range 0.05 – 5.0 mg/l, can be used for short-term shock chlorination up to

10 mg/l

 Reference method
 DPD1

 pH range
 5.0 ... 9.0

 Temperature
 5 ... 45 °C

 Max. pressure
 3.0 bar

Intake flow 30...60 l/h (in DGMA), constant flow needed as flow-dependent signal

Supply voltage Only for compact controllers

Output signal Non-amplified primary current signal, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement Pt 1000, integrated, calculation in the compact controller

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet. Inline: direct installation into the

pipework

Sensor fitting DGM, DLG III

Measuring and control

equipment

Compact controller

Typical applications Swimming pools, potable water, can also be used with membrane-free

chlorine production electrolysis processes, even with varying media

temperatures

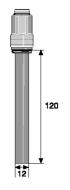
Resistance to Surfactants

Measuring principle,

technology

Amperometric, 3 electrodes, without diaphragm

	Measuring range	Order no.	
CLB 2-µA-5 ppm	0.055.0 mg/l	1038902	


Sensor for Free Chlorine CLB 3-µA

Cost-effective, simple sensor for the measurement of free chlorine in clear water when the media temperature is constant. Use even when electrolysis processes are used for disinfection at up to 45 °C/3 bar. For operation with the Compact controller DCCa

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar by the absence of a diaphragm

pk_6_095

Measured variable Free chlorine (hypochlorous acid HOCI)

Measuring range 0.05 - 5.0 mg/l: linear, can be used for shock chlorination up to 10.0 mg/l

Temperature 5 ... 45 °C constant temperature needed, as temperature-dependent

signal

Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGMA), constant flow necessary, as flow-dependent

signal

Supply voltage Only for compact controllers

Output signal Non-amplified primary current signal, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet. Inline: direct installation into the

pipework; fixed or replaceable (replaceable fitting)

Sensor fitting DGM, DLG III

Measuring and control

equipment

Compact controller

Typical applications Swimming pools, potable water, can also be used with membrane-free

chlorine production electrolysis processes

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 3 electrodes, without diaphragm

	weasuring range	Oraer no.	
CLB 3-uA-5 nnm	0.05 5.0 mg/l	1041696	

1.1.2015 Product Catalogue 2015 1-59

Sensor for Free Chlorine CBR 1-mA

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Measured variable Free chlorine (hypochlorous acid, HOCI, OCI⁻), free bromine, bound

bromine BCDMH (1,3-dibrom-5,5-dimethyl-hydantoin)

 Reference method
 DPD1

 pH range
 5.0 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II)
Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Bromide +

hypochlorite, DBDMH

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1Cb, DAC, delta® solenoid diaphragm metering pump

Typical applications Cooling water, process water, waste water, Water with higher pH

values (stable pH), Seawater

Resistance to Films of dirt, Biofilms, Surfactants

Measuring principle, amperometric, 2 electron

technology

amperometric, 2 electrodes, diaphragm-covered

	weasuring range	Order no.
CBR 1-mA-0,5 ppm	0.010.5 mg/l*	1038016
CBR 1-mA-2 ppm	0.022.0 mg/l*	1038015
CBR 1-mA-10 ppm	0.1010.0 mg/l*	1038014

Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

Sensor for Free Chlorine CLR 1-mA

221

Ø 25

pk_6_040

Sensor for free chlorine above 10 ppm in contaminated washing water for use with controllers with 4-20 mA input

Your benefits

- Measured variable free chlorine for high concentrations of up to 1,000 ppm
- Diaphragm-covered sensor prevents faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

Measured variable Free chlorine (hypochlorous acid HOCI)

DPD1 Reference method pH range 5.5 ... 8.0 **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II) Supply voltage 16...24 V DC (2-wire)

4...20 mA = Measuring range, temperature-compensated, **Output signal**

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm

Installation Bypass: open sample water outlet

Sensor fitting DLG III

Measuring and control

equipment

D1Cb, DAC, delta® solenoid diaphragm metering pump

Typical applications Salad, vegetable and poultry washing water, contaminated process

and waste water

Resistance to Salts, acids, alkalis, films of dirt, surfactants Measuring principle, Amperometric, 2 electrodes, diaphragm-covered

technology

Measuring range Order no. CLR 1-mA-200 ppm 10.0...200 mg/l 1047978

Important note: Measuring range from 10.0 ... 1,000 mg/l on request

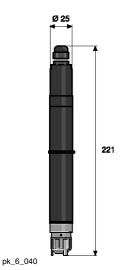
A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.3

1.3 Amperometric Sensors DULCOTEST®

1.3.4

Sensors for Total Available Chlorine


Sensor for Total Available Chlorine CGE 3-mA

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid trouble-free when disinfection is provided by electrolysis processes when used in swimming pools. For operation with controllers with 4-20 mA input

Your benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water (without diaphragm)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5

Measured variable Total available chlorine: Total of organic combined chlorine (e.g. bound

to cyanuric acid) and free chlorine

 Reference method
 DPD1

 pH range
 5.5 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (2-wire system)

Output signal 4-20 mA ≈ Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

SelectivityTotal available chlorine as against combined chlorine (chloramines) **Disinfection process**Disinfectants with organic chlorine, e.g. based on cyanuric acid

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1C, DAC, delta® solenoid diaphragm metering pump

Typical applications Swimming pool water, combined disinfection processes with

chloro(iso)cyanuric acid derivatives and diaphragm-free electrolysis

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CGE 3-mA-2 ppm	0.022.0 mg/l	1047959
CGE 3-mA-10 ppm	0.1010.0 mg/l	1047975

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for Total Available Chlorine CGE 2-CAN

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid when used in swimming pools. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Total available chlorine: Total of organic combined chlorine (e.g. bound Measured variable

to cyanuric acid) and free chlorine

DPD1 Reference method pH range 5.5 ... 9.5 **Temperature** 5 ... 45 °C Max. pressure 3.0 bar

Intake flow 30...60 l/h (in the DGM or DLG III) Supply voltage Via CAN interface (11 - 30 V DC)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Selectivity Only limited against combined chlorine (chloramines)

Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications Swimming pool water, disinfection processes with chloro(iso)cyanuric

acid derivatives

Resistance to Surfactants

Measuring principle,

technology

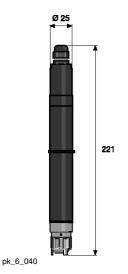
Amperometric, 2 electrodes, membrane-covered

Measuring range Order no. 0.01...10.0 mg/l 1024420 CGE 2-CAN-10 ppm

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.3.5

Sensors for Total Chlorine


Sensor for Total Chlorine CTE 1-mA

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with mA input

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl⁻), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

 Measured variable
 Total chlorine

 Reference method
 DPD4

 pH range
 5.5 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

SelectivityNot selective, cross-sensitive towards many oxidation agentsDisinfection processChlorine gas, hypochlorite, electrolysis with diaphragm,

Monochloramine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1C, DAC, delta® solenoid diaphragm metering pump

Typical applications Potable, industrial, process, waste water

Resistance to Surfactant

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CTE 1-mA-0.5 ppm	0.010.5 mg/l	740686
CTE 1-mA-2 ppm	0.022.0 mg/l	740685
CTE 1-mA-5 ppm	0.055.0 mg/l	1003203
CTE 1-mA-10 ppm	0.1010.0 mg/l	740684

Chlorine sensors complete with 50 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.


Sensor for Total Chlorine CTE 1-DMT

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For operation with the transmitter DMT

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl⁻), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

Measured variabletotal chlorineReference methodDPD4pH range5.5 ... 9.5Temperature5 ... 45 °CMax. pressure3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 3.3 V DC (5 P)

 Output signal
 Uncalibrated, not temperature-compensated, not electrically isolated

 Selectivity
 Not selective, cross-sensitive towards many oxidation agents

 Disinfection process
 Chlorine gas, hypochlorite, electrolysis with diaphragm,

Monochloramine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DMT

Typical applications Potable, industrial, process, waste water

Resistance to Surfactant

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

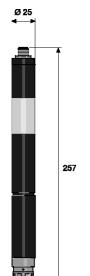
	Measuring range Order		no.
CTE 1-DMT-10 ppm	0.0110.0 mg/l	1007540	

Chlorine sensors complete with 50 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. \rightarrow 1-113

Sensor for Total Chlorine CTE 1-CAN



Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® II swimming pool controller)

pk_6_084

Measured variableTotal chlorineReference methodDPD4

pH range 5.5 ... 9.5 (up to pH 8.5 with D1C pH correction)

Temperature 5 ... 45 °C Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGMa or DLG III)

Supply voltage Via CAN interface (11 - 30 V)

 Output signal
 Uncalibrated, temperature-compensated, electrically isolated

 Selectivity
 Not selective, cross-sensitive towards many oxidation agents

 Disinfection process
 Chlorine gas, hypochlorite, electrolysis with diaphragm,

Monochloramine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications CTE 1-mA-0.5 ppm: potable water; CTE 1-mA-2/5/10 ppm: potable,

industrial, process, waste water. In swimming pools combined with

CLE 3.1 to detect combined chlorine

Resistance to Surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

 Measuring range
 Order no.

 CTE 1-CAN-10 ppm
 0.01...10.0 mg/l
 1023427

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.3.6 Sensors for Bromine

Bromination agents

The following stabilised bromination agents are frequently used for disinfection during water treatment:

- BCDMH (1-Bromo-3-Chloro-5,5-Dimethyl-Hydantoin), marketed under trade names such as Brom-Sticks®
- DBDMH (1,3-**Dib**romo-5,5-**Dim**ethyl-**H**ydantoin) marketed under trade names such as Albrom 100[®]
- N-bromamide sulfonate

These bromination agents are initially available as solids (tablets, sticks, pellets) and are transferred via "bromine chutes" into a saturated aqueous solution, that contains the free bromine (HOBr, OBr) and the carrier molecule. The free bromine and the halogen (bromine, chlorine) still available in the carrier molecule is jointly referred to as "Total available bromine". This solution is metered during the process.

Free bromine is generated directly without a carrier by metering of sodium-calcium hypochlorite + acid + sodium bromide, e.g. the Acti-Brom® process (Nalco company) or through the metering of sodium-calcium hypochlorite into seawater (bromide containing).

Bromamines are designated as combined bromine, which are more reactive when compared with chloramines (combined chlorine).

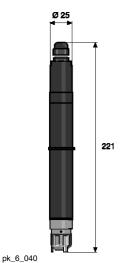
Applications

Typical applications are in swimming pools, whirlpools, seawater and cooling circuits. Particular attention must be paid to the quality of the sample water in cooling circuits and, where necessary, compatibility with other chemicals used (e.g. corrosion inhibitors) must be checked.

The photometric DPD measurement method recommends itself as a comparison method (e.g. with DT 1B), calculated and displayed as bromine. If the photometric DPD measurement for "chlorine" is used, the measured value must be multiplied by a factor of 2.25 for conversion into "bromine".

Sensor selection

- The sensor type BCR 1 and its calibration/checking using the DPD4 method, is recommended for the measurement of stabilised bromination agents, such as BCDMH and N-bromamide sulfonate.
- The sensor type CBR 1 and its calibration/checking using the DPD1 method, is recommended for the measurement of free bromine from sodium-calcium hypochlorite and bromide or of free bromine from DBDMH (solely splits off free bromine), or of bromine compounds, which are produced during disinfection (using sodium-calcium hypochlorite or ozone) of seawater. The CBR 1 can likewise be used to measure combined bromine (bromamines), calibrated and checked using the DPD1 method.
- It is essential that the sensor type BRE 3-CAN, calibrated and checked using the DPD4 method, is used to measure bromination agents using the control system DULCOMARIN® II.


Sensor for Total Available Bromine BCR 1-mA (Replaces Earlier Type BRE 1)

Sensor for the disinfectant BCDMH and other oxidative-acting bromine-organic disinfectants even in contaminated water and/or for high pH values of up to 9.5. For use on controllers with mA input

Your benefits

- Measured variable: total available bromine from BCDMH (1-bromo-3-chloro-5,5-dimethylhydantoin)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water,
 N-bromamide sulfonate
- Resistance to blocking is achieved by the use of an electrolyte with an antimicrobial effect (less blocking by biofilms) and by a large-pored diaphragm (less blocking by solid particles/dirt)
- Use with high pH values by optimisation of the electrolyte diaphragm system

Measured variable Total available bromine from BCDMH (bromo-3-chloro-5,5-

dimethylhydantoin) and N-bromamide sulfonate

 Reference method
 DPD4

 pH range
 5.0 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG III)
Supply voltage 16...24 V DC (two wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity

Not selective, cross-sensitive towards many oxidation agents

Disinfection process

BCDMH (1-bromo-3-chloro-5,5-dimethyl-hydantoin), N-bromamide

sulfonate

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1C, D2C, DAC

Typical applications Cooling water, process water, waste water water with higher pH

values (stable pH)

Resistance to

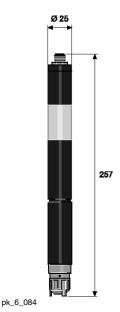
Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
BCR 1-mA-0.5 ppm	0.010.5 mg/l	1041697
BCR 1-mA-2 ppm	0.022.0 mg/l	1040115
BCR 1-mA-10 ppm	0.1010.0 mg/l	1041698

Sensor for Total Available Bromine BRE 3-CAN



Sensor for free and combined bromine, also for use with slightly contaminated water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available bromine from BCDMH and other oxidative-acting bromine organic disinfectants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Use with high pH values by optimisation of the electrolyte diaphragm system
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® II swimming pool controller)

1.1.2015

Measured variable Total available bromine

For DBDMH, free bromine: DPD1.For BCDMH: DPD4 Reference method

pH dependence If the pH changes from pH 7 to pH 8, the sensor sensitivity is reduced

a) in the case of DBDMH and free bromine by approx. 10 % b) in the case of BCDMH by approx. 25 %

5 ... 45 °C

Temperature Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage Via CAN interface (11 – 30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated Selectivity Not selective, cross-sensitive towards many oxidation agents **Disinfection process** DBDMH (1,3-dibromo-5,5-dimethyl-hydantoin), BCDMH (1-bromo-3-

chloro-5,5-dimethyl-hydantoin), Free bromine (HOBr, OBr)

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control

equipment

DULCOMARIN® II

Typical applications Swimming pools/whirlpools and cooling water; can also be used in sea

water

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
BRE 3-CAN-10 ppm	0.0210.0 mg/l	1029660

Note: a mounting kit (order no. 815079) is required for initial fitting of the bromine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-113

Product Catalogue 2015

Sensor for Free and Combined Bromine CBR 1-mA (Replaces Earlier Type BRE 2)

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Measured variable Free chlorine (hypochlorous acid, HOCl, OCl⁻), free bromine, bound

bromine BCDMH (1,3-dibrom-5,5-dimethyl-hydantoin)

 Reference method
 DPD1

 pH range
 5.0 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II)
Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Bromide +

hypochlorite, DBDMH

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1Cb, DAC, delta® solenoid diaphragm metering pump

Typical applications Cooling water, process water, waste water, water with higher pH

values (stable pH), seawater

Resistance to Films of dirt, Biofilms, Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, diaphragm-covered

	Measuring range	Order no.
CBR 1-mA-0.5 ppm	0.010.5 mg/l*	1038016
CBR 1-mA-2 ppm	0.022.0 mg/l*	1038015
CBR 1-mA-10 ppm	0.1010.0 mg/l*	1038014

* Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

1.3.7 Sensors for Chlorine Dioxide

Sensor type		CDE 2-mA	CDP 1-mA	CDR 1-mA
Application		Potable water		Cooling water, waste water, agriculture, hot water
Measuring range		0.01-10.0	0.02-2.00	0.01-10.0
Temperature	°C	5 45	10 45	1 55
Temperature compensation		internal	external	internal
Max. pressure	bar	1.0	3.0	3.0
pH range		4.0 11.0	5.5 10.5	1.0 10.0
Response time	s	120	60	180
Run-in time	h	2-6	4-12	2-6
Surfactant-resistance		no	yes	yes
Contamination resistance		no	under certain conditions	yes
Cross sensibility		Ozone	Ozone, chlorine	Ozone

Chlorine Dioxide Sensor CDE 2-mA

Standard sensor for the measurement of chlorine dioxide without cross-sensitivity by free chlorine. For operation on controllers with 4-20~mA input

Your benefits

- Measured variable: Chlorine dioxide, no cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water

Measured variable Chlorine dioxide (ClO₂)

Reference method DPD1

pH range 4.0 ... 11.0 CIO₂ stability range

Cross sensibilityOzoneTemperature $5 \dots 45 \,^{\circ}$ CMax. pressure $1.0 \, \text{bar}$

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Response time sensor 120 s

Selectivity Chlorine dioxide selective towards free chlorine, chlorite and chlorate

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

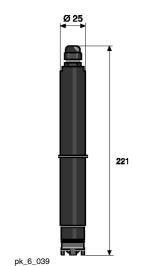
Measuring and control D1C, DAC

equipment

Typical applications Uncontaminated drinking water (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered


technology

	Measuring range	Order no.
CDE 2-mA-0.5 ppm	0.010.5 mg/l	792930
CDE 2-mA-2 ppm	0.022.0 mg/l	792929
CDE 2-mA-10 ppm	0.1010.0 mg/l	792928

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

1.1.2015

Chlorine Dioxide Sensor CDP 1-mA

230

Ø 25

pk_6_047

Sensor for the measurement of chlorine dioxide with a fast response time, for example in bottle-washing systems. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide without interference caused by surfactants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Fast response time through open-pored diaphragm and external temperature measurement

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1 pH range 5.5 ... 10.5 Ozone, chlorine Cross sensibility **Temperature** 10 ... 45 °C 3.0 bar Max. pressure Intake flow 30...60 l/h

16...24 V DC (two-wire technology) Supply voltage

Output signal 4...20 mA ≈ measuring range, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement Separate temperature measurement needed for compensation

Response time sensor

Selectivity Chlorine dioxide as against chlorite and chlorate

Installation Bypass: open sample water outlet

Sensor fitting ProMinent recommends installing the sensor in the DLG II in-line probe

fitting with upstream flow monitoring together with a Pt 100 temperature

sensor

Measuring and control

equipment

D1C and DACa with automatic temperature correction only

Typical applications Process water containing surfactants (bottle washing machines)

Resistance to Surfactants, slight films of dirt

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
CDP 1-mA-2 ppm	0.022.0 mg/l	1002149

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

Chlorine Dioxide Sensor CDR 1-mA

Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials

223

pk_6_083

Measured variable Chlorine dioxide (CIO₂) Reference method DPD1

pH range 1.0 ... 10.0 Cross sensibility Ozone

Temperature 1 ... 55 °C (short-term period 60 °C)

3.0 bar, (30 °C, in DGMA) Max. pressure Intake flow 30...60 l/h (in DGM or DLG III)

16...24 V DC Supply voltage

Output signal 4...20 mA temperature-compensated, uncalibrated, not electrically

isolated

Response time sensor t₉₀~ 3 min.

Selectivity Chlorite, Chlorate, Free chlorine Installation Bypass: open sample water outlet

DGMa/DLGIII Sensor fitting

Measuring and control

equipment

D1C, DAC

Typical applications Contaminated industrial, process water, containing surfactants,

cooling water, irrigation water, slightly contaminated waste water,

warm water

Resistance to Surfactants, slight films of dirt, water-soluble chemicals, solids/dirt,

Measuring principle,

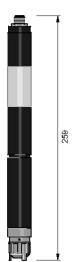
technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CDR 1-mA-0.5 ppm	0.010.5 mg/l	1033762
CDR 1-mA-2 ppm	0.022.0 mg/l	1033393
CDR 1-mA-10 ppm	0.1010.0 mg/l	1033404

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

Chlorine Dioxide Sensor CDR 1-CAN



Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross sensitivity to free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

P DT 0071 SW1

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1 pH range 1.0 ... 10.0 Cross sensibility Ozone **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Via CAN interface (11-30 V) Supply voltage

Output signal Uncalibrated, temperature-compensated, electrically isolated

Response time sensor t₉₀~ 3 min.

Selectivity Chlorite, Chlorate, Free chlorine Installation Bypass: open sample water outlet

Sensor fitting DGMa/DLGIII

Measuring and control

equipment

DULCOMARIN® II

Typical applications Contaminated industrial, process water, containing surfactants,

cooling water, irrigation water, slightly contaminated waste water,

warm water

Resistance to Surfactants, water-soluble pollutants, solids/dirt, biofilms Measuring principle,

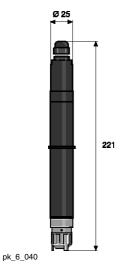
technology

Amperometric, 2 electrodes, membrane-covered

Measuring range Order no. CDR 1-CAN-10 ppm 1041155 0.01...10.0 mg/l

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.3.8 Sensors for Chlorite


Chlorite Sensor CLT 1-mA

Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis

recommended

Measured variable Chlorite anion (CIO₂⁻)

Reference method DPD method, chlorite in the presence of chlorine dioxide

 $\begin{array}{lll} \textbf{pH range} & 6.5 \dots 9.5 \\ \textbf{Cross sensibility} & \textbf{Ozone} \\ \textbf{Temperature} & 1 \dots 40 \, ^{\circ} \textbf{C} \\ \textbf{Max. pressure} & 1.0 \, \text{bar} \end{array}$

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1C, DAC

Typical applications Monitoring of chlorine dioxide treated potable water or similar water.

The selective measurement of chlorite alongside chlorine dioxide,

chlorine and chlorate is possible.

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

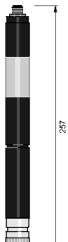
	Measuring range	Order no.	
CLT 1-mA-0.5 ppm	0.020.50 mg/l	1021596	
CLT 1-mA-2 ppm	0.102.00 mg/l	1021595	

Chlorite sensors complete with 50 ml of electrolyte.

Note: A mounting kit (order no. 815079) is required for initial fitting of the chlorite sensors in the in-line probe housing DLG III.

The DT4 photometer is recommended for calibration of the chlorite sensor.

Chlorite Sensor CLT 1-CAN



Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For use on controllers with CAN-bus connection

Your benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

P_DT_0070_SW1

Measured variable Chlorite anion (ClO₂-)

Reference method DPD method, chlorite together with chlorine dioxide

pH range 6.5 ... 9.5
Cross sensibility Ozone
Temperature 1 ... 40 °C
Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)
Supply voltage Via CAN interface (11-30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Response time sensor 3 min

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applicationsMonitoring of potable water or similar water treated with chlorine

dioxide. Selective measurement of chlorite and chlorine dioxide,

chlorine and chlorate is also possible.

Resistance to Surfactants

Measuring principle,

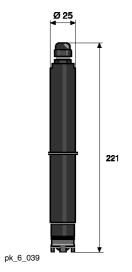
technology

Amperometric, 2 electrodes, membrane-covered

 Measuring range
 Order no.

 CLT 1-CAN-2 ppm
 0.05...2.00 mg/l
 1041156

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN


1.3.9 **Sensors for Ozone**

Ozone Sensor OZE 3-mA

Standard sensor for measuring ozone in clear water. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in

Measured variable Ozone (O₃) Reference method DPD4

pH range 4.0 ... 11.0 Ozone stability range

Chlorine dioxide Cross sensibility **Temperature** 5 ... 40 °C Max. pressure 1.0 bar

30...60 l/h (in DGM or DLG III) Intake flow 16...24 V DC (two-wire technology) Supply voltage

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Ozone as against free chlorine, combined chlorine, hydrogen peroxide

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

D1C, DAC

Typical applications Potable water and swimming pool water Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
OZE 3-mA-2 ppm	0.022.00 mg/l	792957

Ozone sensor complete with 100 ml of electrolyte.

Note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the in-line probe housing DLG III.

Ozone Sensor OZR 1-mA

Sensor for measuring and monitoring the absence of ozone. For operation on controllers with 4-20 mA

Your benefits

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Suitable also for monitoring the absence of ozone (rupture monitoring on filters) and for discontinuous ozone treatment processes
- Resistance to films of dirt by pore-free diaphragm

221 pk_6_039

Measured variable Ozone (O₃) DPD4 Reference method

pH range 4.0 ... 11.0 Stability range of ozone **Cross sensibility** Chlorine dioxide, chlorine, bromine

5 ... 40 °C **Temperature** 1.0 bar Max. pressure

Intake flow 30...60 l/h (in the DGM or DLG III) Supply voltage 16...24 V DC (two-wire system)

Output signal 4...20 mA ≈ Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Not selective

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control

equipment

D1C, DAC

Typical applications Process, service or cooling water, monitoring the ozone breakdown of

filters

Salts, acids, alkalis, surfactants, films of dirt Resistance to Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

Measuring range Order no

	moadaring range	Oldor Hor
OZR 1-mA-2 ppm*	0.022.0 mg/l	1051647

^{*} Available from 2nd quarter of 2015.

Important note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the in-line probe housing DLG III.

1.3.10

Sensors for Dissolved Oxygen

The measured variable "Dissolved oxygen" indicates the volume of gaseous oxygen physically dissolved in the aqueous phase in mg/l (ppm).

"Dissolved oxygen" is therefore an important parameter for assessing the quality of surface water and water that has to be treated for the breeding of livestock with the addition of oxygen. Dissolved oxygen is also used for controlling processes in clarification plants and waterworks.

The following sensors are assigned to the different applications and can be offered separately as 4 - 20 mA encoders to central controls or as a decentralised solution along with D1C and DAC (measured variable: "Dissolved oxygen": X).

Oxygen Sensor DO 1-mA

180

Sensor for the measurement of the dissolved oxygen above 2 ppm to oxygen saturation. For installation in standard immersion pipes or in the bypass line. Use in waterworks, in fish breeding or to monitor surface water

Your benefits

- Measured variable: dissolved oxygen, no interference by turbidity or discolouration by the amperometric measuring principle
- Rod-shaped construction for simple installation into standard immersion pipes and bypass lines
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Minimal maintenance and long service life due to encapsulated transducer (easily replaceable thanks
- Measuring electrodes protected by pore-free, dirt-repellent diaphragm
- Long service life of the electrolyte at high oxygen concentrations through optimised membrane thickness
- Stable zero point by means of large diaphragm-covered electrodes

Measured variable Dissolved oxygen Calibration Of oxygen in air

Measuring accuracy ±0.5 % relative to final value of measuring range

Response time sensor 110 s **Temperature** 0 ... 50 °C Max. pressure 1.0 bar

Minimum: 0.05 m/s Intake flow 12...30 V DC Supply voltage **Electrical connection** Fixed lead, 10 m

Output signal 4...20 mA ≈ measuring range, calibrated, temperature-compensated

and electrically isolated

IP 68 **Enclosure rating** Measuring and control D1Cb, DAC

equipment

Process integration a) Immersion, suspended on cable with or without cable bracket (see accessories)

b) Immersion with immersion pipe

- 1. Immersion pipe with 50 mm outside diameter and 1-1/4 inch internal thread (provided by the customer). The connection is possible via an immersion pipe adapter (see accessories).
- 2. PVC immersion pipe with 50 mm outside diameter (provided by the customer). The connection is made by adhesion via a standard PVC union (provided by the customer).
- c) In-flow operation on request

Measuring and control equipment

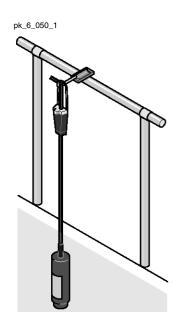
Resistance to

technology

Measuring principle,

Typical applications Fish and shrimp farming, conditioning of water in large aquaria in zoological parks, control of the oxygen input in waterworks, appraisal

of the biological status of surface waters.


Amperometric, 2 electrodes, membrane-covered, encapsulated

transducer

D1Cb, DAC

Measuring range Order no. DO 1-mA-20 ppm 2.00...20.0 mg/l 1020532

Ingredients in the water, dirt films

pk 6 011

1.1.2015 Product Catalogue 2015

Oxygen Sensor DO 2-mA

Sensor for the measurement of the dissolved oxygen, specifically optimised for control above 0.1 ppm in the aeration tanks of clarification plants. Integrated in a floating ball with a cleaning function

Your benefits

260 mm

pk_6_051

- Measured variable: dissolved oxygen, no interference by turbidity or discolouration by the amperometric measuring principle
- Integration of the encapsulated transducer in a specially-shaped floating ball., creating a Venturi flow, which helps to clean the sensor membrane
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Minimal maintenance and long service life due to encapsulated transducer (easily replaceable thanks to bayonet fitting)
- Measuring electrodes protected by pore-free, dirt-repellent diaphragm
- Long service life of the electrolyte at low to medium oxygen concentrations, as occur in the aeration tanks of clarification plants, by means of optimised membrane thickness
- Stable zero point by means of large diaphragm-covered electrodes

Measured variable Dissolved oxygen Calibration Of oxygen in air

Measuring accuracy ±0.5 % relative to final value of measuring range

Response time sensor **Temperature** 0 ... 50 °C 1.0 bar Max. pressure

Intake flow Minimum: 0.05 m/s Supply voltage 12...30 V DC **Electrical connection** Fixed lead, 10 m

Output signal 4...20 mA measuring range calibrated, temperature-corrected and

electrically isolated

Enclosure rating IP 68 Measuring and control

equipment

D1Cb, DAC

Process integration As a float with venturi grooves to increase the flow of sample water for

the self-cleaning of the sensor part.

Supplied with adapter for connection to PVC pipes with outside diameter: 50 mm and railing bracket, also for PVC pipes with outside

diameter: 50 mm (see accessories).

The customer must provide the straight PVC tube and a 45 ° standard

elbow for gluing to PVC pipes (outside diameter 50 mm).

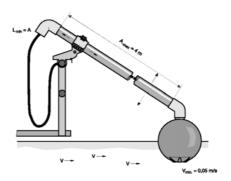
Measuring and control

equipment

D1Cb, DAC

Typical applications Control of the oxygen input in activated sludge pools (sewage plant) for

the purpose of energy conservation.


Resistance to Ingredients in the water, dirt films

Measuring principle, Amperometric, 2 electrodes, membrane-covered, encapsulated

technology transducer integrated in ball float

For further information: Immersion Sensor Fittings/Adaptors see page → 1-126

	Measuring range	Order no.
DO 2-mA-10 ppm	0.1010.0 mg/l	1020533

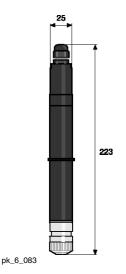
Sensor Technology DULCOTEST®

1.3 Amperometric Sensors DULCOTEST®

1.3.11

Sensors for Peracetic Acid

DULCOTEST® sensors of type PAA 1 are diaphragm-covered, amperometric 2-electrode sensors for the selective measurement of peracetic acid. Peracetic acid is particularly used in the food and beverage industry, but also for disinfection in the cosmetics, pharmaceutical and medical sectors. The continuous measurement and control of peracetic acid is therefore required when there are high demands in terms of disinfection and quality assurance. Commissioning and maintenance are significantly simplified. The sensor can also be used where there are surfactants.


Peracetic Acid Sensor PAA 1-mA

Sensor for the measurement of peracetic acid without cross-sensitivity towards hydrogen peroxide. For use in contaminated washing and waste water

Your benefits

- Measured variable: Peracetic acid, without cross-sensitivity towards the accompanying chemical, hydrogen peroxide
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

Measured variable Peracetic acid
Reference method Titration

pH range 1.0 ... 9.0 (peracetic acid stability range)
Cross sensibility Ozone, chlorine dioxide, chlorine, bromine

Response time sensor ≈ 3 min

Max. pressure 3.0 bar, (30 °C, in DGM)

Intake flow 30...60 l/h (in in-line probe housing DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Peracetic acid selective towards hydrogen peroxide

Installation Bypass: open sample water outlet

In-line probe fitting DGM, DLG

Measuring and control

equipment

D1C, DAC

Typical applications Scouring in Cleaning in Place (CIP), rinsers, also suitable in the

presence of cationic and anionic tensides. The selective measurement

of peracetic acid and hydrogen peroxide is possible.

Resistance to Salts, acids, alkalis, surfactants, dirt films

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

 Measuring range
 Order no.

 PAA 1-mA-200 ppm
 1...200 mg/l
 1022506

 PAA 1-mA-2000 ppm
 10...2,000 mg/l
 1022507

Note: a mounting kit (order no. 815079) is required for initial fitting of the sensors in the in-line probe housing DLG III.

1.3.12

Sensors for Hydrogen Peroxide

DULCOTEST® sensors PEROX and PER1 are membrane-covered, amperometric sensors for the online concentration measurement of hydrogen peroxide. Due to its complete biodegradability, hydrogen peroxide is a disinfectant and oxidising agent frequently used in water treatment and production:

- chemical bleach in the wood, paper, textile and mineral compounds industries,
- organic synthesis in the chemical, pharmaceutical and cosmetics industries,
- oxidation of potable water, landfill seepage water, contaminated ground water,
- disinfection of cooling, process and production water in the pharmaceutical, food and beverage industries as well as in swimming pools,
- deodorisation (gas scrubbers) in municipal and industrial clarification plants,
- dechlorination in chemical processes.

Sensors are selected according to the following decision-making table:

Requirement	Type PER1	PEROX
Sample matrix loaded with dirt and chemicals	Suitable due to water-impermeable membrane, however sensitive to the presence of hydrogen sulphide (H ₂ S)	Failure-prone due to water-permeable membrane
Electrical influence due to interference potential in the measurement medium	Insensitive because the counter electrode is separated from the process	More sensitive because counter electrode is in the medium
Temperature range	Up to 50 °C	Up to 40 °C
Simple handling during installation and maintenance	Suitable due to temperature compensation and measuring transducer integrated in the sensor	Separate temperature sensor and measuring transducer
Response time as t90	480 s	20 s
Quick temperature changes	Slow due to integrated temperature sensor	Fast due to separate temperature sensor
Measuring intervals in the absence of ${\rm H_2O_2}$	Unsuitable	Suitable due to pulsed polarisation technology
Measuring range can vary in phased approach due to orders of magnitude or is not clear in the order	Selection of a suitable sensor is necessary	Suitable because the measuring range can be manually switched on the sensor transducer

1.3 Amperometric Sensors DULCOTEST®

Hydrogen Peroxide Sensor PER1

223

pk_6_083

Sensor for the measurement of hydrogen peroxide even in chemically contaminated and polluted water. Available with measuring ranges for extremely low or very high concentrations

Your benefits

- Measured variable hydrogen peroxide, with measuring ranges from 0.5 ppm to 100,000 ppm (10%)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 50 °C

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer

pH range 2.5 ... 11.0

Cross sensibility Ozone, chlorine dioxide, peracetic acid, chlorine, bromine

0...50°C **Temperature** Admissible temperature < 0.3 °C/min fluctuation

Response time sensor T₉₀ approx. 480 sec

Measuring accuracy ≥ 1 ppm or better than ± 5 % of measured value

Min. conductivity 0.05 ... 5.00 mS/cm

Max. pressure 1.0 bar Intake flow 20...100 l/h

Supply voltage 16...24 V DC (two-wire system)

Output signal 4...20 mA temperature-compensated, uncalibrated, not electrically

Selectivity Hydrogen peroxide selective towards sulphite

Installation Bypass: open outlet or return of the sample water into the process line

In-line probe fitting DGM, DLG

Measuring and control

equipment

D1Cb, DAC

Typical applications Swimming pools, treatment of contaminated waste waters, treatment

of process media from production

Resistance to Salts, acids, alkalis, surfactants, dirt films, not against hydrogen

sulphide (H₂S)

Measuring principle, technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
PER 1-mA-50 ppm	0.5050.0 mg/l	1030511
PER 1-mA-200 ppm	2.00200.0 mg/l	1022509
PER 1-mA-2000 ppm	20.002,000.0 mg/l	1022510

Important note: Measuring ranges up to 100,000 ppm on request

Photometer→ 2-100

Accessories

		Order no.
Photometer DT3B	(for calibration)	1039317

Note: a mounting kit (order no. 815079) is required for initial fitting of the sensors in the in-line probe housing DLG III.

P DT 0075 SW

1.3 Amperometric Sensors DULCOTEST®

Hydrogen Peroxide sensor PEROX

Sensor for the measurement of hydrogen peroxide without cross-sensitivity to chlorine. Can also be used for fast control processes in clear water

Your benefits

- Measured variable hydrogen peroxide without cross sensitivity to chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow
- Control of fast processes through rapid response time by the sensor in conjunction with fast external temperature measurement for temperature correction
- Reliable measurement even after periods of absence of hydrogen peroxide by pulsed, self-regenerating measuring electrode

Measured variable Hydrogen peroxide

CalibrationPhotometric with manual DT3B photometerMeasuring range1... 20/10 ... 200/100 ... 2000 mg/l switchable

 $\begin{array}{ll} \textbf{pH range} & 2.5 \dots 10.0 \\ \textbf{Temperature} & 0 \dots 40 \ ^{\circ} \textbf{C} \end{array}$

Admissible temperature

fluctuation

< 1 $^{\circ}\text{K/min}$ (for external temp. measurement) see operating instructions

Response time sensor T₉₀ approx. 20 sec

Measuring accuracy Better than 2 % referred to range full scale value

Min. conductivity With 20 mg/l range: $5 \mu S/cm$ With 200 mg/l range: $200 \mu S/cm$ Up to 1,000 mg/l: $500 \mu S/cm$

Up to 2,000 mg/l: 1 mS/cm

Max. pressure 2.0 bar Intake flow 30...60 l/h

Supply voltage 16...24 V DC (3-wire system)

Output signal 4...20 mA not temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Hydrogen peroxide selective towards free chlorine

Installation Bypass: open outlet or return of the sample water into the process line

In-line probe fitting DGM, DLG

Measuring and control

equipment

DAC

Typical applications Treatment of clear and chemically uncontaminated waters, control with

necessary short response times

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

Order no.

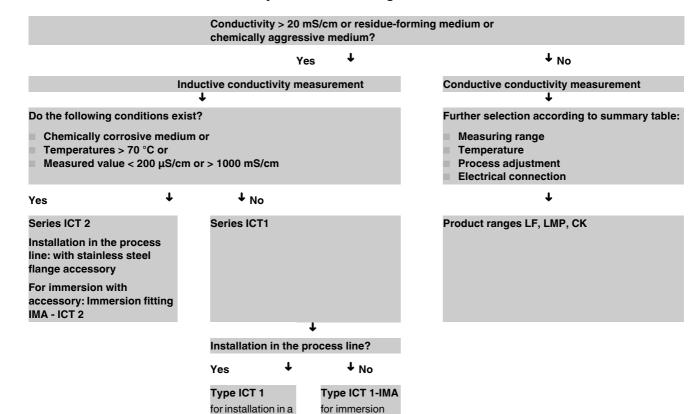
PEROX sensor PEROX-H2.10 P	792976
PEROX transducer V1 for D1Ca	1034100
PEROX transducer V2 for DACa	1047979

Photometer→ 2-100

Accessories

		Order no.	
Photometer DT3B	(for calibration)	1039317	

1.4.1 **Conductivity Sensors**


The advantages at a glance:


- Large range of sensor types tailored to meet different requirements offering excellent value for money.
- Precise and reliable online measurement enables efficient processes and outstanding process
- Long service lives and short maintenance intervals reduce downtime and increase the availability of the measured information.
- Complete pre-assembled sets containing fittings and sensors for simple, fast and trouble-free installation.

Note the following points for optimum functioning of conductivity sensors:

- Install the sensors so that the electrodes are always covered by the measuring liquid.
- Keep measuring lines as short as possible
- Temperature compensation with fluctuating temperatures
- Regular cleaning depending on the application
- Ensure that the cell constant and measuring range match each other

Conductivity sensor selection guide

Overview Table for Conductivity Sensors

Туре	Measuring range	Cell constant k	Medium temperature max.	Max. pressure	Shaft material	Temperature compensation	Process integration	Electrical connection on the measuring device
		cm ⁻¹	°C	bar				
LMP 001 → 1-88	0.0150 μS/cm	0.01 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 001- HT → 1-89	0.0150 μS/cm	0.01 ±5%	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 01 → 1-90	0.1500 μS/cm	0.1 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 01-HT → 1-92	0.1500 μS/cm	0.1 ±5 %	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 01-TA → 1-91	0.1500 μS/cm	0.1 ±5 %	70	16	PP	Pt 100	Immersion, including immersion fitting 1 m	5 m fixed cable, on Compact; DMTa
LFT 1FE → 1-93	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	Pt 100	PG 13.5, flow (length: 120 mm) or immersion	5 m fixed cable (4 x 0.5 mm^2), on DMTa
LFTK 1 FE- 5m-shd → 1-94	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	5 m fixed cable (4 x 0.25 mm²), screened, on Compact; DMTa
LFTK 1 FE- 3m-shd → 1-95	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	3 m fixed cable (4 x 0.25 mm²), screened, on Compact; DMTa
LF 1 DE → 1-96	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	None, only for applications with constant temperature	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
LFT 1 DE → 1-97	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	Pt 100	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
LFTK 1 DE → 1-98	0.0120 mS/cm	1 ±5 %	80	16	Epoxy	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
LFT 1 1/2" → 1-99	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 100	1/2 inch male thread, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
LFTK 1 1/ 2" → 1-100	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 1000	1/2 inch male thread, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
CK 1→ 1- 101	0.0120 mS/cm	1 ±5 %	150	16	PES	None, only for applications with constant temperature	Flow, 1" outer thread	DIN 4-pin angle plug, on Compact; DMTa
CKPt 1 → 1-102	0.0120 mS/cm	1 ±5 %	150	16	PES	Pt 100	Flow, 1" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LM 1 → 1-103	0.120 mS/cm	1 ±5 %	70	16	PP	-	Flow, 3/4" outer thread	plug, on Compact; DMTa
LM 1-TA → 1-104	0.120 mS/cm	1 ±5 %	70	16	PP	-	Immersion, including immersion fitting 1 m	5 m fixed cable, screened, on Compact; DMTa

Туре	Measuring range	Cell constant k	Medium tempera-ture max.	Max. pressure	Shaft material	Temperature compensation	Process integration	Electrical connection on the measuring device
		cm ⁻¹	°C	bar				
LMP 1 → 1-105	0.120 mS/cm	1 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 1-HT → 1-107	0.120 mS/cm	1 ±5 %	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 1-TA → 1-106	0.120 mS/cm	1 ±5 %	70	16	PP	Pt 100	Immersion, including immersion fitting 1 m	5 m fixed cable, screened, on Compact; DMTa
LF 204 → 1-108	1 μS/cm 500 mS/cm	0.48 ±1.5 %	-	2	-	-	Manual immersion	On Portamess 911 Cond
ICT 1 → 1-108	0.21,000 mS/cm	8.5 ±5 %	70	16	PP	Pt 100	Flow DN 50	7 m fixed cable, On Compact *
ICT 1-IMA → 1-109	0.21,000 mS/cm	8.5 ±5 %	70	8	PP	Pt 100	Immersion including in-line probe fitting 1 m	7 m fixed cable, On Compact *
ICT 2 → 1-110	0.022,000 mS/cm	1.98	125	16	PFA	Pt 100, class A, completely extrusion- coated	Installation with SS flange, immersion with immersion pipe fixed cable (Accessories)	5 m fixed cable, On Compact *

General information:

- 1 The DMTa transducer is available for conversion of the measurement signal into a temperature compensated 4-20 mA signal (see Chapter 8).
- 2 Connections for the DIN-4 pole angle plug:
 - Sensors: Earth and 2
 - Pt 100/1000: 1 and 3
- 3 With DIN 4 pole angle plugs, the cable must be screened if the sensor is connected to the compact controller or DMTa.
- 4 An adapter set PG 13.5 / 1" (order no. 1002190) is necessary for installation in the in-line probe housing type DLG III (1"-hole).

Measuring line for conductive conductivity sensors See page \rightarrow 1-114

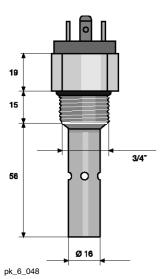
1.4.2

2-Electrode Conductivity Sensors

Conductive conductivity sensors measure the electrolytic conductivity indirectly via the charge transfer between two electrodes immersed in the medium to be measured. The sensor types with cell constants k=0.01 and k=0.1 cm⁻¹ are especially suitable for the measurement of the lowest electrolytic conductivities of < 1 μ S/cm in pure and ultra-pure kinds of water.

The sensor types with cell constants k=1 cm⁻¹ are used in numerous kinds of water without film-forming ingredients up to 20 mS/cm. The cost-effective sensor range LF(T) is used in clear, chemically uncontaminated water.

The sensor ranges LM(P), CK and CKPt can also be used in chemically contaminated kinds of water and a high temperatures.


Conductivity Sensor LMP 001

Sensor for the measurement of the lowest electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.01 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...50 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.01 \ \mbox{cm$^{-1}$} \pm 5 \ \% \\ \end{tabular}$

Temperature measurement Pt 100Medium temperature $70 \, ^{\circ}\text{C}$

Max. pressure16.0 bar up to 50 °C,SensorsStainless steel 1.4571

Shaft materialPPThread3/4"Length when fitted71 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 69

Typical applications Clean water applications, monitoring ion exchangers and reverse

osmosis systems

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control Compact DCCa, DMTa, D1Ca

equipment

Measuring principle, Conductive, 2 coils. Integrated temperature measurement **technology**

Order no.
LMP 001 1020508

Conductivity Sensor LMP 001-HT

19

15

pk 6 048

0

Ø 16

Sensor for the measurement of the lowest electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.01 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

Medium temperature 120 °C 16.0 bar up to 100 °C, Max. pressure

Sensors Stainless steel 1.4571 **Shaft material PVDF** 3/4" Thread Length when fitted

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating

General applications at higher temperatures, clean water applications, **Typical applications**

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

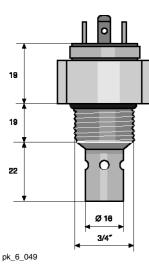
Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no. LMP 001-HT 1020509


Conductivity Sensor LMP 01

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...500 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.10 \ \mbox{cm$^{-1}$} \pm 5 \ \% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \mbox{Medium temperature} & 70 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 50 °C,SensorsStainless steel 1.4571

Shaft materialPPThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

systems.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

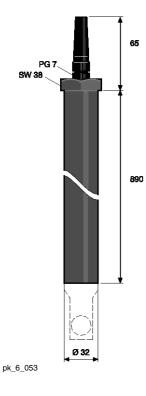
Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LMP 01 1020510


Conductivity Sensor LMP 01-TA

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Simple installation in tanks and containers by sensor ready mounted in the immersion tube
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...500 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.10 \ \mbox{cm}^{-1} \pm 5 \ \% \\ \end{tabular}$

Max. pressure16.0 bar up to 50 °C,SensorsStainless steel 1.4571

Shaft material PF

Thread M 28 x 1.5 for immersion assembly TA-LM

Fitting length Max. 1 m

Installation Immersion through an immersion tube

Electrical connection 5 m fixed cable

Enclosure rating IP 65

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

systems.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

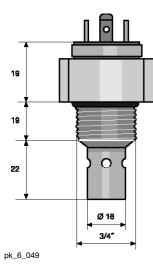
technology

Conductive, 2 coils. Integrated temperature measurement

		Order no.
LMP 01-TA	Sensor integrated in immersion fitting	1020512
LMP 01-FE	Replacement sensor for LMP 01-TA with 5 m	1020626

Please observe the general notes on p. → 1-86 (Overview Table for Conductivity Sensors)

S


Conductivity Sensor LMP 01-HT

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μm/cm
- Cost-effective sensor for clear, chemically contaminated water
- Temperature resistance up to 100 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...500 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.10 \ \mbox{cm$^{-1}$} \pm 5 \ \% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \mbox{Medium temperature} & 120 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 100 °C,SensorsStainless steel 1.4571

Shaft material PVDF Thread 3/4" Length when fitted 46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperatures: industrial, process water,

condensate

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LMP 01-HT 1020511

ensor Technology DULCOTEST®

1.4 Conductivity Sensors

Conductivity Sensor LF 1 FE

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector. For operation with controllers Compact D1Ca and DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

pk_6_085

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5 \ \% \\ \end{tabular}$

Temperature measurement Pt 100

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

InstallationBypass: open outlet or return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), Tank, channel: Immersion in the immersion tube

Electrical connection 5 m fixed cable (4 x 0.5 mm²)

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

D1Ca, DMTa

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LFT 1 FE 1001374

Conductivity Sensor LFTK 1 FE-5m-shd

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (5 m). For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5 \ \% \\ \end{tabular}$

Temperature measurement Pt 1000

Medium temperature $0 \dots 80 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at 25 $^{\circ}\text{C}$)SensorsSpecial graphite

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ± 3 mm

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), Tank, channel: Immersion in the immersion tube

Electrical connection 5 m fixed cable (4 x 0.25 mm²), screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LFTK 1 FE-5m-shd 1046132

Conductivity Sensor LFTK 1 FE-3m-shd

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (3 m). For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

pk_6_085

Measuring range 0.01...20 mS/cm Cell constant k $1.00 \text{ cm}^{-1} \pm 5 \%$ Temperature measurement Pt 1000

Medium temperature 0 ... 80 °C (at 1 bar) Max. pressure 16.0 bar, (at 25 °C)

Sensors Special graphite

Shaft material Ероху **Thread** PG 13.5 Fitting length 120 mm ± 3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

Electrical connection 3 m fixed cable (4 x 0.25 mm²), screened

IP 65 **Enclosure rating**

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

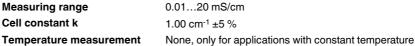
Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no. LFTK 1 FE-3m-shd 1046010

Conductivity Sensor LF 1 DE


120 ±3

pk_6_086

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. For applications with a constant temperature, with DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Cost-effective version without integral temperature measurement with constant temperature of the medium to be measured
- DIN 4-pin plug for simple installation

Medium temperature 0 ... 80 °C (at 1 bar) Max. pressure 16.0 bar, (at 25 °C) Sensors Special graphite

Shaft material Ероху **Thread** PG 13.5 Fitting length 120 mm ± 3 mm

Installation Bypass: with or without return of the sample water into the process line, Inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), tank, channel: Immersion through an immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Resistance to

Measuring principle,

technology

Compact DCCa, DMTa, D1Ca

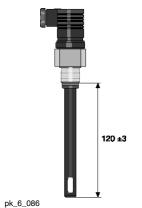
Conductive, 2 electrodes

Order no.

LF 1 DE 1001375

sensor Technology DULCOTEST®

1.4 Conductivity Sensors


Conductivity Sensor LFT 1 DE

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5 \ \% \\ \end{tabular}$

Temperature measurement Pt 100

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 6

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

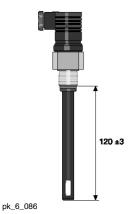
Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LFT 1 DE 1001376


Conductivity Sensor LFTK 1 DE

Cost-effective sensor for the measurement of the electrolytic conductivity in clear, uncontaminated water with integral temperature measurement and DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

Medium temperature $0 \dots 80 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at 25 $^{\circ}\text{C}$)SensorsSpecial graphite

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ± 3 mm

InstallationBypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

Measuring principle,

technology

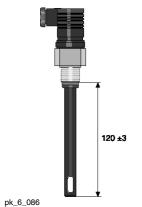
Conductive, 2 coils. Integrated temperature measurement

Order no.

LFTK 1 DE 1002822

sensor Technology DULCOTEST®

1.4 Conductivity Sensors


Conductivity Sensor LFT 1 1/2"

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw thread. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μC/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5 thread
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5 \ \% \\ \end{tabular}$

Temperature measurement Pt 100

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Shaft material Epoxy
Thread 1/2"

Fitting length 120 mm \pm 3 mm

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

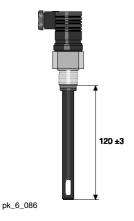
Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LFT 1 1/2" 1001378


Conductivity Sensor LFTK 1 1/2"

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw thread. For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μC/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5 thread
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise compensation in limited temperature ranges and with longer cables.
 Replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 Measuring range
 0.01...20 mS/cm

 Cell constant k
 1.00 cm⁻¹ ±5 %

 Temperature measurement
 Pt 1000

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar, (at 25 °C)SensorsSpecial graphite

Shaft material Epoxy
Thread 1/2"

Fitting length 120 mm \pm 3 mm

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

trol Compact DCCa, DMTa

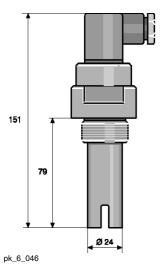
Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LFTK 1 1/2" 1002823


Conductivity Sensor CK 1

Sensor for the measurement of the electrolytic conductivity in clear, chemically contaminated water with high but constant temperature with DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without
- High temperature resistance up to 150 °C

Measuring range 0.01...20 mS/cm Cell constant k $1.00 \text{ cm}^{-1} \pm 5 \%$

Temperature measurement None, only for applications with constant temperature

Medium temperature 0 ... 150 °C (at 1 bar) Max. pressure 16.0 bar, (at 20 °C) Sensors Special graphite

Shaft material PES Thread R 1" Length when fitted 79 mm

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion through an immersion

Electrical connection DIN 4-pin angle plug

IP 65 **Enclosure rating**

Typical applications Cooling, industrial, process water, tank and pipe, cleaning systems in

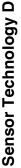
breweries, dairies, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

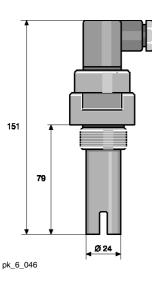

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 electrodes

Order no. CK 1 305605


Conductivity Sensor CKPt 1

Sensor for the measurement of the electrolytic conductivity for clear, chemically contaminated water and higher temperatures. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without adhesive or seals
- High temperature resistance up to 150 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5 \ \% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \end{tabular}$

Medium temperature0 ... 150 °C (at 1 bar)Max. pressure16.0 bar, (at 20 °C)SensorsSpecial graphiteShaft materialPES

Thread R 1"
Length when fitted 79 mm

Installation Bypass: with or without return of the sample water into the process line,

Inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), Tank, channel: Immersion through an immersion

tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Cooling, industrial, process water, tank and pipe cleaning systems in

breweries and dairies, separation of media.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

CKPt 1 305606

Conductivity Sensor LM 1

3/4~

Ø 23

19

46

pk_6_052

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the constituents in the water of the target application

Measuring range 0.1...20 mS/cm Cell constant k $1.00 \text{ cm}^{-1} \pm 5 \%$ Temperature measurement

None, only for applications with constant temperature

Medium temperature 0 ... 70 °C (at 1 bar) 16.0 bar, (at 50°C) Max. pressure

Sensors Graphite **Shaft material** PP 3/4" **Thread** Length when fitted 46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

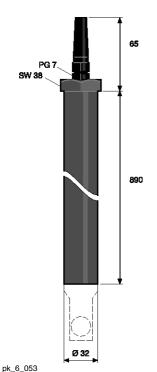
Measuring principle,

technology

Conductive, 2 electrodes

Order no.

LM 1 740433


Conductivity Sensor LM 1-TA

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. Completely mounted in an immersion fitting. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

Measuring range 0.1...20 mS/cm Cell constant k $1.00 \text{ cm}^{-1} \pm 5 \%$

Temperature measurement None, only for applications with constant temperature

Medium temperature 0 ... 70 °C (at 1 bar) Max. pressure 16.0 bar, (at 50°C)

Graphite Sensors **Shaft material**

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Fitting length

Installation Tank, channel: Immersion through an immersion tube

Electrical connection 5 m fixed cable, screened

Enclosure rating

Typical applications Potable, cooling, industrial, process water, media separation

 $Ingredients\ in\ the\ water\ of\ the\ target\ application,\ taking\ into\ account\ the$ Resistance to

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

technology

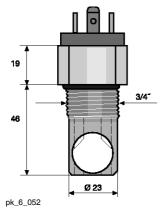
Conductive, 2 electrodes

	Order no.	
in immersion fitting	1020528	
C 1 5 4 4 T 6	400000=	

		Older IIO.
LM 1-TA	Sensor integrated in immersion fitting	1020528
LM 1-FE	Replacement sensor for LM 1-TA	1020627

sensor Technology DULCOTEST®

1.4 Conductivity Sensors


Conductivity Sensor LMP 1

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement with DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 Measuring range
 0.1...20 mS/cm

 Cell constant k
 1.00 cm-1 ±5 %

Temperature measurement Pt 100

Medium temperature0 ... 70 °C (at 1 bar)Max. pressure16.0 bar, (at 50°C)

SensorsGraphiteShaft materialPPThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

nt

Measuring principle, technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

LMP 1 1020513

Conductivity Sensor LMP 1-TA

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement, ready mounted in an immersion fitting. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

Temperature measurement Pt 100

Medium temperature $0 \dots 70 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at 50 $^{\circ}\text{C}$)

SensorsGraphiteShaft materialPP

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Length when fitted 1 r

Installation Tank, channel: Immersion through an immersion tube

Electrical connection 5 m fixed cable, screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

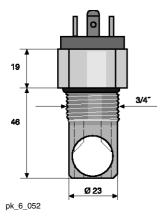
Measuring principle,

technology

Conductive, 2 electrodes

Order no.

LMP 1-TA	Sensor integrated in immersion fitting	1020525
LMP 1-FE	Replacement sensor for LMP 1-TA	1020727


Conductivity Sensor LMP 1-HT

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

 Measuring range
 0.1...20 mS/cm

 Cell constant k
 1.00 cm⁻¹ ±5 %

Temperature measurement Pt 100

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

SensorsGraphiteShaft materialPVDFThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperaturesprocess water, process

water from electroplating, media separation, with CIP (cleaning in

place)

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 coils. Integrated temperature measurement

Order no.

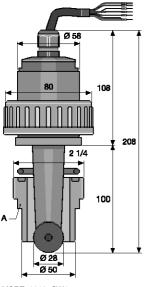
LMP 1-HT 1020524

1.4.3

Inductive Conductivity Sensors

Inductive conductivity sensors consist of a transducer, encapsulated in an inert material. The electrolytic conductivity is measured inductively without direct contact with the medium.

The sensors are used to measure electrolytic conductivity over a wide measuring range, even in heavily contaminated and/or aggressive media and, as such, offer particularly low maintenance operation. The $sensors\ are\ particularly\ suitable\ for\ measuring\ high\ conductivities,\ as\ no\ electrode\ polarisation\ occurs.\ The$ inductive conductivity sensors are operated using the Compact controller DCCa xx L6 ... The controller includes the testing and calibration kit (Order no. 1026958).


Conductivity Sensor ICT 1

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/cm. Also suitable for chemically contaminated water and film-forming media. For installation in

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PP
- Measurements at high conductivity values of up to 1,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in a PVC pipe by bonding the DN 40 adhesive connector supplied into a standard Tpiece and screwing in the sensor using the union nut supplied. A DN 40 welded connector is optionally available for use in PP pipework

P MSRZ 0013 SW1 A=Adhesive joints PVC, Fusion joints PP,

0.2...1,000 mS/cm Measuring range Cell constant k 8.5 cm⁻¹ ±5 %

Measuring accuracy < 1 % relative to final value of measuring range

Temperature compensation Pt 100 Process chemical temperature 0...70 °C

16.0 bar up to 40 °C, 1.0 bar up to 70 °C Max. pressure

Sensor: PP Material Seals: FKM

Electrical connection 7 m fixed cable **Enclosure rating**

Typical applications All types of soiled water, desalination control in cooling towers, control

of electroplating baths, Cleaning in Place (CIP), product

monitoringSeawater

Resistance to PP-compatible chemicals, deposit-forming media

Installation With union nut, 2 1/4 inch internal thread, DN 40, PVC incl. DN 40

bonded nozzle with 2 1/4 external thread for fitting in DN 40 PVC standard tube (within scope of supply). The corresponding set-in nozzle for fitting in PP standard tube is available as an accessory.

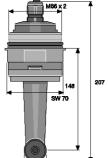
Measuring and control D1C for inductive conductivity equipment

Measuring principle,

Inductive, 2 coils. Integrated temperature measurement

technology

	Order no.
ICT 1	1023244


Conductivity Sensor ICT 1-IMA

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/ cm. Also suitable for chemically contaminated water and film-forming media. Completely integrated in an

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PP
 - Measurements at high conductivity values of up to 1,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
 - Simple installation in tanks, containers etc. thanks to sensor ready mounted in the immersion tube

pk_6_089

Measuring range 0.2...1,000 mS/cm Cell constant k 8.5 cm⁻¹ +5 %

Measuring accuracy < 1 % relative to final value of measuring range

Temperature compensation Process chemical temperature 0...70 °C

8.0 bar up to 40 °C, 1.0 bar up to 70 °C Max. pressure Material Sensor and immersion tube: PP

Seals: FKM

Long immersion pipe $1 \, \text{m} / 2 \, \text{m}$ **Electrical connection** 7 m fixed cable

IP 65 **Enclosure rating**

Typical applications All types of soiled water, desalination control in cooling towers, control

of electroplating baths, Cleaning in Place (CIP), product monitoring

Resistance to PP-compatible chemicals, deposit-forming media

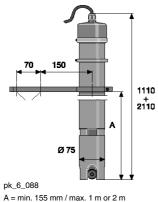
Long immersion pipe Immersion sensor complete with 1 m immersion pipe or 2 m immersion

pipe. The fitting accessories for the immersion valve IPHa 3-PP can

Inductive, 2 coils. Integrated temperature measurement

also be used for the immersion sensor.

Measuring and control


equipment

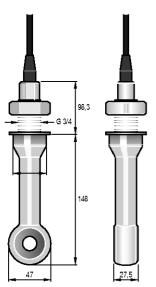
Measuring principle,

technology

Compact controller DCCa

90 45 10 ©	<u>5</u> 2
200	7.5.5 + 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
° ——	280
·	
150	10x45°

P_AC_0262_SW1


Conductivity Sensor ICT 2

High-performance inductive conductivity sensor with high dynamic measuring range. Also suitable for types of water with aggressive chemicals and film-forming components. Permitted temperatures up to $125\,^{\circ}$ C. For installation in pipework, tanks and for immersion in storage tanks

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PFA
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Flexible connection to the processes is possible via a flange or immersion pipe with optional accessories

pk_6_082

Measuring range 0.02...2,000 mS/cm

Cell constant k 1.98 cm⁻¹

Measuring accuracy \pm (5 μ S/cm + 0.5 % of the measured value) at T < 100 °C) \pm (10 μ S/cm + 0.5 % of the measured value) at T > 100 °C)

Temperature compensation Pt 100, class A, completely extrusion-coated

Process chemical temperature 0...125 °C for use together with D1C, temperature compensation is

limited to 100 °C

Max. pressure 16.0 bar

Material PFA, completely extrusion-coated

Electrical connection 5 m fixed cable

Enclosure rating IP 6

Typical applications Production processes in the chemical industry, phase separation of

product mixtures, determination of concentrations of aggressive

chemicals.

Resistance to Electrolytic conductivity > 20 mS/cm, PFA-compatible aggressive

chemicals, deposit-forming media

Installation Fitting in pipes, tanks (sideways): G 3/4 stainless steel thread (1.4571)

or flange fitting: With the accessories: Stainless steel flange ANSI 2 inch 300 lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16).

Measuring and control D1

equipment

Measuring principle, Inductive, 2 coils. Integrated temperature measurement

technology

Installation kit for type ICT 2 sensors \rightarrow 1-127

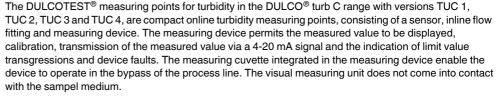
Order no.

ICT 2 1023352

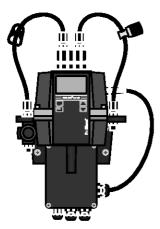
1.5 Turbidity Measuring Points DULCOTEST®

1.5.1

Measuring Points for Turbidity


Reliable on-line measurement of turbidity with DULCOTEST® DULCO® turb C measuring points Measuring range 0 - 1,000 NTU

DULCOTEST® DULCO® turb C is a compact measuring instrument for measuring turbidity with a large measuring range and different designs to comply with ISO and EPA standards and with and without


Your benefits

- Compact turbidity measuring station with integrated sensor, flow cuvette and measuring instrument saves space and is simple to install and operate.
- High dynamic measuring range between 0.02 and 1,000 NTU permits broad-based use in all stages of potable water treatment. Also ideal for monitoring waste water from clarification plants and for monitoring ruptures with filters.
- Short response times thanks to small-volume measuring cuvette.
- Long-term stable measurements, even in contaminated water, by the optional ultrasonic cleaning of the measuring cuvette.
- Fast and simple calibration on site by optionally available, pre-assembled and time-stable calibration standards.

The intended application is the treatment of potable water, with the DULCO® turb C able to be used in all treatment stages of raw water, from filter monitoring to measurement of fine turbidity in dispensed potable water. It is also possible to monitor the turbidity of slightly contaminated process water and waste water, as well as treated water from the food and beverage industry up to a turbidity value of 1,000 NTU. Compared with the TUC 1/TUC 2, the TUC 3 / TUC 4 measuring stations include an ultrasound-based self-cleaning function. This helps in particular to extend the service intervals particularly when used with the types of

The measuring principle is identical to light scatter measurements. The light beam that is beamed into the measuring cuvette filled with sample water is dispersed on turbidity particles and the scattered light is measured at right angles (90°) to the beamed in light (Nephelometric measurement). The measuring unit for the turbidity measurement can be given as NTU (Nephelometric Turbidity Unit) or as FNU (Formazin Nephelometric Unit). The measuring process of types TUC 1/TUC 3 (infrared light) corresponds to the globally applicable standard ISO 7027 and the European Standard DIN EN 27027. The measuring process of types TUC 2/TUC 4 (white light) corresponds to the US American standard USEPA 180.1.

P_DMZ_0002_SW

1.5 Turbidity Measuring Points DULCOTEST®

Technical Data

Measurement range 0 ... 1,000.0 NTU

Accuracy $\pm 2\%$ of the displayed value or ± 0.02 NTU below 40 NTU, depending

on which value is the greater

 \pm 5 % of the displayed value above 40 NTU

Resolution 0.0001 NTU below 10 NTU

Response time Configurable

DisplayMultiple row LCD display with background lightingAlarm relayTwo programmable alarms, 120-240 VAC, 2 A form C relay

Output signal $4 \dots 20 \text{ mA}$, 600Ω , not electrically isolated: dual-isolated, degree of

interference, overvoltage category II

Communication interface Bi-directional RS-485, Modbus

Max. pressure Integrated pressure regulating valve regulates 1,380 kPa (200 psi),

based on the flow rate

Flow 6-60 l/h Temperature $1 \dots 50 \,^{\circ}\text{C}$

Material that comes into contact Polyamide (PA), silicone, polypropylene (PP), stainless steel,

with the media borosilicate glass

Voltage supply 100 – 240 VAC, 47 – 63 Hz, 80 VA **Hydraulic connector** Black tube, inside 4.75 mm, outside 8 mm **Ambient conditions** Not suitable for operation outdoors.

Maximum operating altitude 2,000 m above sea level. Maximum 95 % relative air humidity (non-condensing).

Enclosure rating IP 66, NEMA 4x

Standard ISO 7027 or DIN EN 27027 with the "Infrared" version, USEPA 180.1

with the "Achromatic light" version

Dimensions H x W x D 35 x 30 x 30 cm

Shipping weight 2.5 kg

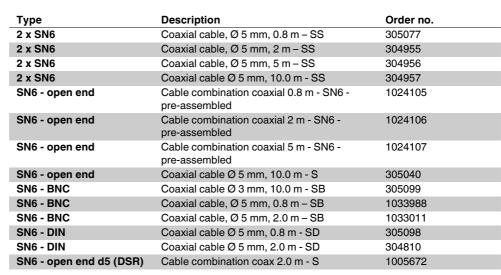
	Standard	Ultrasonic cleaning	Order no.
TUC 1	Infrared light: ISO 7027, DIN EN 27027	No	1037696
TUC 2	White light: US EPA 180.1	No	1037695
TUC 3	Infrared light: ISO 7027, DIN EN 27027	Yes	1037698
TUC 4	White light: US EPA 180.1	Yes	1037697

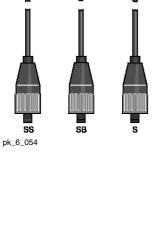
Spare Parts

	Order no.
Drying agent	1037701
Cuvette TUC 1 / TUC 2	1037877
Cuvette TUC 3 / TUC 4	1037878
Infrared lamp TUC 1 / TUC 3	1037702
Achromatic light lamp TUC 2 / TUC 4	1037703
Hose kit	1037879
Pressure regulating valve	1037885

Accessories

	Order no.
Calibration set	1037699
Flow control	1037880
Air bubble trap	1037700


1.6.1 Sensor Accessories


General guidelines:

- Ensure that signal leads are as short as possible.
- Ensure signal leads are separated from power cables running parallel to them.
- Use pre-assembled combined signal leads wherever possible.

Signal leads for pH/ORP measurement

- Pre-assembled to facilitate installation
- Factory tested to ensure function reliability
- IP 65



Measuring line for sensors with Vario Pin plug-in heads

Ready-made 6-conductor measuring line with Vario Pin plug for connection to sensor type PHEPT 112 VE.

	Length	Order no.
	m	
Vario Pin signal lead VP 6-ST/ 2 m	2	1004694
Vario Pin signal lead VP 6-ST/ 5 m	5	1004695
Vario Pin signal lead VP 6-ST/10 m	10	1004696

pk_6_056

SN6 coax connector

K 74 crimping pliers and a soldering iron are required for connecting coax connectors to cables.

	Order no.
SN6 coaxial plug for 5 mm Ø coaxial signal lead	304974
SN6 coaxial plug for 3 mm Ø coaxial signal lead	304975

LK coax signal cable

For pH and ORP measurements.

	Order no.
Coax low noise Ø 5 mm, black	723717
Coax low noise Ø 3 mm, black	723718

Please specify length with order.

Sensor Technology DULCOTEST®

1.6 Accessories Sensor Technology

Measuring lines for 4P type chlorine sensors

The measuring line is necessary for the connection of -4P sensors to the measuring/control device D_4a.

- Simple installation, as no self-assembly is required
- High operational safety due to factory functional testing
- IP 65

	Length	Order no.
	m	
Measuring line for 4P type chlorine sensors	2	818455
Measuring line for 4P type chlorine sensors	5	818456
Measuring line for 4P type chlorine sensors	10	818470

Measuring lines for DMT type chlorine sensors

The measuring line is needed for connection of DMT type sensors to the DMT transducer.

	Length	Order no.
	m	
5-core universal cable, 5-pin round plug	2	1001300
5-core universal cable, 5-pin round plug	5	1001301
5-core universal cable, 5-pin round plug	10	1001302

Cabling accessories for CAN type chlorine sensors

	Order no.
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 coupling	1022154
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN, sold by the metre	1022160
Plug-CAN M12 5-pole screw terminal	1022156
Coupling-CAN M12 5-pole screw terminal	1022157

Signal leads for Pt 100/Pt 1000 (2 x 0.5 mm²)

	Lengin	Order no.
	m	
SN6 - open-ended	5	1003208
SN6 - open-ended	10	1003209
SN6 - open-ended	20	1003210

Measuring line for conductive conductivity sensors

4-core, conductor: 0.25 mm², cable diameter: 5.7 mm, screened

Туре	Length	Order no.
	m	
Measuring line for conductive conductivity sensors	1	1046024
	3	1046025
	5	1046026
	10	1046027

2-wire measuring line

2-core, conductor: 0.25 mm², cable diameter: 4 mm

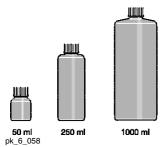
Signal cable, sold by the metre 2 x 0.25 mm² Ø 4 mm

For mA type chlorine / bromine / chlorine dioxide / ozone sensors and pH, ORP, Pt 100, conductivity, hydrogen peroxide (PEROX) transducers.

Order no.	
705100	

Connector cable

For fluid voltage comparison in-line probe housing DLG III and DGMA with connector, 5 m.


	Length	Order no.
	m	
Connector cable	5	818438

Test and calibration kit for inductive conductivity

	Order no.
Test and calibration kit	1026958

1.6.2

Consumable Items for Sensors

pH quality buffer solutions

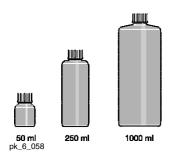
Accuracy \pm pH 0.02 (\pm 0.05 at pH 10). The shelf life depends upon frequency of use and the amount of chemical drag-in.

Alkaline buffer solutions can react with CO_2 if left open. This will affect their values, therefore close after use. Buffer solutions should be replaced a maximum of three months after opening. The solution contains a biocide to prevent bacteria forming.

Capacity	Order no.
ml	
50	506251
250	791436
1,000	506256
50	506252
50	506253
250	791437
1,000	506258
50	506254
1,000	506259
50	506255
250	791438
1,000	506260
	ml 50 250 1,000 50 50 250 1,000 50 1,000 50 1,000 50 250

50 ml pk. 6_058

ORP quality buffer solutions


Accuracy to ± 5 mV. Shelf life depends upon frequency of use and the strength of the chemicals in sample solutions.

Buffer solutions should be replaced a maximum of three months after opening.

Warning: The 465 mV ORP buffer solution is an irritant!

	Capacity	Oluei IIO.
	ml	
ORP buffer 465 mV	50	506240
ORP buffer 465 mV	250	791439
ORP buffer 465 mV	1,000	506241
ORP buffer 220 mV	50	506244
ORP buffer 220 mV	1,000	506245

DPD-reagents for calibration of amperometric sensors s. p. \rightarrow 2-101

3 molar KCI solutions

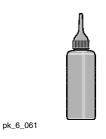
3-molar KCl solution is most suited for the storage of pH and ORP sensors (e.g. in sensor quills) and as an electrolyte for refillable sensors (e.g. PHEN, RHEN). We only recommend using the KCl solution saturated with AgCl for the old design of refillable sensors with reference electrodes without a large AgCl reservoir.

	Capacity	Order no.
	ml	
KCI solution, 3 molar	50	505533
KCI solution, 3 molar	250	791440
KCI solution, 3 molar	1,000	791441
KCI solution, 3 molar, AgCl saturated	250	791442
KCI solution, 3 molar, AgCl saturated	1,000	505534

Cleaning solutions

Cleaning solution pepsin/hydrochloric acid:

for cleaning pH sensors, the membranes of which have been contaminated with protein.


Capacity	Order no.
250 ml	791443

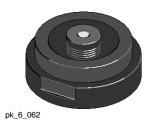
Conductivity calibration solution

For the precise calibration of conductivity sensors.

	Capacity	Order no.
	ml	
Conductivity calibration 1413 μS/cm	250	1027655
Conductivity calibration 1413 µS/cm	1,000	1027656
Conductivity calibration 12.88 mS/cm	250	1027657
Conductivity calibration 12.88 mS/cm	1,000	1027658

Electrolyte for amperometric sensors

	Capacity	Order no.
	ml	
Electrolyte for all chlorine sensors type CLE, CLR 1	100	506270
Electrolyte for CDM 1 and CDE 3 type chlorine dioxide sensors	100	506271
Electrolyte for CDE 2 and CDR 1 type chlorine dioxide sensors	100	506272
Electrolyte for OZE type ozone sensors	100	506273
Electrolyte for CGE/CTE/BRE type sensors	50	792892
Electrolyte for CDP type chlorine dioxide sensors	100	1002712
Electrolyte for peracetic acid sensors type PAA 1, OZR 1	100	1023896
Electrolyte for CLT 1 type chlorite sensors	50	1022015
Electrolyte for PER 1 type hydrogen peroxide sensors	50	1025774
Electrolyte for CLO 1 type chlorine sensor	100	1035191
Electrolyte for CLO 2 type chlorine sensor	100	1035480
Electrolyte for CBR 1 type chlorine/bromine sensor	100	1038017
Electrolyte for BCR 1 type bromine sensor	50	1044843



Spare membrane caps, accessory sets for amperometric sensors

	Capacity	Order no.
	ml	
Membrane cap for types CLE II T, CDM 1 and OZE 1	_	790486
Membrane cap for types: CLE 2.2, CLE 3, CDE 1.2, CDE 2, OZE 2 and OZE 3	-	790488
Sensor cap for CLO 1	_	1035197
Sensor cap for CLO 2	-	1035198
Membrane cap for CGE/CTE 1 (2/5/10 ppm) and BRE 1 (10 ppm), BRE 2	_	792862
Membrane cap for CTE 1 (0.5 ppm), CBR 1, BCR 1	-	741274
Membrane cap for CDP 1, BRE 1 (0.5 / 2 ppm), CLT	_	1002710
Membrane cap for CDE 3	_	1026578
Diaphragm cap for PAA 1, CDR 1, CLR 1, OZR 1	_	1023895
Membrane cap for PER 1	_	1025776
Membrane cap for H2.10 P	_	792978
Accessory set for CGE 2/CTE 1 (2/5/10 ppm) and BRE 1 (10 ppm), BRE 2 (2 membrane caps + electrolyte)	50	740048

Sensor Technology DULCOTEST®

	Capacity ml	Order no.
Accessory set for CTE 1 (0.5 ppm) (2 membrane caps + electrolyte)	50	741277
Accessory set for CLE (2 membrane caps + electrolyte)	100	1024611
Accessory set for CDP 1 (2 membrane caps + electrolyte), BRE 1 (0.5 / 2 ppm), CLT	100	1002744
Accessory kit for PAA 1 (2 membrane caps + electrolyte)	100	1024022
Accessory kit for PER 1 (2 membrane cap + electrolyte)	50	1025881
Accessory set for CDE 3 (2 membrane caps + electrolyte)	100	1026361
Accessory set for CLO 1 (electrolyte, grinding disc, plug)	100	1035482
Accessory set for CLO 2 (electrolyte, grinding disc, plug)	100	1035483
Accessory set for CBR 1 (2 membrane caps + electrolyte)	100	1038984
Accessory set BCR 1 (2 membrane caps + electrolyte)	50	1044844

Spare parts for dissolved oxygen sensors

	Measuring range	Order no.
Sensor insert for DO 1-mA-20 ppm: Membrane thickness 125 µm	2.0020.0 mg/l	1020534
Sensor insert for DO 2-mA-10 ppm: Membrane thickness 50 µm	0.1010.0 mg/l	1020535
Bracket for the sensor insert for DO 1-mA-20 ppm (with membrane protection for fish farming)		1020540
Bracket for the sensor insert for DO 2-mA-10 ppm		1020541

1.6.3 Sensor Fittings

pk_6_063

DLG III type in-line probe housing

To hold 2 sensors (conductivity, Pt 100, pH or ORP sensors) with PG 13.5 screw-in thread plus one sensor with R 1" screw-in thread (amperometric sensors) with integrated stainless steel pin as liquid reference potential.

On the inlet side the DLG III is equipped with a plastic ball valve for blocking and adjusting the sample water flow.

Material: Rigid PVC

Transparent housing cup: Polyamide Ball valve material: Rigid PVC

1.0 bar

Max. pressure1.0 baMax. temperature55 °C

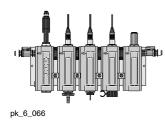
	Туре	Max. temperature °C	Order no.
DLG III A with PVC hose connectors	for PE line Ø 8/5 mm	55	914955
DLG III A with flushing connector and PVC hose connection	for PE line Ø 8/5 mm	55	1029096
DLG III B with PVC adhesive connectors	for pipe connection Ø 16 DN 10	55	914956
Assembly kit for fitting amperometric sensors	-	55	815079

DLG IV type in-line probe housing

To hold 4 sensors (pH, ORP, Pt 100, conductivity) with PG 13.5 screw-in thread. With integrated stainless steel rod as liquid reference potential. Angle for wall mounting.

Material: Hard PVC or PP

Transparent housing cup: Polyamide


Max. pressure 1.0 bar

Connection for sample water line Union with d 16/DN 10 insert

	Туре	Max. temperature	Order no.
		°C	
DLG IV PP	for Ø 16/DN 10 pipe work connector	80	1005331
DLG IV PVC	for Ø 16/DN 10 pipe work connector	55	1005332

DLG sampling water cup

	Order no.	
DLG III sampling water cup with back flush device	1029095	

DGM modular in-line probe housing

To hold conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread or amperometric sensors with R 1" screw-in thread.

Advantages:

- Simple installation (completely ready-mounted on a panel); max. 7 modules on a panel
- Simple retrofit extension option (see extension modules)
- Module for sample water flow control
- Quick measurement recording due to low volume of sample water
- Each completely assembled DGM is equipped with a simple sampling tap

Ball valves on both sides for shutting off the flow and for flow adjustment

Material All modules: Transparent PVC

Seals: FKM
Calibration cup: PP
Mounting panel: PVC white

Max. temperature 60 °C

Max. pressure 6.0 bar up to 30 °C, 1.0 bar up to 60 °C

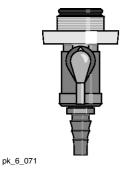
 $\begin{tabular}{lll} \mbox{Max. flow rate} & 80 \mbox{ l/h} \\ \mbox{Recommended Flow volume} & 40 \mbox{ l/h} \\ \end{tabular}$

Flow sensor Reed contact

Max. switch power 3 W Max. switch voltage 175 V Max. switch current 0.25 A Max. operating current 1.2 A Max. contact resistance 150 m Ω

Switching hysteresis 20 % Enclosure rating IP 68

Typical applications Potable water, swimming pool water or water of similar quality with no


suspended solids

Assembly Max. 5 modules pre-assembled onto baseboard: more than

5 modules, pre-assembled onto baseboard as custom version, priced

accordingly.

FKM = fluoro rubber

Sampling tap for DGM

For PG 13.5 and 25 mm modules designed as a convenient ball valve.

	Order no.
PG 13.5 sampling tap	1004737
25 mm sampling tap	1004739

Expansion modules for DGM

For simple retrofit to an existing DGM.

	Order no.
Flow expansion module with scale in I/h	1023923
Flow expansion module with scale in gph	1023973
Flow sensor for flow expansion module (optional)	791635
Expansion module for PG 13.5 sensors	1023975
Expansion module for 25 mm sensors	1023976

Connecting lead

For fluid voltage comparison in-line probe housing DLG III and DGMA with connector, 5 m.

	Order no.
Connector cable	818438

Isolation ball valve for DGM

To isolate the bypass from the process flow

	Order no.
Stopcock	1010380

Mounting kit for sensor/DGM

For mounting amperometric sensors with R 10 connection

	Order no.
Mounting kit for sensor/DGM	791818

Identity Code Ordering System for In-Line Probe Housing Modules

DGM	Series	;								
	Α	Series	ries Version							
		Flow r	monitor module							
		1	with I/h							
		2	with gp	h scale	(US)					
		3	With flo	ow moni	itor, I/h s	cale				
		4	with flo	w monit	tor, gph	scale (L	IS)			
		Number of PG 13.5 r								
			0		t PG 13.		les			
			1		G 13.5 m					
			2	-	3 13.5 m					
			3		PG 13.5		3			
			4	four PC	G 13.5 m					
					lumber of 25 mm modules					
				0		mm mo				
				1 One 25 mm module 2 Two 25 mm modules						
				2						
				Main material Transparent PVC Transparent				VO		
					1					
							g matei IFKM A			
						0				
							Hydra	ulic connectors		
							1	PVC DN 10 threaded connector		
								Hose 12 x 6		
						Version 0 With ProMinent® logo				
								1 Without ProMinent® logo		
								2 With ProMinent® logo, without mounting plate		
								3 Without ProMinent® logo, without mounting plate		
						Without Fowment Togo, without mounting plate				

Accessories supplied:

■ Wall fastenings for PG 13.5 modules: Calibration plate, mounting kits for PG 13.5 probes

The identity code DGM A 3 2 1 T 0 0 0 describes, for example, a fully assembled configuration of a flow module with sensor, two PG 13.5 modules (e.g. for pH and ORP probes) and a 25 mm module (e.g. for CLE 3 chlorine sensor) 8×5 tube connectors are ready mounted.

Recommended accessories

		Order no.
for potential equalizer plug	-	791663
Flow sensor for flow expansion module (optional)	-	791635
additional calibration cup	-	791229
PG 13.5 sampling tap	for 13.5 module	1004737
25 mm sampling tap	for 25 mm module	1004739

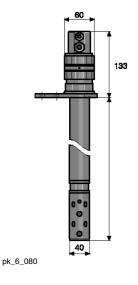
- Max. 7 modules possible on a mounting plate
- More on request

FKM = fluoro rubber

1.6.4 Immersion Sensor Fittings

PVC immersion assembly, type ETS 1 P

To hold **one** conductivity, Pt 100, pH or ORP sensor with SN6 plug-in head and PG 13.5 screw-in thread (with integrated stainless steel pin as liquid reference potential).


Sensor connector (inner) SN6 connector

Signal lead connector (outer) Coax SN6 male connector

Material Rigid PVC

Type of fitting Clamping flange with mounting plate

	Order no.
ETS 1 P	914950

pk_6_064

PP immersion assembly type IPHa 1-PP

To hold **one** sensor (e.g. pH, ORP) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is sized so that either pH or ORP transducers can be installed. In addition, a stainless steel rod is incorporated as a liquid reference potential. The outside diameter is 40 mm. Immersion depths of 1 and 2 m are offered, however customers can independently lengthen or shorten the immersion pipe. The fitting head contains two cable connectors; measuring lines of 3-7 mm diameter can be led out. Measuring lines are not contained in the scope of supply.

Material Probe housing material: PP

Seal material: FKM

Max. temperature 80 °C

Pressure Installation at atmospheric pressure

Immersion depth Max. 1, or 2 m; variable

Immersion lance diameter 40 mm

	•
	m
IPHa 1-PP	1 1008600
IPHa 1-PP	2 1008601

Length when fitted

Order no.

Other materials available on request.

FKM = fluoro rubber

180 pk 6 081

DN 40

110 mm

4 x M16

18 mm

150 mm

DN65

145 mm

18 mm

4 x M16

Fixed flange

Thickness d₂

Pitch circle

Screws

Diameter

PP immersion assembly type IPHa 3 -PP

To hold up to three sensors (e.g. pH, ORP, temperature) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is dimensioned so that up to three pH, ORP or temperature transducers can be installed. In addition a stainless steel rod is incorporated as a liquid reference potential. The outside diameter is 75 mm. Immersion depths of 1 and 2 m are offered, however, customers can independently lengthen or shorten the immersion pipe. The fitting head contains four cable connectors, measuring lines of 3-7 mm diameter can be led out. Measuring lines are not contained in the scope of supply. Technical data is as for fitting IPHa 1, except the immersion tube diameter is 75 mm.

	Length when fitted	Order no.
	m	
IPHa 3-PP	1	1008602
IPHa 3-PP	2	1008603

Other materials available on request.

Accessories for fitting type IPHa

	Order no.
Immersion pipe mounting for IPHa 1-PP	1008624
Immersion pipe mounting for IPHa 3-PP	1008625
Clamped threaded connector with fixed flange DN 40 according to DIN 2642 for IPHa 1-PP	1008626
Clamped threaded connector with fixed flange DN 65 according to DIN 2642 for IPHa 3-PP	1008627
Clamped threaded connector for welding connection for IPHa 1-PP	1008628
Clamped threaded connector for welding connection for IPHa 3-PP	1008629
Protective (weatherproofed) cover for assembly head for IPHa 1-PP	1008630
Protective (weatherproofed) cover for assembly head for IPHa 3-PP	1008631
Water-retaining basin for IPHa 1-PP	1008632
Water-retaining basin for IPHa 3-PP	1008633
Weatherproof cover PP	1023368

Weatherproof cover for in-line probe fitting type IMA-ICT 1

For use in immersion assembly, type IMA-ICT 1.

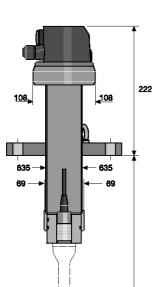
	Order no.
Weatherproof cover PP	1023368

Ø d₂ b Ø a Ø K Ø D

Immersion assembly type IMA-ICT 2

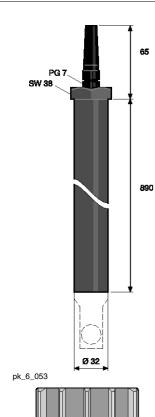
To hold one inductive conductivity sensor of type ICT 2.

Material Fittings: Stainless steel 1.4404 Seal: FKM


Max. temperature 125 °C
Max. pressure 10 bar
Length when fitted 1 m

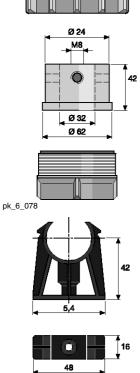
Immersion lance diameter 70 mm

Flange Stainless steel flange DN 80 PN 16


Adaptation to processes through flange installation in tank from top.

pk_6_094

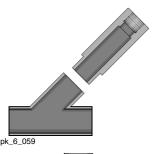
Flange:	DN 80/PN 16
ØD	200
ØK	160
Ø d ₂	8 x 18
b	20
Øa	63.5
Screws	M 16


Immersion assembly type TA-LM

To hold ${\bf one}$ conductivity sensor of type LM and LMP with M 28 thread for side fasting with pipe clips (2 contained in the scope of supply) or with union nut/collar bush/screw-in part for fastening in a tank cover.

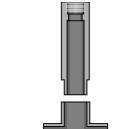
Union nut and screw-in part are to supplied by the customer (standard parts).

MaterialPPMax. temperature70 °CEnclosure ratingIP 68Max. pressure5.0Immersion lance diameter32 mmPipe length890

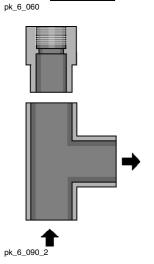

	Length	Order no.
	mm	
TA-LM	890	1020632
Headed bush d50	-	1020634
Extension tube 1000	910	1020633

pk_6_079

1.6.5

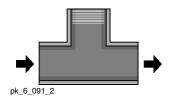

Immersion Sensor Fittings/Adaptors

Adapter set (T-piece and adapter)


For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in pipework:

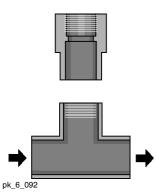
	Material	Order no.
90° T-piece DN 20	PVC	1001493
90° T-piece DN 25	PVC	1001494
45° T-piece DN 20	PVC	1001491
45° T-piece DN 25	PVC	1001492

PVC adapter set for type LM sensors


For direct fitting of type LM conductivity sensors with 3/4" screw-in thread for measuring in the flow.

For LM(P) 001 conductivity sensors

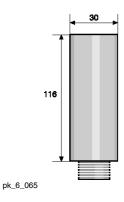
The sensors are fitted in the straight section of the T-piece.


	Material	Order no.	
90° T-joint DN 25	PVC	356410	
Adapter DN 25 with 3/4" thread	PVC	356923	
90° T-joint DN 25	PP	358674	
Adapter with 3/4" thread	PP	356953	

For LM(P) 01 conductivity sensors

The sensors are fitted in the outlet of the T-piece.

	Material	Order no.
90° T-piece DN 20 - 3/4"	PVC	356455
90° T-piece DN 20 - 3/4"	PP	356471


For LM(P) 1 conductivity sensors

The sensors are fitted in the outlet of the T-piece.

	Material	Order no.
90° T-joint DN 25	PVC	356410
Inline fitting DN 25 - 3/4"	PVC	1020616

Sensor Technology DULCOTEST®

1.6 Accessories Sensor Technology

Adapter PP, PG 13.5

For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 80 °C (at atmospheric pressure)

EPDM sealing ring

	Material	Outer thread	Order no.	
Adapter DN 20	PP	R 1/2"	1001834	
Adapter DN 25	PP	R 3/4"	1001835	

Adapter, stainless steel, PG 13.5

For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 180 °C (at atmospheric pressure)

Sealing ring, FKM (fluorine rubber)

	Material	Outer thread	Order no.
Adapter DN 20	SS	R 1/2"	1020737
Adapter DN 25	SS	R 3/4"	1020738

pk_6_093

Installation kit for type ICT 2 sensors

For direct fitting of the inductive conductivity sensor ICT 2 in pipework and tanks.

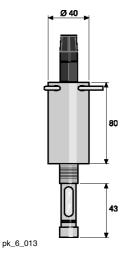
	Order no.
Installation kit for type ICT 2 sensors	1023364

Kit consisting of

- Stainless steel flange ANSI 2 inch 300 lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16)
- Nut 3/4" stainless steel

Parts that come into contact with the medium:

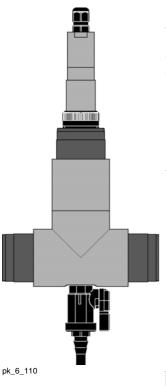
- Sealing disk, "2", / PTFE
- Spacer ring, PTFE
- Seal


Fixed flange	ANSI 2"	DN 50
SS 316L	300 lbs	PN 16
Pitch circle	127	125
Screws	M 16	M 16
Thickness	22.2	18
Diameter	165.1	165

Welding socket for T-piece (PP) type ICT 1

For connection of the inductive conductivity sensor ICT 1 in PP T-piece.

	Order no.	
Welding socket G 2 1/4 inch DN40 PP incl. O-ring FKM	1023371	



Retractable sensor housing for pH, ORP sensors WA-PH 1

To hold **one** pH sensor with PG 13.5 screw-in thread and length of between 110-125 mm for fitting in the storage tank or in the flow. The sensor can be removed and fitted for calibration and cleaning without draining the liquid from the storage tank or without interrupting the process in the flow.

MaterialPPMax. temperature70 °CMax. pressure5.0 barThread3/4"

	Order no.
WA-PH 1	1020631

Installation fitting INLI for chlorine sensor CLO

The installation valve permits the installation of the sensor for free chlorine types CLO (part no. 1033870, 1033871, 1033878) for operation in the process line (G 1") or in the bypass to the process line. Use either with a free outlet or return of the sample water to the process line. Sample water temperature up to 70 $^{\circ}$ C/2 bar and 40 $^{\circ}$ C/7 bar. Keep the flow constant.

 $\begin{array}{ll} \mbox{Max. temperature} & 70\ ^{\circ}\mbox{C}\ (at\ 2\ bar) \\ \mbox{Max. pressure} & 7\ bar\ (at\ 40\ ^{\circ}\mbox{C}) \\ \mbox{Flow for operation of the sensor CLO} & 400\ -\ 800\ l/h \\ \end{array}$

Material

 T-piece and fittings
 PP

 O-ring
 EPDM

 Sampling tap
 PVDF/FPM

 Stopcock
 PVDF/FPM

Reducer Stainless steel 1.4571

Connectors

SensorG 1"Sampling tapG 1/4"Hose on sampling tap6 x 4 mmSample water lineG 1"

	Order no.
Installation fitting for chlorine sensor CLO	1047238

Accessories

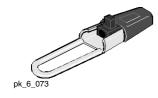
	Older IIO.
Stopcock	1048213

Spare Parts

	Order no.
Sampling tap	1047266

or Technology DULCOTEST

1.6 Accessories Sensor Technology



Immersion pipe adapter for dissolved oxygen sensor DO 1-mA-20 ppm

PVC adapter for connection of the DO 1-mA-20 ppm dissolved oxygen sensor to an immersion pipe with 1-1/4 inch internal thread.

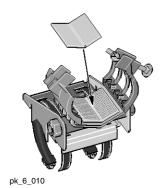
Sensors for Dissolved Oxygen See page → 1-79

	Order no.
Immersion pipe adapter for DO 1-mA-20 ppm	1020537

Mounting bracket for cable of dissolved oxygen sensor DO 1-mA-20 ppm

The stainless steel and polyamide cable bracket is used to guide and fix the sensor cable inside the DO 1-mA-20 ppm dissolved oxygen sensor.

Sensors for Dissolved Oxygen See page → 1-79


	Order no.
Cable bracket for DO 1-mA-20 ppm	1020539

Pipe adapter for dissolved oxygen sensor DO 2-mA-10 ppm

The PVC adapter is a spare part for the DO 2-mA-10 ppm dissolved oxygen sensor. The DO 2-mA-10 dissolved oxygen sensor can be adapted to fit metric or imperial tubing by fitting half of the adapter with 1-1/2 inch outside diameter, the other half with 50 mm outside diameter and at both ends with 1-1/4 inch internally threaded tube attached by means of a corresponding 45° standard angle piece (provided by the customer).

Sensors for Dissolved Oxygen See page → 1-79

Order no.
1020538

Railing bracket for plastic pipes

Stainless steel and plastic bracket for fixing of plastic tubes with 50 mm outside diameter to rails (e.g. on pools in sewage plants). Spare part for "dissolved oxygen" sensor: DO 2-mA-10 ppm.

Sensors for Dissolved Oxygen See page → 1-79

	Order no.
Railing bracket for DO 2-mA-10 ppm	1020536

BY DULCOTE

1.7 Application Examples

Application and Ordering Examples for the DULCOMETER® Compact See page \rightarrow 2-34

D1Cb and D1Cc Application and Ordering Examples See page \rightarrow 2-24

DACa Application and Ordering Examples See page → 2-8

Application Examples: Treatment ofSwimming Pool Water in Public Baths See page → 2-83

Application Example: Measurement of Key Chemical Water Parameters at Various Points in the

Treatmentof Drinking Water See page → 2-87

Measuring and Control Technology

2.0 Measuring and Control Units DULCOMETER®

2.0.1 Measuring and Control Units DULCOMETER®

DULCOMETER® measuring and control units combine maximum process safety with a broad application spectrum. Different measured variables can be accurately determined. Depending on the application, the control behaviour of DULCOMETER® measuring and control units is adapted to meet the relevant application. Different designs permit flexible use.

Advantages at a glance:

- high measuring reliability, e.g. thanks to symmetrical input for pH/ORP
- high measuring accuracy, e.g. thanks high-impedance input for pH/ORP
- minimum disturbance, e.g. thanks to alternating current disturbance suppression
- two-wire technology for disturbance-resistant measurement
- highly versatile thanks to many options and different designs

DULCOMETER® measuring and control units, DULCOTEST® sensors with ProMinent® metering pumps - the complete control cycle, measuring-controlling-metering and recording, everything from one single source.

DACa

Compact D1Cb D1Cc

Controller selection table

Measured variablen				
рН	✓	✓	'	'
ORP	V	V	/	~
Chlorine	✓	✓	•	•
Chlorine dioxide	V		/	/
Chlorite	✓		'	•
Bromine	V		/	/
Conductivity, conductive		V		
Conductivity, inductive		V		
Conductivity via mA	V		~	~
Peracetic acid	/		/	/
Hydrogen peroxide	~		~	~
Ozone	/		/	/
Dissolved oxygen	~		~	~
Fluoride	V		/	✓
0/420 mA standard signal general measured variables	V		/	•
Power supply				
90-253 V	/	•	~	~
Method of installation, degree of protection				
Wall mounted IP 65			•	
Control panel mounting IP 54, 1/4 DIN				/
Combination housing (wall-mounting, control panel mounting, pillar assembly) IP 67, IP 54	•	•		
Measurement				
Number of measuring channels	1/2 optionally selectable	1	1	1
Sensor monitoring of pH	V	V	V	~
Temperature compensation for pH	~	V	/	~
Temperature compensation for conductivity		V		
pH compensation for chlorine	•			
Control				
PID controller	V	V	~	V
1 way controller (e.g. with pH acid or alkali)	/	V		
2 way controller (e.g. with pH acid and alkali)	~		/	~
Control inputs				
Digital control inputs	√ , 2/5	√ , 1	√ , 1	√ , 1

1.1.2015 Product Catalogue 2015 2-1

Measuring and Control Technology

2.0 Measuring and Control Units DULCOMETER®

Function	DACa	Compact	D1Cb	D1Cc
Control outputs				
Control of metering pump by pulse frequency	√ , 2/4	~	√ , 2	√ , 2
Control of solenoid valve/motor-driven metering pump	V	/	/	/
Disturbance variable of flow via mA	/			
Disturbance variable of flow via frequency (e.g. of contact water meter)	/			
Metering time monitoring with deactivation of the control variable	~	✓	/	~
Output relay configurable as limit value relay	√ , 2	√ , 1	√ , 2	√ , 2
Cycle timer	√ , 2		√ , 2	√ , 2
Real time timer	√ , 2			
Outputs				
Analogue output 0/420 mA	√ , 2/3	√ , 1	√ , 1	√ , 1
Special functions				
Data logger with SD card	~			
Web server via LAN/WAN	/			
Parameter set switch-over via timer	~			
Parameter set switch-over via contact	/			
PROFIBUS®-DP	~			
Modbus RTU	V			
Modbus TCP	~			
Subsequent extension of functions via enabling code	V		/	/
Operating hour counter	V		~	~

2.1.1 Controller DULCOMETER® diaLog DACa

Transparency of water analysis in the Dialog controller for one or two measuring points

1

P DM 0031 SW1

Transparent water analysis with the DULCOMETER® diaLog DACa - all combinations of relevant water treatment sensors can be freely evaluated and all actuators controlled.

The diaLog DACa controller uses intelligent controller functions to close the control circuit between ProMinent DULCOTEST® sensors and ProMinent® metering pumps. It offers special functions for water treatment, like the processing of disturbance variables and switch-over of control parameters.

The controller was developed for continuous measurement and control of the parameters necessary for this and can be configured for one of two measuring channels depending on the application. Sensors from 14 freely selectable measured variables can be connected per channel. The controller can communicate with analogue or digital sensors and actuators.

Popular field buses are available for communication with the control level. The data, calibration and event logger records all measured values, control variables, digital inputs, calibration values, warning and error messages with a time stamp on the SD card.

Your benefits

- Lower investment costs: through two independent PID controllers in one unit
- Flexible selection and permits simple subsequent adjustments: 14 different measured variables per channel
- Ready for the world offers 24 operating languages
- Transparency in troubleshooting: Event, calibration and measured data logger with easy-to-access SD memory card
- Read for integration into your system: with various field bus systems, like PROFIBUS®-DP, PROFINET®, Modbus RTU and Modbus TCP

Measuring range connector type mV:

- pH: 0.00 ... 14.00
- ORP voltage: -1500 ... +1500 mV

Connector type mA (amperometric measured variables, measuring ranges according to the

- sensors):

 Chlorine
- Chlorine dioxide
- Chlorite
- Bromine
- Ozone
- Hydrogen peroxide (PER sensor)
- Hydrogen peroxide (PEROX sensor with transducer)
- Peracetic acid
- Dissolved oxygen

Connector type mA (potentiometric measured variables, measuring ranges according to the transmitters):

- pH
- ORP voltage
- Fluoride

Conductivity (measuring ranges according to the transmitters): via transmitter 0/4 ... 20 mA

Temperature: via Pt 100/Pt 1000, measuring range 0 ... 150 °C

Dissolution:

- pH: 0.01
- ORP voltage: 1 mV
- Temperature: 0.1 °C
- Amperometric (chlorine etc.): 0.001/0.01 ppm, 0.01 Vol. %, 0.1 Vol. %

Accuracy: 0.3 % based on the full-scale reading

Inputs

Measuring input: pH/ORP (input resistance $> 0.5 \times 10^{12} \Omega$)

Temperature compensation: Pt 100/Pt 1000 for pH, chlorine dioxide (CDP) sensor and fluoride

Temperature correction range: 0 ... 100 °C

pH correction range for chlorine: Sensor CLE 3 and CLE 3.1 6.5 ... 8.5, CBR: 6.5 ... 9.5

Disturbance variable Flow: via 0/4 ... 20 mA or contact water meter, 1 Hz - 500 Hz

Control characteristic: PID control Control: 2 bidirectional controllers

Analogue outputs: 2 (3) x 0/4 ... 20 mA electrically isolated, max. load 450 Ω , range and assignment

(measured, correction, control variable) can be adjusted

Control outputs:

2 (4) pulse frequency outputs for the control of metering pumps

■ 2 relays (limit value, 3-point step or pulse length control)

Alarm relay: 250 V ~3 A, 700 VA type of contact: changeover contact

Digital control inputs:

2 (5) as a remote control input for the functions pause control/sample water fault, parameter set switchover, level monitoring of chemical tanks

Electrical connection: 100-240 V, ±10 %, 50/60 Hz, 25 VA

Field bus connection: PROFIBUS®-DP, PROFINET, Modbus RTU and Modbus TCP

Permissible operating temperature range: -5 ... 60 °C (for use indoors or with a protective enclosure)

Degree of protection:

Wall-mounted: IP 67, based on NEMA4X
 Installation in the control cabinet: IP 54

Tests and certifications: CE

Housing material: PC with flame-proof equipment Dimensions: 250 x 220 x 122 mm (WxHxD)

Weight: 1.3 kg

Important note: The values above in brackets provide the data for the 2-channel version.

Area of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Measurement of the pH value and disinfection parameters in the food and beverage industry.
- Monitoring of the chlorine dioxide concentration in systems for legionella control and prevention, for example in schools, hotels or hospitals
- Market gardening: Measurement of the disinfection parameters in irrigation and sprinkler irrigation water
- Monitoring of the water parameters in potable water circuits
- Measurement and control of the hygiene parameters in swimming pools

Standard equipment of the 1-channel design

- Measuring channel 1 with 14 freely selectable measured variables (via mV or mA). The measured variables conductive or inductive conductivity are provided by the Compact controllers COND_C (conductive) and COND_I (inductive).
- PID controller with pulse frequency-based metering pump control for 2 metering pumps.
- 2 analogue outputs for measured value, correction value or control variable (dependent on the optional equipment).
- 2 digital inputs for sample water fault detection, pause and parameter switch-over.
- 2 output relays selectable as limit value, cycle timer, real-time timer or intermittent programmable control output (depending on the optional equipment).
- Measured variables and language selection during commissioning.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement via Pt100/ Pt1000.
- 22 operating languages: all European languages as well as Chinese, Russian, Thai, Korean. The operating language is selected during commissioning and can be changed at any time by a keyboard shortcut. The documentation language is selected via the identity code. A data carrier is also supplied that contains all other languages.
- Saving and transfer of device parameterisation by means of the SD card.
- Calibration and event data logger (without SD card, data is saved in the controller).
- Disturbance variable processing (flow) via frequency (contact water meter).
- Subsequent upgrade of the software functions by means of an activation key or firmware update.

Optional equipment of the 2-channel version Package 2

- Disturbance variable processing (flow) via mA, or
- pH compensation for chlorine with pH control, or
- External remote setpoint via an analogue signal for channel 1.

Package 3

- Second, complete measuring and control channel with PID controller (replaces the D2Ca controller).
- Third analogue output for measured value, correction value or control variable (depending on the optional equipment).
- 3 additional digital inputs, e.g. for level monitoring, pause and sample water alarm for channel 2.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement.

Package 4

■ Combination of packages 2 and 3

Communication options

- Measurement data logger with SD card
- Visualisation of the measured data using a web server via LAN or WLAN and a PC/tablet PC plus web browser (available from 3rd quarter 2015)
- PROFIBUS®-DP, Modbus RTU, Modbus TCP (available from 3rd quarter 2015)

Hardware extension

Protective RC circuit for output relay: Protects the output relay if inductive loads are to be switched (e.g. solenoid valves or motors).

A complete measuring station comprises the following:

- Measuring transducer / Controller DACa (see identity code)
- Fitting: DGMa..., DLG III ..., immersible inline probe housing
- pH sensor (identity code-dependent)
- ORP sensor (identity code-dependent)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP dependent on the cable length (> 10 m)
- Sensor cable

(For further information: Immersion Sensor Fittings see p. \rightarrow 1-122; pH Sensors With SN6 or Vario Pin Plug-in Head see p. \rightarrow 1-10; ORP Sensors with Fixed Cable see p. \rightarrow 1-43; Sensors for Chlorine see p. \rightarrow 1-49; Measuring Transducer 4...20 mA (Two Wire) see p. \rightarrow 2-102; Sensor Accessories see p. \rightarrow 1-113)

Accessories

	Order no.
Cable combination coaxial 0.8 m - SN6 - pre-assembled	1024105
Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
Cable combination coaxial 5 m - SN6 - pre-assembled	1024107
SN6 coaxial connector, retrofit, D1Cb, DACa	1036885
Fitting kit for DAC control panel installation	1041095

2.1.2

Identity Code Ordering System for diaLog DACa, Wall Mounting IP 67

DACa	Version	n									
	00	Wall mounted with ProMinent® logo									
	S0	With fi	tting kit f	or contr	ol cabin	et mour	nting				
		Opera	ting vo								
		6	90 2	253 V, 48	3/63 Hz						
			Channel 1 (the measured variable is selected during initial commissioning)								
			1	Measurement + control, 2 pumps, 2 digital inputs, 2 mA outputs							
						i e meas d chann		riable i	s selec	ted duri	uring initial commissioning or software presetting.)
		2 Package 2: Disturbance variable (mA) or external remote setpo channel 1)						ernal remote setpoint via mA or pH compensation for chlorine (all acting or			
	Package Ś: 2nd measurement + control, additionally 2 pumps, additionally 3 control inputs Package 4: 2nd measurement + control, additionally 2 pumps, additionally 3 control inputs, distributionally 2 pumps, additionally 3 control inputs, additionally 2 pumps, additionally 3 control inputs										
frequency), pH compensation for chlorine Software presets							monary 2 parties, additionary 5 control ripate, alctarbarios variable (11)/10				
					0		sets fault sett	inae			
					1			-	x nH me	asurem	ment with 1-2 sided controller and final checking
					2						ment with 1-2 sided controller, disturbance variable and final checking
					3						2 way, ORP 1 way)
					4						way, chlorine 1 way)
					5						2 way, chlorine dioxide 1 way)
					6						sturbance variable (pH 2 way, chlorine 1 way)
					7	CIO ₂ -/	ORP me	asurem	ent/con	trol (chlo	nlorine dioxide 1 way, ORP for monitoring)
						Chann	nel conr	ections	S		
						0					mA and mV)
						1					connection (only for pH and ORP via mV)
						2					connection (only for pH and ORP via mV)
_	L	l				3					axial connection (only for pH and ORP via mV)
Docum	nentatio IGerma	on lang	uage				O	ction o None	f digita	I sensoi	ors / actuators
EN	English						U				erfaces *
ES	Spanis							0	Iunicau INone	on inter	eriaces "
IT	Italian							2		ıs RTU	1
FR	French	1						4		IBUS®-C	
FI	Finish							5			via web server/LAN RJ45 (internal)
BG	Bulgar	ian						6	Visuali	isation vi	via web server/LAN M12 (external)
CN	Chines	se						8	Visuali	isation vi	via web server/WAN
CZ	Czech								Data I	ogger	
DK	Danish								0		ata logger
EE	Estonia	an							1		logger with measured value display and SD card
GR	Greek										lware upgrade
HU	Hunga									0	None
JP KR	Japane									1	Protective RC circuit for power relay
LT	Korear Lithuar										Approvals 01 None (CE is standard)
LV	Latviar										Certificates
NL	Dutch										0 None
PL	Polish										- 115.115
PT	Portug	uese									
RO	Romar										
RU	Russia	เท									
SE	Swedis	sh									
SK	Slovak										
SI	Sloven										
SV	Swedis	sh									
TH	Thai										

^{*} Available from 3rd quarter 2015

2-6 Product Catalogue 2015 1.1.2015

2.1.3 Retrospective Function Extension for the Controller diaLog DACa

Channel 2 must be available in the controller. Retrofitting of missing hardware must be performed in the factory.

Channel 2 can be enabled from either package 2 or package 3. The packages correspond to those that are also described in the identity code. The data logger function can always be enabled.

The activation code can only be used for the relevant controller with the specified serial number.

The activation code can be transmitted via email and is then read into the controller from the SD card or entered over the controller keypad. The enabled function is then available immediately and need only be activated and parameterised.

The following information must be available to determine the activation key:

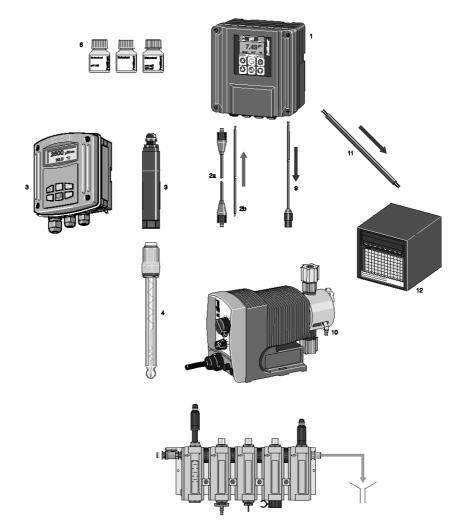
- the serial number of the controller in question (see operating menu under <Diagnostics>, <Device information> and
- the desired upgrade packet.

Order no

Based on package 2	Upgrade: Package 2 to package 3	1047874
	Upgrade: Package 2 to package 4	1047875
Based on package 3	Upgrade: Package 3 to package 4	1047876

		Order no.	
Based on 0=no data logger	Upgrade: Data logger	1047877	

2.1.4


DACa Application and Ordering Examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Components of a complete measuring and control system

- Measuring and control device e.g.

 DACa
- Measuring line e.g. coaxial cable for pH and ORP sensors, Pt 100x
- Measuring line 2-core for amperometric sensors with mA signal and trans-
- 2b ducer
- Transducer 4 ... 20 mA (for two wire system), DMTa or pH V1
- Sensor, e.g. pH single-rod sensor
 Fitting e.g. in-line probe housing type
 DGMA
- 0 Otanaaalaaanaalaa
- 6 Stopcock sample water line
- 7 Sampling tap
- 8 Buffer solutions (pH/ORP)
- 9 Signal cable (metering pump control)
- 10 Actuator e.g. Beta® metering pump

AP_MSR_0006_SW3

Examples for:

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Monitoring of waste water (pH neutralisation)
- 4 Applications in the food industry
- 5 Odour reduction during exhaust air scrubbing

Measuring and Control Technology

2.1 Controller DULCOMETER® diaLog DACa

2.1.5 Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and ORP diaLog	→ 2-3	DACa006130
	DACa with data logger and protective RC circuit		00011010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coax 2 m - SN6, preconf.	→ 2-71	1024106
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Cable combination coax 2 m - SN6, preconf.	→ 2-71	1024106
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa 320T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance in 22 languages
- Recording of measured data
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to operate correctly with each other

Private swimming pool with measurement and metering of acid and bromine

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and bromine (BCDMH) is used as a disinfectant, that is dissolved and dosed via a bromine sluice. The disinfectant is to be regulated on the basis of a bromine measurement (a comparative calibration using a DPD 1 measuring unit should be carried out at regular intervals, likewise calibration of the pH sensor). The measured values are to be recorded. A DF2a peristaltic pump for pH correction and the solenoid valve of a bromine sluice are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and ORP diaLog DACa with data logger and protective RC circuit	→ 2-3	DACa006130000 11010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre- assembled	→ 1-113	1005672
1	Bromine sensor BCR 1-mA-10 ppm	→ 1-68	1041698
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance in 22 languages
- Recording of measured data
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to operate correctly with each other

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta[®] 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and chlorine diaLog DACa with data logger	→ 2-3	DACa00613000 010010EN
1	Chlorine sensor CLE 3-mA 2 ppm	→ 1-51	792920
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coax 2 m - SN6, preconf.	→ 2-71	1024106
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are selected to operate correctly with each other

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water of a decorative well or fountain is to be disinfected/oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60 % the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	1-channel controller for hydrogen peroxide diaLog DACa with data logger	→ 2-3	DACa0061000 0010010EN
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-83	1030511
2 m	Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm 2 m (e.g.:}$ flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are selected to operate correctly with each other

2.1.6 Application Examples, Potable Water Monitoring

Measurement and control of ozone in water works for pre-oxidation of the raw water

Tasks and applications

In the treatment of potable water in a water works a measuring and control station is needed at the preoxidation stage at the inlet to the water works for the ozone oxidising and disinfectant agent used. With a constant flow, the fluctuating attrition of the ozone, caused by the changing quality of the raw water, is to be compensated on the basis of the measured variables. The following conditions must be met:

- Oxidising agent / disinfectant: Ozone with a concentration to be set to 0.2 ppm
- Raw water: Surface water with a pH of 7.3-7.6 and a temperature of 5 °C-17 °C
- Installation of the measuring station in the bypass of the process flow
- Alarm to signal transgression of upper and lower limit values
 - Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the control desk via an electrically isolated 4-20 mA signal
 - Alarm to signal lowering of sample water flow

Components of the measuring/control station

Quantity		See page	Order no.
1	1-channel controller for ozone diaLog DACa with data logger	→ 2-3	DACa00610000 010010EN
1	Ozone sensor OZE 3-mA-2 ppm	→ 1-77	792957
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Precise, self-regulating process management with changing raw water quality by the completely automated measuring and control station with variable-dependent control of ozone concentration
- Reliable, safe operation thanks to alarm signalling in the event of limit value transgression and lowering
 of sample water flow
- The control is monitored by transmission of the measured value as an electrically isolated 4-20 mA output signal by the controller to the control panel

Waterworks with control measurement of chlorine

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A MID with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Quantity		See page	Order no.
1	1-channel controller for chlorine diaLog DACa with data logger	→ 2-3	DACa00610000 010010EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm 2 m (e.g.:}$ flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are selected to operate correctly with each other

Measurement and control of free chlorine with feedforward control in a waterworks

Tasks and applications

A measuring and control station is needed for the "free chlorine" disinfectant in the treatment of drinking water in a water works. Metering is largely proportional to the flow (4...20 mA). However control can also be proportionately variable-dependent to compensate for peaks of chlorine loss, for instance in the event of rainfall. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.2 mg/l
- Raw water: source water with a pH of 7.0-7.5 and a temperature of 1-13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value and control variable to the control panel via PROFIBUS®-DP
- Alarm to signal lowering of sample water flow (via PROFIBUS®-DP)
- Alarm signalling the transgression of the preset upper and lower limit values (via PROFIBUS®-DP)
- The measured data are to be recorded in the controller.

Components of the measuring/control station

Quantity		See page	Order no.
1	1-channel controller for chlorine with feedforward control diaLog DACa with data logger	→ 2-3	DACa0061200 0410010EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Precise, self-regulating disinfection by a fully automated measuring and control station
- Flow-proportional control can be safeguarded by proportionate variable-dependent control to combat peaks of attrition
- Reliable, safe operation thanks to alarm signalling in the event of limit value transgression and lowering
 of sample water flow
- The control is monitored by transmission of the measured value and control variable via the PROFIBUS®-DP to the control panel

Waterworks with measurement of chlorine dioxide

Tasks and applications

The chlorine dioxide concentration in the outlet of a water works is to be monitored. Metering is in the first place performed with the volume proportional to the water flow. A flow meter with a 4-20 mA output signal is used.

If the proportionality is not sufficient, then up to 20 % of the control variable is made available by the controller in an additive manner (a calibration of the chlorine dioxide sensor by means of a DPD 1 comparative measurement is required at regular intervals). The DACa controller pulse frequency is used to control the ProMinent Bello Zon® chlorine dioxide generation system.

Components of the measuring/control station

	See page	Order no.
2-channel controller for chlorine dioxide diaLog	→ 2-3	DACa0061000
DACa with data logger		0010010EN
Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-71	792930
Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
	DACa with data logger Chlorine dioxide sensor CDE 2-mA-0.5 ppm Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: flow sensor) DGMa in-line probe housing with sample water limit contact Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.:	2-channel controller for chlorine dioxide diaLog DACa with data logger Chlorine dioxide sensor CDE 2-mA-0.5 ppm → 1-71 Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: → 1-115 flow sensor) DGMa in-line probe housing with sample water → 1-120 limit contact Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: → 1-115

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Primarily, chlorine dioxide metering proportional to flow; where this is not possible additive measuredvalue dependent control
- All products are selected to operate correctly with each other

Legionella prevention in public buildings

Tasks and applications

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of Legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and chlorine diaLog DACa with data logger	→ 2-3	DACa00613000 010010EN
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-71	792930
5 m	Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm 2 m (e.g.:}$ flow sensor)	→ 1-115	725122
1	Chlorite sensor CLT 1-mA-0.5 ppm	→ 1-75	1021596
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa302T000
5 m	Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm 2 m (e.g.:}$ flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Recording of all measured data
- Upon exceeding of the chlorite limit value, a limit value relay switches the chlorine dioxide metering off or to a basic load.
- All products are selected to operate correctly with each other

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60 % the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

	Quantity		See page	Order no.
	1	1-channel controller for hydrogen peroxide	→ 2-3	DACa00610000
		diaLog DACa with data logger		010010EN
	1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-83	1030511
	2 m	Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm 2 m (e.g.:}$ flow sensor)	→ 1-115	725122
-	1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
	2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
	1	flow sensor) DGMa in-line probe housing with sample water limit contact Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.:	→ 1-120	DGMa301T000

- Hygienic trouble-free well water
- Simple operation, controller with plain text operator guidance
- Recording of measured data
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are selected to operate correctly with each other

2.1.7 Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant (non-steady receipt of water)

Tasks and applications

Turbid waste water with a significantly fluctuating pH value and intermittent occurrence is to be neutralised in batch mode. The waste water is pumped into an intermediate tank and in the process is neutralised using acid and alkali. The pH value should be measured and regulated in a stirred batch tank. The pH sensor should be fitted at a typical position on the tank using an immersion fitting. Once it has been neutralised the water is pumped onwards and the pH value should be controlled again in this pipe.

The DACa controller data logger automatically records the pH values and temperatures of both pH measuring points. In parallel, a digital input is used to record the proximity switch of the storage tank outlet. In this way it can be precisely determined how high the pH value was at the time of draining. Any limit value transgressions that may have occurred are also recorded in the data logger. If a limit value transgression occurs, the shut-off valve closes automatically. Additionally, a neutral zone is defined in the controller. If the pH value comes within this neutral zone, no control takes place. There may be solids in the waste water.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	2-channel controller for pH and ORP diaLog DACa with data logger and protective RC circuit	→ 2-3	DACa006130 00011010EN
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-113	1024107
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Temperature sensor Pt 100 SE	→ 1-46	305063
1	Cable combination controller cable 5 m - S SN6, open-ended (Pt 100, Pt 1000)	→ 1-114	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-123	1008602
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-123	1008633

Components of the measuring/control station in the outlet

	Quantity		See page	Order no.
Ī	1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
	1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-113	1024107
	1	Retractable process assembly WA-PH 1	→ 1 - 128	1020631

Note: the use of other sensors is also possible depending on the quality of the waste water (see DULCOTEST® pH Sensor Selection Guide \rightarrow 1-1)

With seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-16	305096

With clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- Simple operation, controller with plain text operator guidance in 22 languages
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring for the waste water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

Neutralisation of the waste water of an industrial plant (continuous receipt of water)

Tasks and applications

In an industrial plant, waste water arises in a continuous manner (continuous production), and can be acidic or alkaline. The water runs through a manifold. The flow volume is measured using a MID flow meter because the flow varies within wide limits. There is a pH sensor with a pH gate value and changeover valve in the pipe with which the pH value is adjusted. Further along the piping the pH value is used once again as a final check.

The flow signal of the MID is evaluated as a multiplicative disturbance variable in the DACa controller, i.e. this flow signal = disturbance variable is used to evaluate the controller control variable (control of the metering pumps) in a flow dependent manner. If a control deviation exists (deviation of the current value from the setpoint), for example, with a reduced flow less acid or alkali is necessary that with an increased flow. Provision of this information makes it easier for the controller to adhere to the setpoint. In the absence of such flow information, a PID controller alone could not perform such a task or could only perform it with great difficulty. Additionally, a neutral zone is defined in the controller. If the pH value comes within this neutral zone, no control takes place.

There may be solids in the waste water.

The DACa controller data logger automatically records the pH values and temperatures of both pH measuring points. Any limit value transgressions that may have occurred are also recorded in the data logger.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	2-channel controller for 2 x pH and temperature diaLog DACa with data logger	→ 2-3	DACa0061400 0011010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-113	1024107
1	Retractable process assembly WA-PH 1	→ 1-128	1020631

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-113	1024107
1	Retractable process assembly WA-PH 1	→ 1-128	1020631

Note: the use of other sensors is also possible depending on the quality of the waste water (see DULCOTEST® pH Sensor Selection Guide \rightarrow 1-1)

With seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-16	305096

With clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- Simple operation, controller with plain text operator guidance in 22 languages
- Processing of the flow signal as a disturbance variable
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring for the waste water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

2.1.8

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Tasks and applications

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled,

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the DACa controller. From time to time the chlorine dioxide concentration must be increased.

An alternative parameter set can be activated in the DACa via a switch input. In this way a regularly required switchover can be smoothly implemented without the necessity for continual adaptation of the setpoint in the controller menu.

The measured data are to be recorded.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine dioxide diaLog DACa with data logger	→ 2-3	DACa0061000 0010010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-73	1033393
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance in 22 languages
- Recording of all measured data
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

Irrigation water disinfection for useful plants

Tasks and applications

The irrigation water from e.g. salad seedlings is drawn from a well. The water could contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement varies. Consequently, the irrigation water volume flow is measured. The irrigation water volume flow is used as an additive disturbance variable to control the adding of chlorine dioxide dependent on the required chlorine dioxide concentration and the irrigation water flow.

All measured data are to be recorded. The irrigation water may contain suspended matter.

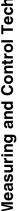
Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine dioxide with additive feedforward control diaLog DACa with data logger	→ 2-3	DACa0061200 0010010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-73	1033393
5 m	Coaxial cable, Ø 5 mm, 10.0 m – S	→ 1-113	305040
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance in 22 languages
- Processing of the irrigation water flow signal as a disturbance variable
- Recording of all measured data
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

2.1.9 **Odour Reduction Application Examples (Clarification Plants)**

Exhaust air scrubbers, clarification plants or fragrance production


Tasks and applications

The odorous components of the exhaust air from a clarification plant are to be scrubbed out using an exhaust air scrubber and oxidised using hydrogen peroxide. Here the hydrogen peroxide concentration is to be regulated to maintain 100 mg/l. As the exhaust air is acidic, the pH value is to be regulated to maintain 7.2. The measured values are to be recorded. The scrubbing water temperature can vary widely in the range 5 - 35 °C. Beta® 4b metering pumps are to be pulse frequency controlled.

Components of the measuring/control station

Quantity		See page	Order no.			
1	2-channel controller for pH and chlorine diaLog DACa with data logger	→ 2-3	DACa006130 00010010EN			
1	pH sensor PHES 112 SE	→ 1-11	150702			
1	Sensor connection cable, coaxial 2 m, SN 6 preassembled	→ 1-113 1005672				
1	H ₂ O ₂ sensor PEROX-H2.10 P	→ 1-84	792976			
1	PEROX transducer V2, measuring range switchable up to 20/200/2,000 mg/l	→ 1-84	1034100			
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122			
1	Temperature sensor Pt 100 SE	→ 1-46	305063			
1	Cable combination controller cable 5 m - S SN6, open-ended (Pt 100, Pt 1000)	→ 1-114	1003208			
1	Reference electrode REFP-SE	→ 1-46	1018458			
1	DLG III A/B with PVC hose connection	→ 1-119	914955			
1	Polishing paste (90 g tube)	→ 1-46	559810			
1	Magnetic stirrer 100-240 V	-	790915			
1	Magnetic stirring bar PTFE (magnetic stir bar)	_	790917			
1	Photometer DT3B	→ 2 - 100	1039317			

- Simple operation, controller with plain text operator guidance in 22 languages
- Recording of all measured data
- Simultaneous measurement and control of the pH value and the hydrogen peroxide concentration
- All products are selected to operate correctly with each other

2.2.1

Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

The water analysis workhorse

The controller DULCOMETER® D1Cb/D1Cc can be used for control tasks in potable water treatment, waste water treatment and many other areas. Safe, convenient and clear, thanks to the large illuminated graphic display, plain text operating menu and pH sensor monitoring.

The D1Cb/D1Cc controller is a 1-channel P/PID controller for the measured variable pH, ORP, chlorine, chlorine dioxide, chlorite, ozone, bromine, peracetic acid, hydrogen peroxide, fluoride, dissolved oxygen and conductivity via mA. The sensors for pH and ORP can be directly connected via coaxial cable or using the 4-20 mA sensor input. The controller can bidirectionally control the measured variables, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC The mA output can optionally also be configured as a controlled variable output. The controller has two pulse frequency outputs to control two metering pumps (raise and lower). Two output relays can optionally be used as limit value relays or to control motor-driven pumps or solenoid valves. An alarm relay signals the occurrence of a fault. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is possible in 22 languages.

Your benefits

- Flexibility through free selection of variables from all measured variables
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Flexibly upgradable, thanks to subsequent activation option of functions by means of an activation code
- Various installation options: wall-mounted or installation in a control cabinet

Technical details Measuring ranges:

Connection type mV:

- pH: 0.00 ... 14.00
- ORP: 1,000 ... + 1,000 mV

Connector type mV:

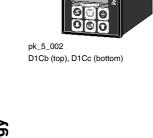
- Chlorine: 0.00...0.500/ 2.00/5.00/10.0/20.0/50.0/100.0 ppm
- Chlorine dioxide: 0.00...0.500/2.00/10.0/20.0 ppm
- Chlorite: 0.02...0.50/0.1...2 ppm
- Bromine: 0.02...2.0/0.1...10.0 ppm
- Ozone: 0.00...2.00 ppm
- Hydrogen peroxide, only with sensor PER1: 2.0...200.0/20...2,000 ppm
- Peracetic acid: 1...20/10...200/100...2,000 mg/l
- Dissolved oxygen: 0.1...10/0.1...20 ppm
- pH: 0.00...14.00
- ORP: 0...+1,000 mV
- Conductivity: 0...20/200/1,000 mS/cm only via mA transducer
- Temperature: 0...100 °C via mA transducer

Dissolution:

- pH: 0.01 pH
- ORP: 1 mV
- Amperometric (chlorine etc.): 0.001/0.01 ppm, 0.01 Vol. %

Accuracy: 0.5 % of the full-scale reading

Measuring inputs: pH/ORP (input resistance > $0.5 \times 10^{12} \Omega$) **Correction variable:** Temperature via Pt 100/Pt 1000


Temperature correction range: 0 ... 100 °C
Control characteristic: P/PID control

Control: Bidirectional control

Signal current output:

- 1 x 0/4-20 mA electrically isolated
- Max. load 450 Ω
- Range and assignment (measured, correction or control variable) can be adjusted

Control output:

- 2 pulse frequency outputs for control of the metering pump
- 2 relays (limit value or pulse length)

Alarm relay:

- 250 V ~3 A, 700 VA
- Changeover contact type

Electrical connection: 100 - 240 V ±10%, 50/60 Hz, 15 VA Permissible operating temperature range: -5 ... +50 °C

Degree of protection:

- Wall-mounted: IP 65
- Control panel installation: IP 54

Dimensions:

- Wall-mounted: 198 x 200 x 76 mm (WxHxD) (D1Cb)
- Control panel installation: 96 x 96 x 145 mm (WxHxD) (D1Cc)

Weight: 0.8 kg

Area of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Waste water neutralisation
- Measurement of the pH value and the disinfection parameters in potable water treatment and in the food and beverage industry.
- Measurement and control of the hygiene parameters in swimming pools
- Flexibly upgradable thanks to subsequent activation option for functions by means of activation key (see D1Ub/D1Uc upgrade identity code)
- Equipped for the most important basic requirements in water treatment
- Illuminated graphic display
- Operator guidance through clear text menu available in 22 languages in the controller
- Automatic buffer detection for pH calibration

D1Ub Identity Code Ordering System, Subsequent Function Upgrade for D1Cb see page \rightarrow 2-23

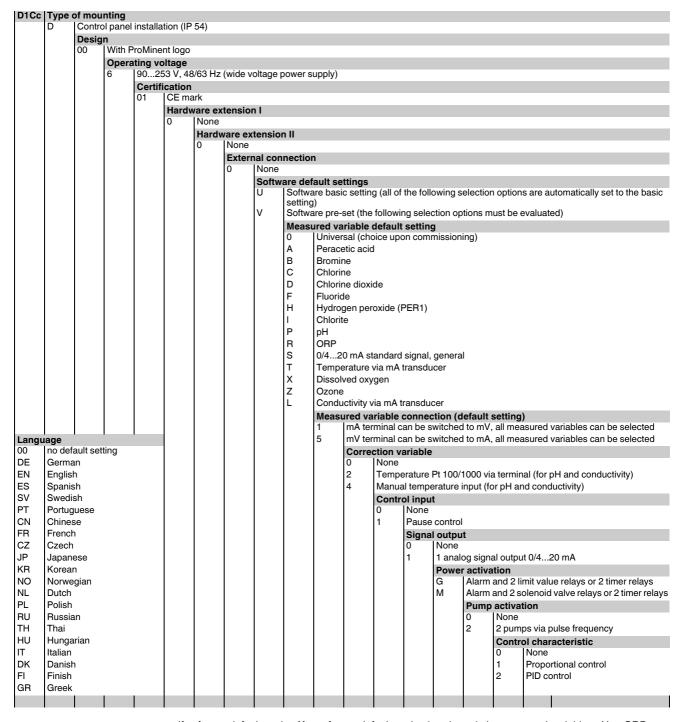
A complete measurement station comes with:

- Measuring transducer/controller D1Cb/D1Cc (see Identity code)
- Fitting: DGMa..., DLG III ..., immersed fitting
- pH sensor (corresponding to Identity code)
- ORP sensor (corresponding to Identity code)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP (corresponding to Identity code)
- Sensor cable

Accessories

	Order no.
Cable combination coaxial 0.8 m - SN6 - pre-assembled *	1024105
Cable combination coaxial 2 m - SN6 - pre-assembled *	1024106
Cable combination coaxial 5 m - SN6 - pre-assembled *	1024107
SN6 coaxial connector, retrofit, D1Cb, DACa	1036885
Protective RC circuit, retrofit kit for D1Cb	1034238
Spare parts kits D1Cc (frame, support brackets)	790130

^{*} For measured variable connection = 5



2.2.2

Identity Code Ordering System DULCOMETER® D1Cb, Wall Mounting

D1Cb	Install	ation															
	W		nountin	g (IP 65)												
	••			9 (11 00	,												
		Version		N 4"													
		00	With F	ProMine	nt logo												
			Powe	r suppl	У												
		1	6		53 V, 48	3/63 Hz	(wide-ra	ange po	wer su	pply)							
				Appro						/							
				01	CE ap	nroval											
		1		"													
				1		vare ad	id-on l										
					0	None											
						Hardy	vare ad	ld-on II									
						0	None										
						1	RC pro	otection	for pov	wer rela	vs						
								nal con			, -						
							0	None	HECHO								
							U										
									are de								
								U			ult setti	ng (all o	the tol	lowing	selectio	n optior	ns are automatically set to the default
									setting								
								V	Softwa	are pre-	set (the	tollowi	ng sele	ction op	otions n	nust be	evaluated)
					1			1	Meas	ured va							
					1			1	0	Univer	sal (ch	oice upo	on com	mission	ing)		
				1	1			1	Α	Perace	etic acio	. t					
				1	1			1	В	Bromir							
				1	1			1	C	Chlorin							
									D		ne diox	al a					
												ue					
									F	Fluoric							
									Н			oxide (PER1)				
									1	Chlorit	e						
									Р	рН							
									R	ORP							
									s	0/4 2	0 mA S	tandard	signal	genera	al		
									T			via mA	_	•			
									X				liaiisut	icei			
											ved oxy	/gen					
									Z	Ozone							
									L	Condu	ctivity v	∕ia mA t	ransdu	cer			
										Conne	ection	of the r	neasur	ed var	iable (ı	presetti	ing)
										1	mA te	rminal c	an be s	witche	d to mV	, all me	asured variables selectable
										2	SN6 n	lua for l	or R c	or stand	ard sig	nal 0/4-	20mA, all measured variables
										_	select		0		u. u o.g		zom , an modearea randeree
Langu	ane									5			an be s	witched	d to mA	all me	asured variables can be selected
00	no def	ault										ction v				., a	
DE	Germa				1			1			0	None	ariable				
				1							-			Dt 400	1000		and (for all and any decated)
EN	English				1			1			2						nal (for pH and conductivity)
ES	Spanis				1			1			4				entry (f	or pH a	nd conductivity)
SV	Swedi	sh			1			1			1	Contr	ol inpu	t			
PT	Portug	uese		1							1	0	None				
CN	Chines				1			1			1	1	Pause	contro	I		
FR	French			1							1			l outpu			
CZ				1	1			1									
	Czech				1			1			1		0	None	- د ما	imme! -	.tmt 0/4 00 m A
JP	Japan			1	1			1									tput 0/420 mA
	Korear				1			1			1				contro		
NO	Norwe	gian			1			1			1			G	Alarm	and 2 I	imit value relays or 2 timer relays
NL	Dutch			1	1			1						M	Alarm	and 2 s	colenoid valve relays or 2 timer relays
PL	Polish				1			1			1			1		contro	
RU	Russia				1			1			1			1	0	None	-
		41 1			1			1			1				2		ana via nulaa fragueza:
TH	Thai			1							1				2	-	ps via pulse frequency
HU	Hunga				1			1			1						ol characteristic
IT	Italian			1	1			1						1		0	None
DK	Danish	1			1			1			1					1	P-control
FI	Finish			1	1			1						1		2	PID control
	Greek				1			1			1					1	
GB				i	1	1			1			1	1		1	1	
GR	GICCK																

2.2.3 Identity Code Ordering System DULCOMETER® D1Cc, Control Panel Mounting

If software default setting $\mathbf{U} = \text{software default setting is selected}$, the measured variables pH or ORP can be selected during commissioning. The menu language is automatically requested.

The connection of the measured variable is 5 = mV input for pH/ORP via shield clamp.

With all other options, the default settings (first option) are selected.

The controller with software with default settings can also be ordered with an order number.

	Order no.	
Controller in basic setting D1CbW00601000U01000G0000	1036423	

Subsequent activation of functions is possible at any time using an activation code.

This activation key can only be used with the controller with the specified serial number. The activation code can be provided by phone, fax or e-mail and can be simply entered into the control keyboard. The new function is then available and need only be enabled and parametrised.

The following information is essential to obtain the activation code:

- Serial number of the controller (refer to nameplate or operator menu under "General Settings and Information")
- Current identity code of the controller (refer to operator menu under "General Settings and Information"
- Required identity code

Measuring and Control Technology

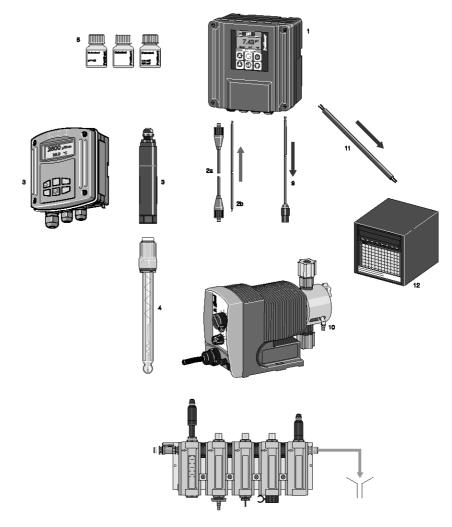
2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

2.2.4 D1Ub Identity Code Ordering System, Subsequent Function Upgrade for D1Cb

D1Ub	Softwa	are defa	ults												
		Softwa	re pre-s	set											
		Defaul	t - mea	sured v	/ariable										
		0	Univer	sal (cho	ice of m	easured	l variabl	e upon o	commiss	sioning)					
			Conne	ection o	f meas	ured va	riable								
			1	Standa	ard signa	al 0/4-20	mA, all	measu	red varia	ables and mV input for pH/ORP (standard)					
					ction va					,					
		0 None													
		Temperature Pt100/Pt1000 via terminal (for pH and conductivity)													
			4 Manual temperature entry (for pH and conductivity)												
			Control input												
		0 None													
		1 Pause control Signal output													
						0	None	•							
						1	1 analo	oaue sic	nal outr	out 0/4-20 mA					
						1		r contro							
							G			and 2 limit value relays or 2 timer relays					
							М			plenoid valve relays or 2 timer relays					
									contro	· · · · · · · · · · · · · · · · · · ·					
								0	None						
								2	2 pum	ps via pulse frequency					
										ol modes					
									0	INone					
									1	P control					
									2	PID control					
										Language					
										00 No default					

2.2.5 D1Ub Identity Code Ordering System, Subsequent Function Upgrade for D1Cc

D1Uc	Softwa	are defa													
		Softwa	re prese	et											
				- measured variable Universal (choice of measured variable upon commissioning)											
		0		•											
			Conne	onnection of measured variable											
			1			d signal 0/4-20 mA, all measured variables and mV input for pH/ORP (standard)									
					ction va	ariable									
0 None															
				2							and conductivity)				
				4			rature in	iput (for	pH and	conduct	livity)				
						ol inpul									
					0	None Pause control									
					'										
						Signa	al output None								
						1	1 Analogue signal output 0/4-20 mA								
						'		Power control							
							G		larm and 2 limit value relays or 2 timer relays						
							М				valve relays or 2 timer relays				
									contro		and relaye of 2 miles relaye				
								0	None						
								2	2 pum	os via pu	ulse frequency				
									Contro	Control modes					
									0	None					
									1	Propor	tional control				
									2 PID control						
										Langu	age				
										00	No default setting				
					•	•	•								


2.2.6

D1Cb and D1Cc Application and Ordering Examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Components of a complete measuring and control system

- Measuring and control device e.g. DACa
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors, Pt 100x
- 2b Measuring line 2-core for amperometric sensors with mA signal and transducer
- 3 Transducer 4 ... 20 mA (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- Fitting e.g. in-line probe housing type DGMA
- 6 Stopcock sample water line
- 7 Sampling tap
- 8 Buffer solutions (pH/ORP)
- 9 Signal cable (metering pump control)
- 10 Actuator e.g. Beta® metering pump

AP_MSR_0006_SW3

Examples for:

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Treatment and monitoring of waste water (pH neutralisation)
- 4 Applications in the food industry

Measuring and Control Technology

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

2.2.7

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010 VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coax 2 m - SN6, preconf.	→ 2-71	1024106
1	1 channel controller D1Cb, ORP	→ 2-18	D1CBW00601010 VR5010M21EN
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-113	1005672
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa 320T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance in 22 languages
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to operate correctly with each other

Private swimming pool with measurement and metering of acid and bromine

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and bromine (BCDMH) is used as a disinfectant, that is dissolved and dosed via a bromine sluice. The disinfectant is to be regulated on the basis of a bromine measurement (a comparative calibration using a DPD 1 measuring unit should be carried out at regular intervals, likewise calibration of the pH sensor). The measured values are to be recorded. A DF2a peristaltic pump for pH correction and the solenoid valve of a bromine sluice are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010 VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 preassembled	→ 1-113	1005672
1	1 channel controller D1Cb, bromine	→ 2-18	D1CBW00601010 VB1010M21EN
1	Bromine sensor BCR 1-mA-10 ppm	→ 1-68	1041698
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

Benefits

- Simple operation, controller with plain text, operator guidance in 22 languages, display of measurement data
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to operate correctly with each other

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta[®] 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW0060101 0VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-113	1005672
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW0060101 0VC5010M21EN
1	Chlorine sensor CLE 3-mA 2 ppm	→ 1-51	792920
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are selected to operate correctly with each other

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water of a decorative well or fountain is to be disinfected/oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60 % the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, bromine	→ 2-18	D1CBW0060101 0VH1010M21EN
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-83	1030511
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are selected to operate correctly with each other

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

2.2.8 Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A MID with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW00601010 VD1010G21EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are selected to operate correctly with each other

Legionella prevention in public buildings

Tasks and applications

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of Legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

	See page	Order no.
1 channel controller D1Cb, chlorine dioxide	→ 2-18	D1CBW0060101
		0VD1010M21EN
Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-71	792930
Control line LiYY 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm} 2 \text{ m}$ (e.g.: flow sensor)	→ 1-115	725122
1 channel controller D1Cb, chlorite	→ 2-18	D1CBW0060101 0VI1010M21EN
Chlorite sensor CLT 1-mA-0.5 ppm	→ 1-75	1021596
Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa302T000
Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
	Chlorine dioxide sensor CDE 2-mA-0.5 ppm Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: flow sensor) 1 channel controller D1Cb, chlorite Chlorite sensor CLT 1-mA-0.5 ppm Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: flow sensor) DGMa in-line probe housing with sample water limit contact Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.:	1 channel controller D1Cb, chlorine dioxide \rightarrow 2-18 Chlorine dioxide sensor CDE 2-mA-0.5 ppm \rightarrow 1-71 Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: \rightarrow 1-115 flow sensor) 1 channel controller D1Cb, chlorite \rightarrow 2-18 Chlorite sensor CLT 1-mA-0.5 ppm \rightarrow 1-75 Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: \rightarrow 1-115 flow sensor) DGMa in-line probe housing with sample water \rightarrow 1-120 limit contact Control line LiYY 2 x 0.25 mm² Ø 4 mm 2 m (e.g.: \rightarrow 1-115

- Simple operation, controller with plain text operator guidance
- Upon exceeding of the chlorite limit value, a limit value relay switches the chlorine dioxide off or to a basic load.
- All products are selected to operate correctly with each other

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60 % the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, hydrogen peroxide	→ 2-18	D1CBW00601010V H1010G21EN
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-83	1030511
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
2 m	Control line LiYY $2 \times 0.25 \text{ mm}^2 \emptyset 4 \text{ mm} 2 \text{ m}$ (e.g.: flow sensor)	→ 1-115	725122

- Simple operation, controller with plain text operator guidance
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are selected to operate correctly with each other

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

2.2.9 Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Tasks and applications

In an industrial plant, waste water arises in an intermittent manner (batch production), and can be acidic or alkaline. The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The discharge connecting piece, which can be closed off using a shut-off valve with a limit switch, of a storage tank contains a pH sensor with a pH changeover device, which is used for the final check.

If a limit value transgression occurs, the shut-off valve closes automatically. Additionally, a neutral zone is defined in the controller. If the pH value comes within this neutral zone, no control takes place. There may be solids in the waste water.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW0060101 0VP5010M21EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-113	1024107
1	Temperature sensor Pt 100 SE	→ 1-46	305063
1	Cable combination controller cable 5 m - S SN6, open-ended (Pt 100, Pt 1000)	→ 1-114	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-123	1008602
1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-123	1008633

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW0060101 0VP5010M21EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-113	1024107
1	Retractable process assembly WA-PH 1	→ 1-128	1020631

Note: The use of other sensors is also possible depending on the quality of the waste water (see DULCOTEST® pH Sensor Selection Guide \rightarrow 1-1)

with seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-16	305096

with clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- The waste water pH value is within the specified limit values
- Simple operation, controller with plain text operator guidance in 22 languages
- pH limit value monitoring for the waste water
- All products are selected to operate correctly with each other

2.2 Measuring and Control Unit for all Measured Variables DULCOMETER® D1Cb/D1Cc

2.2.10

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Tasks and applications

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled.

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the D1Cb controller.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW0060101 0VD1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-73	1033393
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Hygienic trouble-free bottling
- Simple operation, controller with plain text operator guidance in 22 languages
- All products are selected to operate correctly with each other

Irrigation water disinfection for useful plants

Tasks and applications

The irrigation water from e.g. salad seedlings is drawn from a well. The water could be contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement is always constant.

The irrigation water may contain suspended matter.

Components of the measuring/control station

Quantit	у	See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW0060101 0VD1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-73	1033393
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Irrigation water does not harm the seedlings
- Simple operation, controller with plain text operator guidance in 22 languages
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

2.3.1

P DM 0025 SW1

Measuring and Control Unit for pH/ORP, Chlorine and Conductivity **DULCOMETER®** Compact

Compact yet fully equipped - the basic water analysis unit

As a controller in water analysis, the DULCOMETER® Compact is the correct controller for control tasks that require only a 1 way control.

The DULCOMETER® Compact controller is a one-channel PID controller for the measured variables pH, ORP, chlorine and inductive conductivity. It can monodirectionally control the measured variable, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC. The mA output can optionally also be configured as a controlled variable output. The controller has one pulse frequency output to control one metering pump. One output relay can optionally be used as an alarm or limit value or to control motordriven metering pumps or solenoid valves. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is languageindependent.

Your benefits

- Flexibility in the choice of measured variable with pH and ORP
- Always the optimum measured value resolution by auto-ranging with conductivity measurement
- Depending on the requirement, various display options for conductivity, such as: Conductivity, TDS (Total Dissolved Solids), salinity and specific resistance
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Various installation options: wall-mounted, installation on an upright or in a control cabinet

Technical details

Measuring ranges:

- pH: 0.00 ... 14.00
- ORP: 1,000 ... + 1,000 mV
- Chlorine: 0.05 ... 5 ppm, shock dosing up to 12 ppm for max. 12 h
- Conductive conductivity: 1 µS/cm ...200 mS/cm (auto-ranging, only 2 electrode sensors)
- Inductive conductivity: with ICT 1 sensor: 200 µS/cm ...1,000 mS/cm (auto-ranging), with ICT 2 sensor: 20 μS/cm ... 2,000 mS/cm

Dissolution:

- pH: 0.01
- ORP: 1 mV
- Conductivity: depending on the measuring range 0.1/1 μS/cm, 1 mS/cm

Accuracy: 0.5 % based on the full-scale reading

Temperature compensation range: 0 ... 120 °C, chlorine 1 ... 45°C Control: Monodirectional PID control with selectable control direction

Inputs:

- Sensor input for the relevant measured variable
- Temperature sensor input: pH: Pt 1000, chlorine and conductivity: Pt 100/ Pt 1000
- 1 digital input as a remote control input for the functions pause control/sample water fault

Outputs:

- 1 pulse frequency output for the control of metering pumps
- 1 active 0/4...20 mA output configurable as a measured or control variable, max. load: 400 Ω
- 1 output relay used as a changeover contact, can be configured as an alarm, limit value or pulse widthmodulated control output for motor-driven metering pumps

Cell constant, conductive conductivity: 0.05 cm⁻¹ ...12.0 cm⁻¹

Power supply: 100-240 V, ± 10 %, 50/60 Hz, 5 W Permissible operating temperature: -10 ... +60 °C Degree of protection: IP 67, based on NEMA4X **Dimensions:** 135 x 125 x 75 mm (H x W x D)

Weight: 0.5 kg

Area of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Permeate monitoring in reverse osmosis systems
- Measurement and control of the hygiene parameters in swimming pools

2.3.2 Identity Code Ordering System DULCOMETER® Compact, Wall Mounting IP 67

DCCa	Type o	of mounting								
	W	Wall/pi	II/pipe mounting IP 67							
	S		-	ng kit for control panel mounting IP 54						
		Design								
		00	With P	roMinen	ıt® logo					
	Operating voltage 6 90 253 V, 48/63 Hz									
				Measu	ired var	iable				
				C0	Free ch					
		PR pH/ORP (switchable)								
				L3					lesignation: COND_C)	
				L6	Inductiv	ve cond	luctivity ((unit des	signation: COND_I)	
					Hardw	are ext	ension			
					0	None				
						Certifi	cations			
						01	CE (St	andard)		
							Certifi			
							0	None		
									nentation language	
								DE	german	
								EN	english	
								ES	spanish	
								IT	italian	
								FR	french	
								FI	finnish	
								BG	bulgarian	
								CN	chinese	
								CZ	czech	
								GR	greek	
								HU	hungarian	
								JP	japanese	
								KR	korean	
								LT	lithuanian	
								LV NL	latvian dutch	
								PL	polish	
								PT RO	portuguese	
								RU	romanian	
									russian	
								SE	swedish	
								SK SI	slovakian slovenian	
								SV	swedish	
								TH	thai	

2.3.3	Accessories	
	Name of the item	Order no.
	Cable combination coaxial 0.8 m - SN6 - pre-assembled *	1024105
	Cable combination coaxial 2 m - SN6 - pre-assembled *	1024106
	Cable combination coaxial 5 m - SN6 - pre-assembled *	1024107
	Panel mounting kit DCCa	1037273
	Chlorine sensor CLB 2-µA-5 ppm	1038902
	Chlorine sensor CLB 3-µA-5 ppm	1041696

2.3.4

Application and Ordering Examples for the DULCOMETER® Compact

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water and waste water.

Components of a complete measuring and control system

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Treatment and monitoring of waste water (pH neutralisation)

2.3.5

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative check with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-32	DCCaW006P R0010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coax 2 m - SN6, preconf.	→ 2-71	1024106
1	Compact controller for ORP	→ 2-32	DCCaW006P R0010EN
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Sensor connection cable, coaxial 2 m, SN 6 preassembled	→ 1-113	1005672
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa 320T000
4 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Operation is simple and independent of the operating language
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to operate correctly with each other

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta[®] 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-32	DCCaW006PR 0010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 preassembled	→ 1-113	1005672
1	Compact controller for chlorine	→ 2 - 32	DCCaW006C0 0010EN
1	CLB 2-µA-5 ppm	→ 1-58	1038902
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-120	DGMa 320T000
4 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Operation is simple and independent of the operating language
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are selected to operate correctly with each other

2.3.6 Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine and pH

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetically induced flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the chlorine measuring/control station

Quantity		See page	Order no.
1	Compact controller for chlorine	→ 2-32	DCCaW006 C00010EN
1	CLB 2-µA-5 ppm	→ 1-58	1038902
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Components of the pH measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-32	DCCaW006P R0010EN
1	DULCOTEST® pH-Sensor PHEP-112-SE	→ 1-13	150041
1	Sensor connection cable, coaxial 2 m, SN 6 preassembled	→ 1-113	1005672
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm 2 Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

- Operation is simple and independent of the operating language
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are selected to operate correctly with each other

Waterworks with control measurement of conductivity

Tasks and applications

The conductive conductivity in the outlet of a water works is to be monitored. The measured value is to be transmitted to a PLC via a 4-20 mA analogue signal.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for conductive conductivity	→ 2-32	DCCaW006L 30010EN
1	Conductivity sensor measuring range 20 mS/cm, type LFTK 1	→ 1-98	1002822
1	Screened sensor cable LF, 5 m	→ 1-114	1046026
1	DGMa in-line probe housing with sample water limit contact	→ 1-120	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-115	725122

Benefits

- Operation is simple and independent of the operating language
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are selected to operate correctly with each other

2.3.7 Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Tasks and applications

In an industrial plant, waste water arises in an intermittent manner (batch production), the water is always acidic (or always alkaline). The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The storage tank discharge connecting piece contains a pH sensor with a pH changeover device, which is used for the final check.

The control is one-way, i.e. acidic or alkaline. There may be solids in the waste water. The measured values are transferred via the 4-20 mA analogue signal.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-32	DCCaW006 PR0010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-113	1024107
1	Pt 1000 Temperature sensor	→ 1-46	1002856
1	Cable combination controller cable 5 m - S SN6, open-ended (Pt 100, Pt 1000)	→ 1-114	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-123	1008602

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-32	DCCaW006 PR0010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-15	1001586
1	Cable combination coaxial 5 m - SN6 - pre- assembled	→ 1-113	1024107
1	Retractable process assembly WA-PH 1	→ 1 - 128	1020631

Note: The use of other sensors is also possible depending on the quality of the waste water (see DULCOTEST® pH Sensor Selection Guide \rightarrow 1-1)

For seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-16	305096

For clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- Operation is simple and independent of the operating language
- pH limit value monitoring for the waste water
- All products are selected to operate correctly with each other

2.4.1 Controller DULCOMARIN® II

Transparency of water analysis in the Dialog controller for one or two measuring points

1

Controller DULCOMARIN® II for water analysis: Green technology with energy and chemical saving function. Control of circulating pumps and filter backwash is possible.

The ProMinent DULCOMARIN® II control system manages your entire swimming pool and your hot tub: from water treatment to filter control, pool cover, attractions, water heating, solar control, pool and external lighting. System information and messages are clearly and graphically visualised on the coloured display. At the same time, the information can also be transmitted via the internet to a tablet PC or smartphone. Coupling to a building bus is simply possible via KNX, PROFIBUS®-DP, Modbus RTU or OPC. Based on the modern bus technology DULCO®-NET, the system is capable of growing to meet requirements and can be extended at any time. The application can be used in high-end private pools, school or hotel swimming pools or even in public leisure pools. Depending on requirements, a potable water treatment system or legionella prevention system can also be integrated. Almost all customer requirements can be met thanks to the integral SoftPLC. The DISINFECTION controller version can be used for general water treatment tasks.

Your benefits

- Visualisation made simple: with the embedded web server and a standard web browser
- Simple connection to your PC or PC network or the internet via a LAN interface
- Operation via Apple® iPod, iPad (WLAN access point necessary)
- Control of up to 16 sub-systems, each with 10 measuring parameters, in potable water systems or filter circuits in swimming pools or with general water treatment tasks
- Customer-specific adjustments are possible: A SoftPLC conforming to IEC 61131 also enables customer-specific process control to be integrated in addition to integral processing.
- View current and historical measured data directly on the controller: the integral data logger with screen plotter permits this
- Simply transmit measured data to a PC as standard: SD card and card reader for PC always included
- Simple wiring and subsequent expandability thanks to DULCO NET bus system
- Intelligent sensors: save sensor data and always be in the optimum measuring range with auto-ranging
 - Intelligent metering pumps: find information on operating parameters, such as: Chemical level status and pump capacity in the metering range of 0.74 l/h to 1,030 l/h
 - Coupling to a PLC via a PROFIBUS°-DP and Modbus RTU

Technical details

Measuring ranges:

- pH 0...14
- ORP: -1,200...+1,200 mV
- Free chlorine 0.01...10 ppm/100 ppm
- Total chlorine 0.01...10 ppm
- Combined chlorine 0.01... 2 ppm
- Bromine: 0.01...10 ppm
- Chlorine dioxide: 0.01...10 ppm
- Chlorite anion: 0.10...2 ppm

Temperature: -20 ... 150 °C via Pt 100 or Pt 1,000 **Dissolution:** 0.01 pH / 1 mV / 0.01 ppm / 0.1 °C **Accuracy:** 0.5 % of the full-scale reading

Measuring inputs:

- pH and ORP via mV terminalChlorine via CANopen bus
- Control characteristic: P/PI/PID control, intelligent control

Control: Acid and/or alkali and chlorine (2 control circuits), temperature, flocculant

Digital inputs: 5 potential-free inputs (sample water, pause, 3 pump errors, 2nd parameter set, Eco!mode)

Signal current output: 4 x 0/4-20 mA max. load 600 Ω , adjustable assignment.

Important:An isolating amplifier, e.g. part no. 1033536, is required for connecting to units, which are not electrically isolated!

Control outputs:

- 3 frequency outputs for acid, alkali or flocculants and chlorine for the control of metering pumps
- 3 relays (pulse length) changeover type of contact to control solenoid valves or peristaltic pumps

Alarm relay: 250 V ~3 A, 700 VA type of contact: changeover contact

Interfaces: LAN, SD expansion slot

Electrical connection: 85...265 V~. 50/60 Hz

Permissible operating temperature range: -5...45 °C

Storage temperature: -10...70 °C Degree of protection: IP 65

Climate: Permissible relative humidity: 95 %, non-condensing DIN IEC 60068-2-30

Dimensions H x W x D: 227 x 342 x 78 mm

Compliance of all units with CANopen specifications: On the hardware side, all units comply with the harmonised CAN specification 2.0 (ISO99-1, ISO99-2). This includes the CAN protocol (ISO 11898-1) and details on the physical layer in compliance with ISO 11898-2 (high speed CAN up to 1 Mbit/sec) and ISO 11898-3 (low speed CAN up to 125 kBit/sec). The unit complies with the CAN-Open specification CIA-DS401 that forms the basis of the European standard EN50325-4 and also complies with the controller device profile CiA-404.

Area of application

- Measurement and control of the hygiene parameters in swimming pools
- Monitoring of the water parameters in potable waterworks
- Monitoring of the chlorine dioxide concentration in systems for legionella control and prevention, for example in schools, hotels or hospitals

The applications are defined in the identity code

Every potable water system or every filtration circuit has a proprietary on-site calibration option for all measured variables.

What is the Eco! Mode operating mode?

Eco! Mode permits lowering of the circulation capacity when the DIN hygiene parameters pH, ORP, free chlorine and combined chlorine are within the permitted limits.

A circulating pump with frequency converter with analogue input is needed for this.

The reduction can be activated via a remote control, dependent on the DIN hygiene parameters being observed, the time and appropriate activation. A combination of criteria is also possible. If the DIN hygiene parameters are no longer adhered to, then the circulation capacity is again raised to the nominal power.

Lowering pump capacity saves energy and, in so doing, reduces CO₂ emissions.

In addition, upon reaching an adjustable redox potential, e.g. 780 mV, which signals effective disinfection of the water, chlorine metering is reduced either gradually or in one step. If the DIN hygiene parameters are no longer adhered to, then the chlorine metering is again raised to the normal setpoint.

What is a web server?

A web server is a software application executed by the DULCOMARIN® II.

The web server delivers web pages with information about measurements, control, sensor calibration and control configuration to a PC with a web browser (e.g. Microsoft® Internet Explorer).

The web server enables simple and straightforward visualisation of the DULCOMARIN® II, without special visualisation software being required on the PC. The web server is independent of the PC's operating system.

The DULCOMARIN® II is connected to a PC via a LAN/Ethernet interface. This connection can be made directly, via a network or via the internet. The cables needed for direct connection to a PC or network connection are included in the option.

Standard commercially available network components can be used as accessories for cables, routers and WLAN access points etc.

The same information can be accessed via the web server as is available on the DULCOMARIN® II itself, for instance changing setpoints for all control variables, switching off the different controllers and entering names for the pools/systems. The exceptions are the control settings and bus configuration that can only be entered directly on the controller.

What is OPC?

OPC stands for Openness, Productivity, Collaboration (formerly OLE for Process Control) and is used to describe a uniform software interface independent of specific manufacturers. OPC Data Access (OPC DA) is based on Windows COM (Component Object Model) and DCOM (Distributed Component Object Model) technology. OPC XML, in contrast, is based on the internet standards XML, SOAP and HTTP.

OPC is used wherever sensors, controllers and controls supplied by different manufacturers are used to create a common, flexible network. Without OPC, two devices would require precise knowledge about the communication options of the other device to be able to exchange data and extensions and exchanges would be correspondingly difficult. With OPC it is sufficient to write an OPC-compliant driver just once for each device. Ideally this is provided by the manufacturer. An OPC driver can be integrated without extensive adaptation into any large control and monitoring systems.

ProMinent supplies an OPC server/driver, such as this, for the multi-channel control system ${\tt DULCOMARIN}^{\otimes}$ II.

The examples shown in the following are suitable for applications in potable water treatment and in swimming pool technology.

2.4.2

Controller DULCOMARIN® II

The DULCOMARIN® II multi-channel measuring and control system is suitable for 1 to 16 filtration circuits or potable water systems. The following bus modules are available for the control:

M module (measurement and control):

- Measurement and control of the pH value
- Measurement and display (optional control) of the ORP
- Measurement and display of the temperature of the sample water
- Sample water monitoring
- Measurement of free chlorine
- Measurement of combined chlorine (optional, calculated from total chlorine and free chlorine)

Chlorine sensors:

- Measurement of free chlorine and temperature
- Measurement of total available chlorine and temperature
- Measurement of combined chlorine as differential chlorine measurement

A module (control of metering pumps, analogue outputs):

- 3 frequency outputs to control metering pumps for pH correction, disinfection and flocculant metering
- 3 contact inputs to process pump alarm relays or tank fill level monitoring
- 4 freely programmable analogue outputs 0/4...20 mA for pH, ORP, free chlorine, combined chlorine or temperature

P module (controlling of peristaltic pumps, power supply of bus modules):

- Power relay pulse length control for pH value (e.g. control of the peristaltic pump)
- Power relay pulse length control of disinfectant (e.g. control of the chlorine electrolysis plant)
- Power relay limit value output to minimise combined chlorine
- Alarm relay
- Power supply of bus modules

N module (power supply of bus modules):

Power supply of bus modules with no further function

R module (control of the chlorine gas metering units):

 \blacksquare Control of a chlorine gas metering unit and processing of a position feedback potentiometer (0...10 k Ω) (only possible as external module)

Metering pumps with CANopen interface of type Beta®, delta®, Sigma/ 1, Sigma/ 2, and Sigma/ 3

- Direct connection to the bus
- When using Beta/4aCANopen metering pumps, the A module is not required (provided no current outputs are required).

I module (current input module)

- 2 active/passive current inputs (e.g. for the connection of 2-wire transmitters)
- 1 passive current input (e.g. for the connection of a magnetic-inductive flow meter)
- 2 digital inputs for sample water alarm and pause control
- 1 channel with controller function

F module (functional module)

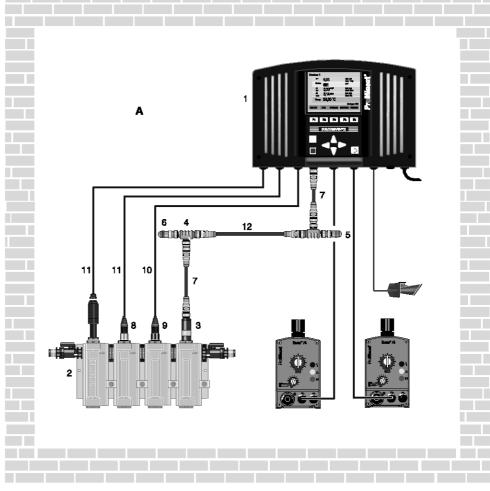
The F module consolidates functions and also extends these functions

The following functions can be provided by the F module (you can find details on this in the individual application examples in the assembly and operating instructions):

- Control of circulation operation (depending on the weekday and the time of day)
- Automatic backwashing (depending on the weekday and the time of day)
- Discharge of first filtrate
- Lowering of the water level during idle operation
- Circulation flow control (Flowcontrol)
- IO module for SoftPLC
- Water level control
- Sample water valve
- Heating function
- Gutter cleaning function
- Attractions
- Flow control
- Control variables

PROFIBUS®-DP V1 gateway Modbus RTU gateway

KNX gateway

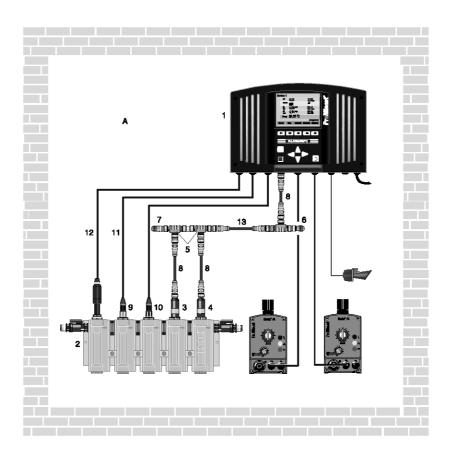

SMS, email alarm signalling via mobile phone GPRS/EDGE – LAN router with web server visualisation

Configuration example: 1-pool system

This example of a measuring and control system for pH, ORP, free chlorine and temperature shown for a filter circuit consists of the following components (without chemical fluid handling):

A Plant room

pk_5_020


Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measuring and control modules DXCa W 0 0 1 M A P S DE 01	-
2	1	DULCOTEST® in-line probe housing DGMa 3 2 1 T 0 0 0	-
3	1	Chlorine sensorCLE 3-CAN-10 ppm	1023425
4	3	T-distributor M12 5 pol. CAN	included in delivery
5	1	Temination resistance M12 connector	included in delivery
6	1	Temination resistance M12 plug	included in delivery
7	3	Connection cable - CAN M12 5 way 0.5 m	included in delivery
8	1	pH sensor PHES 112 SE	150702
9	1	ORP sensor RHES-Pt-SE	150703
10	2	Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
11	2 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122
12	-	Connecting cable - CAN, sold by the metre	1022160

Example 2

This example of a measuring and control system for pH, ORP, free and combined chlorine and temperature shown for a filter circuit consists of the following components (without chemical fluid handling):

A Plant room

pk_5_020_1

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measurement and actuation modules DXCa W 0 0 1 M A P S EN 01	-
2	1	DULCOTEST® in-line probe housingDGMa 3 2 2 T 0 0 0	_
3	1	Chlorine sensor CTE 1-CAN-10 ppm	1023427
4	1	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
5	3	T-distributors M12 5 pole CAN	included in delivery
6	1	Load resistor M12-coupler	included in delivery
7	1	Load resistor M12-plug	included in delivery
8	3	Connecting cable - CAN M12 5 pole 0.5 m	included in delivery
9	1	pH sensor PHES 112 SE	150702
10	1	ORP sensor RHES-Pt-SE	150703
11	2	Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
12	2 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122
13	1	CAN Connection cable	as required

Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

ProMinent

2.4.3

Identity Code Ordering System DULCOMARIN® II

DULCOMARIN®II DXC range

DXCa	Install	lation										
	W S	Wall m	ounting	(IP 65)								
		Contro	l cabine	et (IP 54))							
		Versio	n									
		0	With controls									
		D	with or	perating	element	ts for us	e in pota	able wate	er/disinfe	ection a	pplications	
			Comm		inication interfaces							
			0	None								
			5		Embedded web server, LAN including 5 m LAN patch cable 1:1, LAN coupling, 5 m crossover cable 1)							
			6	OPC s	erver + embedded web server, LAN including 5 m LAN patch cable 1:1, LAN coupling, 5 m crossover cable 1)							
					on (the corresponding communications modules are required, see accessories)							
				0	none							
				1						ng SD card and USB card reader for PC		
				2		oftPLC function (communication option 5 or 6 needed) NX function (communication option 5 or 6 needed)						
				3			`				,	
				4 5		•	-		•		on option 5 or 6 needed)	
				6						_	ılling via text, e-mail (communication option 5 or 6 needed) mail (communication option 5 or 6 needed)	
				7				-	-	,	tion option 5 or 6 needed)	
				8							(communication option 5 or 6 needed)	
				١	Modul		raiaiiiis	signami	y via texi	i, e-iiiaii	(communication option 3 of officeded)	
					M	-	lule me	asurina	module f	ornH (DRP, temperature	
					Α			_			4 analogue outputs	
					li .			e, current input module, 3 mA, 2 digital inputs				
						Modu						
						0	Not used					
						Α	A module, control module: 3 pump and 4 analogue outputs					
						M	M mod	lule, me	asuring r	nodule	pH, ORP, temperature	
						l F	I modu	I module, current input module, 3 mA, 2 digital inputs		, 3 mA, 2 digital inputs		
							F module, module for filter and attraction control				attraction control	
							Modul	e 3				
							Р	P mod	ule, mair	s powe	r module, 1 alarm relay, 3 solenoid valve relays	
							N	N mod	ule, mai	ns pow	er module without relay	
							1	F mod	ule occu _l	pies mo	dule position 3	
								Applic				
								S	Swimm	• .		
								D			disinfection	
									Langua			
									00	no ope		
									DE	Germa		
									EN	English		
									ES FR	Spanis French		
									IT.	Italian		
									PL	Polish		
									NL	Dutch		
									CZ	Czech		
									52	Appro	vale	
										Appro	CE mark	
										J.		

The identity code describes the **DULCOMARIN® II** controller.

¹ The supplied cable is for connection to a hub, switch, router or an intranet.

For direct connection of the DULCOMARIN® II to a PC/MAC, the supplied LAN coupling and category 5 cross-over cable are required.

The maximum LAN cable length is approximately 100 m.

To operate the web server on a PC we recommend $Microsoft^{@}$ Internet Explorer 5 or higher as the browser.

The scope of supply of the DXCa includes:

- 1 T-coupler, 1 CAN connection cable
- 1 terminating resistance coupling and
- 1 terminating resistance plug,
- 1 SD card, 1 card reader suitable for PCs.

Important note when ordering multi-channel measuring and control systems for potable water and pool water applications:

Potable water applications: In the identity code, a "D" for "Potable water/disinfection" must be selected under "Version" and "Application". The description "System" will appear in the controller menu for the different potable water lines.

Swimming pool water applications: In the identity code, a "0" for "with operating elements" must be selected under "Version" and then an "S" for "Swimming pool" under "Application". The description "Tank" will appear in the controller menu for the different filter circuits.

All adjustment options and the use of the different modules are identical with both applications.

Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

2.4.4

Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

The multi-channel multi-parameter measuring and control system DULCOMARIN® II DULCO® Net can, in its top-of-the-range optional version, control 16 potable water systems/filtration circuits, i.e. the necessary external modules for 16 tanks can be connected to and operated by the central unit. The following options are available

Measurement and control of:

Up to 16 times:

- pH value
- ORP potential
- Free chlorine
- Combined chlorine (calculated)
- Temperature of the sample water

Also in potable water applications (using the I module):

- Flow (as disturbance variable for pH and chlorine control)
- UV intensity
- Conductivity
- Chlorine dioxide
- Chlorite
- Ammonia
- Fluoride
- Pt100/Pt1000 resistance thermometer via a transducer

Other inputs and outputs:

Up to 16 times:

- 3 frequency outputs for control of metering pumps for pH-correction, disinfectant and flocculent metering
- 3 contact inputs for processing of pump fault signal relays or container level monitoring
- 4 freely programmable analogue outputs 0/4 ... 20 mA (for pH, ORP, free chlorine, combined chlorine or temperature)
- 3 output relays pulse length control of the pH value, the disinfectant and minimisation of the combined chlorine (e.g. control of a peristaltic pump and chlorine electrolysis system and UV system)
- Control of a chlorine gas metering device
- 3 Beta®/4 CANopen metering pumps
- Up to 2 F modules per filter circuit are possible

The CAN bus with CANopen protocol is used as a data transfer medium between the various bus modules. This extremely interference-proof technology was developed by Bosch and is well known from its use in automotive applications. The maximum length of the bus backbone is 400 metres.

A T-coupler is used for connection of one of each bus module (M module, A module, P module, N module, Beta® 4 CANopen metering pumps and CAN chlorine sensors), which connects the devices to the bus backbone via a branching cable.

T-coupler and branching cable are part of the scope of supply of the modules.

All bus modules are supplied via the CAN bus with 24 V operating voltage (with the exception of Beta®/4 CANopen metering pumps, P modules, N modules. These require a separate mains voltage supply).

For this reason, depending on the size of the installation (number of filtration circuits to be controlled), additional P or N modules are required that feed the operating voltage for the bus modules into the bus. The central unit always contains a power supply (N or P module).

How many additional N or P modules do you require?

Number of filtration circuits	Additional N or P modules	Number of filtration circuits	Additional N or P modules
1	-	9	4
2	-	10	5
3	1	11	5
4	2	12	6
5	2	13	6
6	3	14	7
7	3	15	7
8	4	16	8

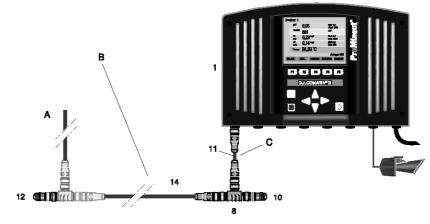
The DULCOMARIN® II can be easily extended by the connection of bus modules.

Which components can a DULCOMARIN® II system comprise?

A DULCOMARIN® II DULCO® Net system comprises:

DXCa central unit with operating elements

and a customised combination of the following components:


- M module, DXMaM (measuring and control)
- A module, DXMaA (control of metering pumps, analogue outputs)
- P module (module in the DXCa housing for power supply to the modules and alarm relays, output relays for control of, for example, peristaltic pumps)
- N module, DXMaN (power supply to external modules with no other function)
- R module, DXMaR (control of chlorine gas metering devices with response signal processing)
- I module (processing of sensor signals via 0/4...20 mA)
- F module (filter and attraction control)

The maximum bus backbone length is approximately 400 m!

2.4.5 **Central Unit**

- A Stub cable
- B Main BUS cable
- C Stub cable

pk_5_041_2

The central unit can be installed anywhere, for example in the control room. It serves as an I/O unit (view measuring data, parameterise and configure individual modules). It includes the following functions: standard screen recorder/data logger function, interfaces*, embedded Web server* and power supply. As an option, the central unit can also include an M and an A module if the central unit is also located in the control room. The central unit is connected to other units via the main bus train.

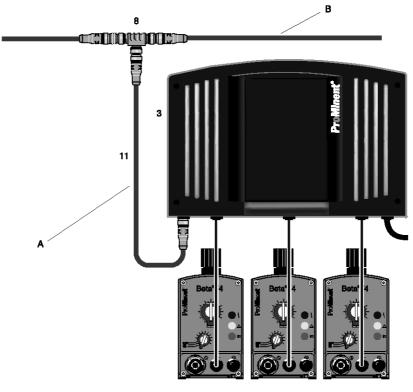
For this connection, the T-distributor and the CAN connecting cable 0.5 m included in the scope of delivery

The main bus train must be fitted with termination resistors at either end.

These components are included in the scope of delivery.

The central unit in the above example consists of the following components:

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit DXCa W 0 0 1 0 0 P S EN 01	-
8	1	T-distributor M12 5 pol. CAN	included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery
14	1	CAN Connection cable	as required
10	1	Temination resistance M12 connector	included in delivery
12	1	Temination resistance M12 plug	included in delivery


^{*} optional

2.4.6

Combination Module

- A Stub cable
- B Main BUS cable

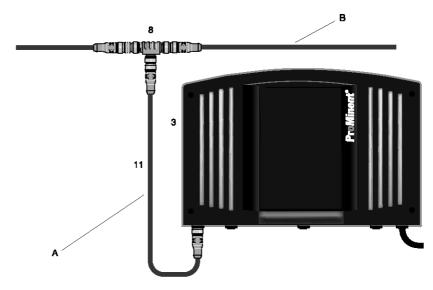
pk_5_044

Combination of M, A, I-module and F, P, N module

Up to three different modules can be accommodated by the combination module (DXCa without control elements). The function of the combination module results from the function of the individual modules (see above description). The modules in the combination module are operated via the DXCa central unit.

The module is connected to other bus modules via the main bus line.

See the table below for the various equipment options.


Module position 1	Module position 2	Module position 3
M, A, I module	M, A, I module	P, N module
M, A, I module	F module	Occupied by the F module

The combination in the above example consists of the following components (without chemical fluid handling):

Item	Quantity	Name	Order no.
3	1	Control module DXCa W 2 0 0 0 A P S 00 01	-
8	1	T-distributor M12 5 pol. CAN	included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery

2.4.7

Functional Module (F Module)

P_DC_0009_SW

The F module combines functions that were until now available in the A and P module combination and also extends these functions. It includes the supply voltage (90 - 253 VAC) for the controller. The F module is selected for the 2nd module position and also occupies the 3rd module position. The following functions can be provided by the F module (you can find details for this in the individual application examples in the assembly and operating instructions). The F module also acts as an input/output module for the SoftPLC.

Hydraulic functions:

- Control of circulation operation (depending on the weekday and the time of day)
- Automatic backwashing
- Route first filtrate through the internal circuit (electrical backflow shut-off valve)
- Lowering of the water level during idle operation
- Circulation flow control
- Water level control
- Sample water valve
- Heating function
 - Heating control heat exchanger
 - Solar heating
- Gutter cleaning function

Attractions:

- Open/Close cover
- Counterflow system/JetStream
- Flood/Neck shower
- Massage nozzle
- Underwater light

Monitoring:

- Flow control
 - Current circulation flow recording
 - Fresh water top-up recording
 - Cover
 - Massage pump active
 - 1, 2 or 4-stage level functions
- Control variables for:
 - Disinfection
 - pH (+/-)
 - Flocculation
 - UV system
 - Backwashing emergency-off, if water alarm emitted

2.4.8

Identity Code Ordering System Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II (Central Unit and Combination Module)

DXCa	Inctel	lation										
DACa	W	Wall mounting (IP 65)										
	S	Control cabinet (IP 54)										
	٥	Versio		it (II 34)								
		0		ontrols								
		2		ut contro	ıle							
		D				its for us	e in not	ahle wat	ter/disinf	ection a	pplications	
				nunicati			oc iii poti	abic wai	ici/disiiii	colloria	ррисанопо	
			0	None	on me	liaces						
			5		dded we	b serve	r. I AN in	cludina	5 m I Al	N natch	cable 1:1, LAN coupling, 5 m crossover cable	
			6					_		•	m LAN patch cable 1:1, LAN coupling, 5 m crossover cable	
			_								iles are required, see accessories)	
				0	None	опоорс	mamy (Joinnia.	mounon	io illoud	noo aro roquirou, ooo aooooo noo,	
				1		graphic i	ecorder	with da	ta logge	r includir	ng SD card and USB card reader for PC	
				2	_						6 needed)	
				3	KNX fu	unction	(commu	nication	option 5	or 6 ne	eded)	
				4	Alarm	signallin	g via tex	kt, e-mai	il (comn	nunicatio	on option 5 or 6 needed)	
				5	SoftPL	.C functi	on + KN	IX functi	on + ala	rm signa	ılling via text, e-mail (communication option 5 or 6 needed)	
				6	SoftPL	.C functi	on + ala	rm signa	alling via	text, e-ı	mail (communication option 5 or 6 needed)	
				7					•		tion option 5 or 6 needed)	
				8			+ alarm s	signallin	(communication option 5 or 6 needed)			
					Modul							
					0 M	Not used			D t			
						3 y						
					A I	A module, control module: 3 pump and 4 analogue outputs I module, current input module, 3 mA inputs, 2 digital inputs						
						Modul						
						0	Not us	ed				
						Ä			trol mod	ule: 3 pu	imp and 4 analogue outputs	
						М					pH, ORP, temperature	
						I	I modu	I module, current input module, 3 mA inputs, 2 digital inputs				
						F	F mod	ule, mod	dule for f	ilter and	attraction control	
							Modul	e 3				
							Р	P mod	ule, maiı	ns powe	r module, 1 alarm relay, 3 solenoid valve relays	
							N			•	r module unit without relay	
							1	F mod	ule occu	pies mo	dule position 3	
								Applic				
								S D		ning poo		
								D			disinfection	
									Langu DE	age def Germa		
									EN	English		
									ES	Spanis		
									FR	French		
									IT.	Italian		
									PL	Polish		
									NL	Dutch		
									CZ	Czech		
										Appro	vals	
										01	CE mark	

Please note the following:

Upgrade modules for existing systems require a software update for the existing system. A Software Update Kit is needed to avoid any possible incompatibility between the different modules.

The update kit is free of charge and one is also needed when ordering more than one upgrade module. The kit includes an SD memory card with the current software for the DULCOMARIN® II and a description about how to perform the software update.

Order no.

Update kit/DXC and modules

1031284

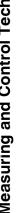
The Identity code describes the complete DULCOMARIN®II DULCO®-Net central unit.

The peripheral components mentioned in the above item list, however, are not included. If modules are assigned to the central unit, the following applies:

Module 1 preferably assigned as M module

Module 2 preferably assigned as A module

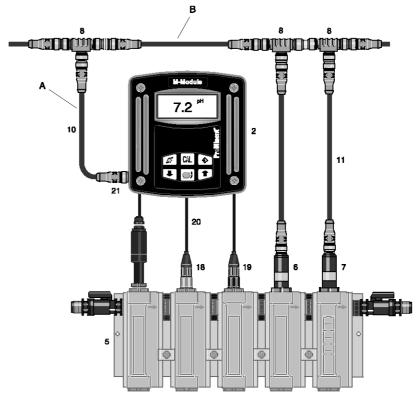
Module 3 must always be assigned as P module or N module.



Important note when ordering multi-channel measuring and control systems for potable water and pool water applications:

Potable water applications: In the identity code, a "D" for "Potable water/disinfection" must be selected under "Version" and "Application". The description "System" will appear in the controller menu for the different potable water lines.

Swimming pool water applications: In the identity code, a "0" for "with operating elements" must be selected under "Version" and then an "S" for "Swimming pool" under "Application". The description "Tank" will appear in the controller menu for the different filter circuits.


All adjustment options and the use of the different modules are identical with both applications.

2.4.9

Measuring Module (M module)

- A Stub cable
- B Main BUS cable

pk_5_042

The M module with its illuminated graphic display and keypad displays the measured values and allows all sensors for the corresponding filter circuit to be calibrated on site.

The following measurements can be taken:

- pH value
- ORP potential
- Free chlorine and
- Total available chlorine (optional or combined chlorine is calculated) and
- Sample water temperature using the temperature probe in the chlorine sensor or optionally using a separate Pt100/Pt1000 resistance thermometer

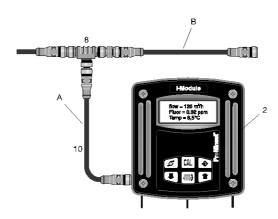
The M module has 3 digital inputs for:

- Sample water monitoring
- Controlling breaks in filter backwashing
- Parameter changeover for Eco!Mode

The M module is connected to the other bus modules via the main bus cable, using the T-distributor supplied and the $0.5\,\mathrm{m}$ CAN connection cable.

The M module in the above example consists of the following components:

Item	Quantity	Name	Order no.
2	1	M module DXMa M W 0 S EN 01	DXMa M W 0 S EN 01
5	1	In-line probe housing DGMa 3 2 2 T 0 0 0	DGMa 3 2 2 T 0 0 0
6	1	Chlorine sensor CTE 1-CAN-10 ppm	1023427
7	1	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
8	3	T-distributor M12 5 pole CAN	included in delivery
10	1	Connection cable - CAN M12 5-pole 0.5 m	included in delivery
11	2	Connection cable - CAN M12 5-pole 0.5 m	included in delivery
18	1	pH sensor PHES 112 SE	150702
19	1	ORP sensor RHES-Pt-SE	150703
20	2	Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
21	2 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122


Control System DULCOMARIN® II

Current Input Module (I module)

2.4.10

A Stub cable

B Main BUS cable

AP_DC_0011_SW

This I module with its illuminated graphic display and keypad is a current input module capable of processing 3 standard signals from sensors and two digital signals.

It can be used together with the multi-channel controller DULCOMARIN® II in potable water and swimming pool applications. All measured variables are available in the screen plotter and web and OPC® server.

Two analogue inputs are provided as 2-wire inputs and one as passive input. All channels have preselected measured variables. However the identifier and units can also be edited. Channel 1 acts as an interference variable channel for channel 2. Channel 3 acts as the temperature compensation channel for channel 2 when the measured variable is fluoride. Channel 2 has a control function.

The inputs can process the following values as 0/4... 20 mA standard signals:

- Turbidity
- Flow (can also be used as the disturbance variable)
- UV intensity
- Conductivity (via DMTa transmitter)
- Chlorine dioxide
- Chlorite
- Ammonia
- Fluoride
- Pt100 resistance thermometer via a transducer
- Dissolved oxygen
- Hydrogen peroxide
- Editable designation and unit for all 3 channels

The I module has 2 digital inputs for:

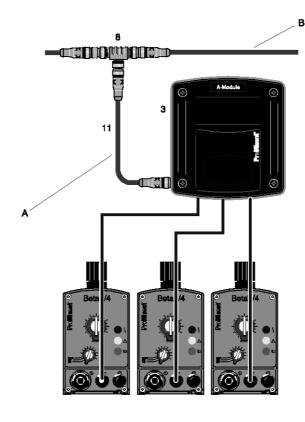
- Sample water monitoring and
- Pause control

The flow information can be used as an disturbance variable for the control of chlorine, pH correction and chlorine dioxide.

The I module is connected to other bus modules via the main bus cable using the T-distributor and 0.5 m CAN connection cable supplied as part of the delivery.

The I module in the above example consists of the following components:

Item	Quantity	Name	Order no.
2	1	I module DXMa I W 0 D EN 01	-
8	1	T-distributor M12 5P CAN	included in delivery
10	1	Connecting cable - CAN, M12, 5P, 0.5 m	Included in delivery



2.4.11

Control Module (A module)

A Stub cable

B Main BUS cable

pk_5_043

The A module permits the control of up to three metering pumps via pulse frequency. Possible metering combinations are:

- pH lowering and disinfectant and flocculant or
- pH raising and disinfectant and flocculant or
- pH lowering and pH raising and disinfectant

It includes 3 digital inputs to evaluate the alarm relay of metering pumps, 4 freely programmable standard signal outputs 0/4...20 mA to document measured values, or as control outputs.

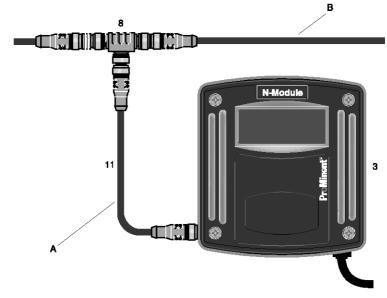
The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this connection

Note: No A modules are required if Beta®/4CANopen metering pumps are used!

The A module in the above example consists of the following components (without metering technology):

Item	Quantity	Name	Order no.
3	1	A module DXMa A W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery

The A module is connected to other units via the main bus train.


An isolating amplifier, e.g. order no. 1033536 is required for connection to units which are not electrically isolated (e.g. PLC)!

2.4.12

Power Supply Module (N module)

- A Stub cable
- B Main BUS cable

pk 5 043 C power

The N module (power supply) is used to supply the bus modules with power and has no further function.

The number of N modules required can be seen from the table below. If P modules are used in a system, the number of N modules is reduced accordingly. The central unit always includes a power supply unit (N or P module)

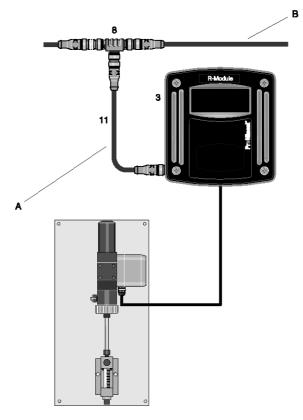
How many additional N or P modules do you require?

Number of filtration circuits	Additional N or P modules	Number of filtration circuits	Additional N or P modules
1	-	9	4
2	-	10	5
3	1	11	5
4	2	12	6
5	2	13	6
6	3	14	7
7	3	15	7
8	4	16	8

The N module requires a power supply for operation and is connected to the other bus modules via the main bus train. The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this connection.

The N module in the above example consists of the following components:

Item	Quantity	Name	Order no.
3	1	N module DXMa N W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery


Our Sales department would be glad to assist with any questions you may have.

2.4.13

Control Module for Chlorine Gas Metering Devices (R module)

- A Stub cable
- B Main BUS cable

pk_5_043_C

The R module permits the control of chlorine gas metering units equipped with a position feedback potentiometer.

It includes 2 power relays for opening and closing and an input for a position feedback potentiometer 1 ...

The R module is connected to other units via the main bus train.

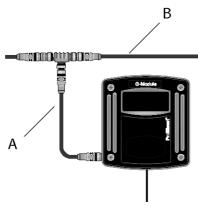
The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this connection

The R module in the above example consists of the following components (without the chlorine gas metering device):

	Item	Quantity	Name	Order no.
Ī	3	1	R module DXMa R W 2 0 00 01	-
	8	1	T-distributor M12 5 pol. CAN	included in delivery
	11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery

Our Sales department would be glad to assist with any questions you may have.

Measuring and Control Technology


2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Minor

2.4.14

Limit Value and Alarm Module (G module)

- A Stub cable
- B Bus main cable

P_DM_0024_SW3

The G-module is a limit value and alarm emitting module with 2 potential-free changeover relays to signal alarm states. Each of the two relays has ten different setting options to monitor measured values for minimum and maximum values and, should the values exceed or fall below these limits, this then triggers the relay. Both relays have the same setting options, thereby enabling signals for pre-warnings or shutdowns to be generated by the use of different delay periods.

The G module is connected to the other units via the main bus cable using the T-distributor and $0.5\,\mathrm{m}$ CAN connection cable supplied.

The G module in the above example consists of the following components:

Item	Quantity	Name	Order no.
3	1	G module DXMa G W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	included in delivery

Our Sales department would be glad to assist with any questions you may have.

Measuring and Control Technology

Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

2.4.15

Identity Code Ordering System for CANopen Modules

Modules for the DULCOMARIN® II, DXM product range

DXMa	Modul	le					
	М	M module, measuring module: pH, ORP, temperature					
	Α	A module, control module: 3 pump and 4 analogue outputs					
	R	R module, control module: chlorine gas metering unit with feedback 1), 2)					
	N	N module, mains power module without relay 1). 2)					
	Р	P module, mains power module with relay, only mounting type "0" 1). 2)					
	I	I module, current input module, 3 mA inputs, 2 digital inputs					nputs, 2 digital inputs
		Install	ation				
		0	No hou	using, or	nly P mo	dule (IP	00)
		W Wall mounting (IP 65)					
	E Retrofit module (installation module for DXCa, IP 20)				odule for DXCa, IP 20)		
		Version					
		0 With controls (only M module, mounting type W) ¹					nodule, mounting type W) ¹
			2	Withou	ıt contro	ls	
		3 Without contols (only mounting type "E" and "H")					nounting type "E" and "H")
		Application					
		0 Standard					
		S Swimming pool (only M-module)					
		D Potable water/disinfection (only I module)					
		Language default					
		00 No controls ²⁾					
		DE German					
		EN English					
		ES Spanish					
		FR French					
		Approvals					
						00	No approval, only P-module without housing
						01	CE mark

Please note the following:

Upgrade modules for existing systems require a software update for the existing system. A Software Update Kit is needed to avoid any possible incompatibility between the different modules.

The update kit is free of charge and one is also needed when ordering more than one upgrade module. The kit includes an SD memory card with the current software for the DULCOMARIN® II and a description about how to perform the software update.

Order no.

Update kit/DXC and modules	1031284

Order no

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

2.4.16 Spare Parts and Upgrade Sets

Internal spare parts and upgrade sets for the DULCOMARIN® II cannot be ordered using the part number printed on the modules!

Modules have to be fully replaced (the exception to this is the N module).

The electrical unit for the central unit can only be replaced by a complete processor spare part.

Please use only the following identity codes when ordering:

Replacement central units

- Replacement central unit: DXCAC001000#DE01 (without communication interface, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).
- Replacement central unit: DXCAC051000#DE01 (with web server, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).
- Replacement central unit: DXCAC061000#DE01 (with OPC and web server, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).

External modules (replacement or upgrade modules):

- M module: DXMa M W 0 S EN 01 (with display)
- A module: DXMa AW2 0 00 01 (without display)
- N module: DXMa N W 2 0 00 01 (without display)
- R module: DXMa R W2 0 00 01 (without display)
- G module: DXMa G W2 0 00 01 (without display)
- P module: DXCa W 2 00 00 PS 00 01 (without display in large DXC housing)
- I module: DXMa I W 0 D D E 01 (with display)
- I module: DXMa I W 2 D 0 0 0 1 (without display)

Internal modules (replacement or upgrade modules):

- M module: DXMa M E3S 00 01
 A module: DXMa A E30 00 01
 P module: DXMa P03 00 00
- I module: DXMa I E 3 D 00 01
- N module: Order no. 732485, electrical set DXMaN 24 V/1A

2.4.17 Software Upgrades

The DULCOMARIN® II can be upgraded in-situ with the web server and OPC server functions. The upgrade is implemented by entry of an activation key. The activation key can be entered either manually via the keyboard into the DULCOMARIN® II or via an SD card. The SD card is supplied.

The following information is required to determine the device-specific activation key.

- 1 Serial number of the DULCOMARIN® II. This can be found under F1 HELP.
- 2 The actual identity code. This can be found under F1 HELP.
- 3 Desired upgrade.

	Order no.
DXC retrofit kit on web server, including LAN cable and instructions	1029466
DXC retrofit kit on web server + OPC server, including LAN cable and instructions	1029465
DXC retrofit kit on web server + OPC server, including instructions and OPC CD-ROM	1029467
DXC retrofit kit SoftPLC	1049734
DXC retrofit kit KNX*	1049735
DXC retrofit kit SMS_EMAIL*	1049736
DXC retrofit kit SoftPLC, KNX, SMS_EMAIL*	1049737
DXC retrofit kit SoftPLC, SMS_EMAIL*	1049738
DXC retrofit kit SoftPLC, KNX*	1049739
DXC retrofit kit KNX, SMS_EMAIL*	1049740

* Order the gateways/routers separately. Communication option 5 or 6 is always needed.

2.4.18

Diaphragm Metering Pumps with CANopen Bus Interface

- CANopen bus interface for DULCOMARIN® II
- Pump capacity 0.2-1,030 l/h
- Stroke length continuously adjustable between 0 100% (recommended 30 100%)
- Transmission of the stroke length setting from the DULCOMARIN® II
- Material designs PP, clear acrylic/PVC
- Patented coarse/fine bleed valve for PP and clear acrylic/PVC
- Self-bleeding dosing head design in PP and clear acrylic/PVC
- Connector for 2-stage level switch
- design for low voltage 12-24 V DC, 24 V AC
- 4 LED display for operation, warning and error messages
- Alarm in the event of stroke length changes of $> \pm 10\%$
- Transmission of level alarm without alarm relay via the bus

Diaphragm metering pumps are contained in Volume 1 on the following pages: Solenoid Driven Metering Pump Beta® \rightarrow 1-7, Solenoid Driven Metering Pump delta® \rightarrow 1-21.

Process metering pumps are contained in Volume 3 on the following pages: Motor Driven Metering Pump Sigma/ 1 (Basic type) → 1-7, Sigma/ 2 Basic Type (S2Ba) → 1-22, Sigma/ 3 Basic Type (S3Ba) → 1-34

P_DE_0002_SW delta®

P_SI_0129_SW Sigma/ 1 control type

2.4.19 Solenoid Driven Metering Pumps Beta®

- CANopen bus interface for DULCOMARIN® II
- Feed rate range of 0.74 32 l/h, 16 2 bar
- Stroke length continuously adjustable between 0 100 % (recommended 30 100 %)
- Transmission of the stroke length setting from the DULCOMARIN® II
- Material versions PP, clear acrylic/PVC
- Patented coarse / fine bleed valve for PP and clear acrylic/PVC
- Self-bleeding dosing head version in PP and clear acrylic/PVC
- Connection for 2-stage level switch
- Version for low voltage 12/-24 V DC, 24 V AC
- 4 LED display for operation, warning and error messages

pk_1_004_2

Measuring a

Technical Data

Pump type	Delivery rate at max. back pressure			Delivery rate at medium back pressure		Number of strokes	Connection size o Ø x i Ø	Suction lift	Shipping weight PP, NP, PV, TT	
	bar	l/h	ml/ stroke	bar	l/h	ml/ stroke	Strokes/ min	mm	mWC	kg
Beta [®]										
BT4a 1000***	10	0.74	0.07	5.0	0.82	0.08	180	6 x 4	6.0**	2.9
BT4a 1601***	16	1.10	0.10	8.0	1.40	0.13	180	6 x 4	6.0**	2.9
BT4a 1602***	16	2.10	0.19	8.0	2.50	0.24	180	6 x 4	6.0**	2.9
BT4a 1005***	10	4.40	0.41	5.0	5.00	0.46	180	8 x 5****	6.0**	3.1
BT4a 0708***	7	7.10	0.66	3.5	8.40	0.78	180	8 x 5	6.0**	3.1
BT4a 0413	4	12.30	1.14	2.0	14.20	1.31	180	8 x 5	3.0**	3.1
BT4a 0220	2	19.00	1.76	1.0	20.90	1.94	180	12 x 9	2.0**	3.3
Beta® meterin	g pump	s with se	lf-bleeding	dosing	head*					
BT4a 1601	16	0.59	0.06	8.0	0.78	0.07	180	6 x 4	1.8**	2.9
BT4a 1602	16	1.40	0.13	8.0	1.70	0.16	180	6 x 4	2.1**	2.9
BT4a 1005	10	3.60	0.33	5.0	4.00	0.37	180	8 x 5	2.7**	3.1
BT4a 0708	7	6.60	0.61	3.5	7.50	0.69	180	8 x 5	2.0**	3.1
BT4a 0413	4	10.80	1.00	2.0	12.60	1.17	180	8 x 5	2.0**	3.1
BT4a 0220	2	16.20	1.50	1.0	18.00	1.67	180	12 x 9	2.0**	3.3

- * The given performance data constitutes assured minimum values, calculated using medium water at room temperature. The bypass connection with a self-bleeding dosing head is 6x4 mm.
- ** Suction lift with a filled dosing head and filled suction line, for a self-bleeding dosing head with air in the suction line.
- *** For special applications, e.g. in the swimming pool sector, pressure-reduced pump types are available in the pressure ratings 4, 7 and 10 bar. More detailed information is available upon request.
- **** For stainless steel version 6 mm connector width.

Materials in contact with the medium

	Dosing head	Suction/discharge connector	Seals	Valve balls
PPE	Polypropylene	Polypropylene	EPDM	ceramic
PPB	Polypropylene	Polypropylene	FKM	ceramic
NPE	Clear acrylic	PVC	EPDM	ceramic
NPB	Clear acrylic	PVC	FKM	ceramic

Only the self-bleeding version in PP and NPE material versions with a valve spring made of Hastelloy C and a valve insert in PVDF. Metering diaphragm with a PTFE coating.

FKM = fluoro rubber

Repeatability of metering ± 2 % when used according to the operating instructions.

Permissible ambient temperature -10 $^{\circ}\text{C}$ to +45 $^{\circ}\text{C}$

Mean power consumption Type 1000-0220 17 W
Degree of protection: IP 65, insulation class F

Scope of supply: Metering pump with mains cable (2 m) and plug, connector kit for hose/pipe connection as per table, connecting cable CAN M12 5 pole. 1 m, T-coupler M12 5-pole CAN.

Beta® product range, Version a

BT5a Type Capacity

BT5a	Type	Capac	_											
		bar	l/h											
	1605	16	4.10											
	1008	10	6.80											
		7	11.00											
	0420	4	17.10											
	0232	2	32.00											
BT4a														
	1000	10	0.74											
		16	1.10											
	1602	16	2.10											
	1005	10	4.40											
	0708	7	7.10											
	0413	4	12.30											
	0220	2	19.00											
	00			lve mat	hawial									
		PP		opylene		pylene								
		NP		acrylic/P	VC									
		PV	PVDF/	PVDF										
		TT	PTFE/	PTFE										
		SS	Stainle	ss steel	1 4404	1 4404								
		33												
				liaphrag				DD 11						
			E		/PTFE c		,							
			В	FKM-E	3/PTFE	coated,	only for	PP and	NP					
			T	PTFE/I	PTFE co	ated, or	nly for P	V, TT ar	nd SS					
			S				•			dia con	ainina :	silicate.	FKM-B	seals for PP and NP, PTFE for TT, PV and SS
			_		end ve				9		3	,		, , , , , ,
							without	t valva a	nring on	ly for TT	ee on	d tupo (OOO NID	DD and DC
				0						•				, PP and PC
				1										P and PC
				2					ng only fo					
				3	With bl	leed, wit	th valve	spring o	only for P	P, PV, I	NP not f	or type	0232	
				4	Version	n for hia	her-visc	cosity me	edia only	for PV	Γ. type ⁻	1005. 16	05. 070	8, 1008, 0413, 0713, 0220, 0420
				9					not for ty				,	-, , ,
				٦					not for ty	pc3 100	o ana c	202		
						ulic cor	nectio	ns						
					0				according			ata		
					5	Conne	ctor for	12/6 tub	e, disch	arge sid	e only			
					9	Conne	ctor for	10/4 tub	e, disch	arge sid	e only			
						Version	n							
						0		roMiner	nt® logo					
						1		r supply						
										10 0/ E	\/e∩ ⊔-			
							A		230 V ±					
							В		115 V ±					
							U	100-23	$30 \text{ V} \pm 10$	0 %, 50/	60 Hz			
							M	12 - 24	4 V DC ±	: 10 %,	only typ	e 1000	·0220\oi	nly with 2 m connecting cable open end
							N	24 V D	C ± 10 9	%. onlv	tvpe 16	05-0232	2 \onlv w	ith 2 m connecting cable open end
							Р		C ± 10 9				,	ů i
											-			
									and plu					
								A	2 m Eu					
								В	2 m Sv	/ISS				
								С	2 m Au	stralia				
								D	2 m US	SA				
								1	2 m op	en end				
									Relay					
					1	1		1	0	No rela	21/			
					1	1		1					10 / 1	
					1	1		1	1					inge-over relay)
						1	1		3					ange-over relay)
					1	1		1	4	as 1 +	pacing	relay, (e	ach 1xC	DN)
						1			5	as 3 +	pacina	relay. (e	ach 1xC	DN)
						1	1				sories	,, (-		·
					1	1		1	1	0		cessorie		
						1			1	1				valve 2 m DVC quotion line 5 m DC materia - 11-
					1	1		1	1	['			ijection	valve, 2 m PVC suction line, 5 m PE metering line
						1			1			ol type		
					1	1		1	1		0	no loc	k	
						1	1				1	with lo	ck: manı	ual operation blocked when external cable plugged
					1	1		1	1			in		
						1			1				ol Varia	nts
						1			1			D		ANopen interface for DULCOMARIN® II
						1			1			ا		•
						1			1					ns on request
													0 0	no option

2.4.20

Multi-Channel Measuring and Control System DULCOMARIN® II, Module Combinations

Number and type of modules required for a given number of pools

Number of filtration circuits	Central unit DXCa	P module	M module	A module*	Additional N or P module (power supply unit)	Free chlorine sensor	Total chlorine sensor (optional)
1	1	1	1	1	-	1	1
2	1	1	2	2	-	2	2
3	1	1	3	3	1	3	3
4	1	1	4	4	2	4	4
5	1	1	5	5	2	5	5
6	1	1	6	6	3	6	6
7	1	1	7	7	3	7	7
8	1	1	8	8	4	8	8
9	1	1	9	9	4	9	9
10	1	1	10	10	5	10	10
11	1	1	11	11	5	11	11
12	1	1	12	12	6	12	12
13	1	1	13	13	6	13	13
14	1	1	14	14	7	14	14
15	1	1	15	15	7	15	15
16	1	1	16	16	8	16	16

No A module if metering pumps with CANopen are used.

The above modules include all CAN bus connecting elements (T-distributor and spur line).

The T-distributors can also be directly coupled.

For distributed systems, the CAN cable must be ordered by the metre with the by-the-metre connecting kit

	Order no.
CAN bulk cable connection kit*	1026589
Connecting cable - CAN, sold by the metre*	1022160

* The CAN by-the-metre connecting kit consists of a CAN coupling M12 5P and a CAN connector M12 5P and a wiring diagram.

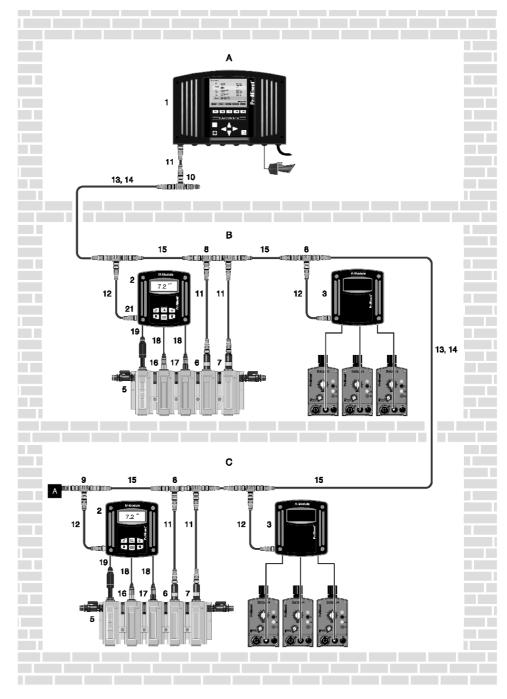
The by-the-metre connecting cable can be configured into a cable of individual length using the CAN by-the-metre connecting kit.

One CAN by-the-metre connecting kit is required for each cable to be configured.

The connecting cables CAN M12 5P 0.5 m (pump 1 m) supplied with the sensors and modules should be used for the spur lines.

If you have any questions, please contact our sales department.

Caution:


The maximum main bus length (not including stubs) should be at most 400 m.

2.4.21

Configuration Example 1

- A Pool attendant's room
- B Plant room pool 1
- C Plant room pool 2

pk_5_022_1

Attention:

It is very important that you adhere precisely to the principle of the design shown above because otherwise correct function is not guaranteed!

Measuring and control system for two potable water systems/filtration circuits consisting of the following components:

Item	Quantity	Name	Order no.
1	1	DULCOMARIN [®] II central unit DXCa W 0 0 1 0 0 P S EN 01	_
2	2	M module DXMa M W 0 S EN 01	-
3	2	A module DXMa A W 2 0 00 01	-
5	2	DULCOTEST® in-line probe housing DGMa 3 2 2 T 0 0 0	-
6	2	Chlorine sensor CTE 1-CAN-10 ppm	1023427
7	2	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
8	9	T-distributor M12 5-pole CAN	supplied
9	1	Termination resistance M12 coupling	supplied
10	1	Termination resistance M12 plug	supplied
11	5	Connection cable - CAN M12 5-way 0.5 m	supplied
12	5	Connection cable - CAN M12 5-way 0.3 m	supplied
13	-	Connecting cable - CAN, sold by the metre	1022160
14	-	CAN bulk cable connection kit	1026589
15	-	CAN M12 5-pole connection cable - length as required	-
16	2	pH sensor PHES 112 SE	150702
17	2	ORP sensor RHES-Pt-SE	150703
18	4	Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
19	4 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122

^{*} The CAN by-the-metre connecting kit consists of a CAN coupling M12 5P and a CAN connector M12 5P and a wiring diagram.

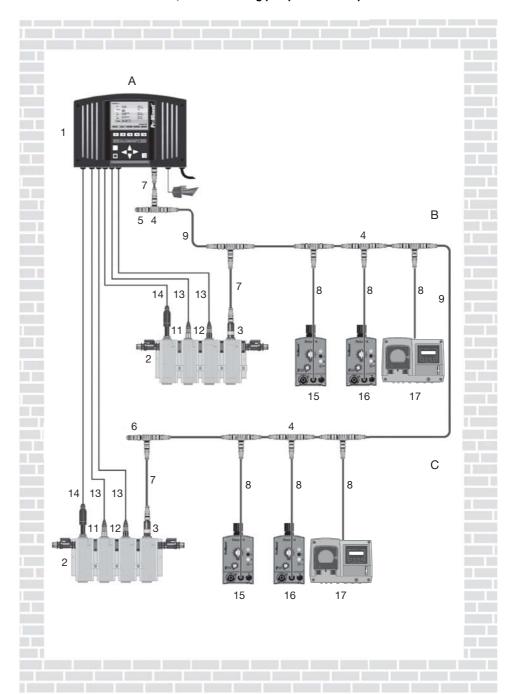
One CAN by-the-metre connecting kit is required for each cable to be configured.

The connecting cables CAN M12 5P 0.5 m (pump 1 m) supplied with the sensors and modules should be used for the spur lines.

Caution:

The maximum main bus length (not including spur lines) should be at most 400 m.

The by-the-metre connecting cable can be configured into a cable of individual length using the CAN by-the-metre connecting kit.


2.4.22

Technikraum Becken 1 Becken 2

Α

Configuration Example: 2-Pool System

Two M modules in a central unit, use of metering pumps with CANopen bus.

pk_5_022_neu

Attention:

It is very important that you adhere precisely to the principle of the design shown above because otherwise correct function is not guaranteed!

Measuring and control system for two filter circuits consisting of the following components:

Item	Quantity	Name	Order no.
1	1	DULCOMARIN®II central unit DXCa W 0 0 1 M M P S EN 01	-
2	2	DULCOTEST® in-line probe housing DGMa 3 2 2 T 0 0 0	-
3	2	Chlorine sensorCLE 3-CAN-10 ppm	1023425
4	9	T-distributor M12 5 pole CAN	included
5	1	Termination resistor M12 connector	included
6	1	Termination resistor M12 plug	included
7	5	Connection cable - CAN M12 5-pole 0.5 m	included
8	6	Connection cable - CAN M12 5-pole 0.3 m	included
9	-	Connecting cable - CAN M12 5-pin 10 m	1046383
11	2	pH sensor PHES 112 SE	150702
12	2	ORP sensor RHES-Pt-SE	150703
13	4	Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
14	4 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122
15	2	Beta®/ 4 CANopen for pH correction BT4A0402PVT290UA000D00**	-
16	2	Beta®/ 4 CANopen for disinfectant BT4A0402PVT290UA000D00**	-
17	2	DF4a CAN for flocculant DF4aFW004015P9UA00001D10	-

 $^{^{\}star}\,$ Up to 3 can be coupled from the connecting cable CAN M 12 5-pin 10 m.

Caution:

Do not allow the maximum main bus length (without branch cables) to exceed 400 m.

^{**} Suggested configuration

2.4.23 Accessories for the DULCOMARIN® II Measuring and Control System

CLE 3-CAN-10 ppm	1023425
CLE 3.1-CAN-10 ppm	1023426
CTE 1-CAN-10 ppm	1023427
BRE 3-CAN-10 ppm	1029660
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 coupling	1022154
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5 pole 0.3 m	1024568
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383
Connecting cable - CAN, sold by the metre	1022160
CAN bulk cable connection kit	1026589
PHES 112 SE	150702
RHES-Pt-SE	150703
Cable combination coaxial 0.8 m - SN6 - pre-assembled	1024105
Cable combination coaxial 2 m - SN6 - pre-assembled	1024106
Cable combination coaxial 5 m - SN6 - pre-assembled	1024107
Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122
Connecting cable LAN M12 - RJ45 5.0 m	1026715
Cross-over patch cable 2x RJ45 connector 5 m	1027859
LAN coupling 2x RJ45 socket 1:1	1027860
USB 2.0 SD card reader	732981
SD memory card/DXC measuring data archiving	1027470
Isolating amplifier 4-channel for mA outputs of the A module	1033536

^{*} Up to 3 cables, each 10 m, can be coupled

The CAN bulk cable connection kit comprises a 5-pin M12 CAN coupling and a 5-pin M12 CAN plug and a wiring diagram.

The CAN bulk cable connection kit can be used to configure the connecting cable to form a cable of any required length.

One CAN bulk cable connection kit is required for each cable to be assembled.

The 0.5 m (1 m pump) 5-pin M 12 CAN connecting cables supplied with the sensors and modules have to be used as branch cables.

Caution:

Do not allow the maximum main bus length (excluding branch cables) to exceed 400 m!

Sensor selection table (swimming pool)

Sensor	Measurement task				
	Free chlorine for a small percentage of combined chlorine. Calibration method DPD 1	Free chlorine for a large percentage of combined chlorine. Calibration method DPD 1	Combined chlorine and free chlorine (differential chlorine measurement) Calibration method DPD 1+3	Total available chlorine (e.g. trichlorinated isocyanuric acid) Calibration method DPD 1	Bromine BCDMH, DBDMH Calibration method DPD1 or DPD1+3
CLE3-CAN-10 ppm (Order no.: 1023425)	X				
CLE3.1-CAN-10 ppm (Order no.: 1023426)		X	X		
CTE1-CAN-10 ppm * (Order no.: 1023427)			X		
CGE2-CAN-10 ppm (Order no.: 1024420)				Х	
BRE3-CAN-10 ppm (Order no. 1029660)					X

* the CTE1-CAN-10 ppm sensor only works together with the CLE3.1-CAN-10 ppm sensor

DXCa-Carteway

P_MSRZ_0014_SW

PROFIBUS®-DP V1 gateway

The CANopen - PROFIBUS®-DP V1 gateway is an interface based on CANopen, which connects the DULCOMARIN® II swimming pool controller or disinfection controller to a PROFIBUS® DP network. Here the DULCOMARIN® II is configured as the slave and the PLC is the master. Data traffic can be cyclic or acyclic. The measured values are transmitted cyclically. Setpoints can be changed, the system can be set to pause control and Eco!Mode operation can be activated in acyclic traffic. The corresponding GSD file can be loaded from the ProMinent homepage and is also contained on the enclosed data carrier.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the CAN bus in the same way as other modules. The DULCOMARIN® II Controller must have software version 3022 or greater. No specific identity code is needed.

A separate 24 VDC power supply is required.

Voltage supply24 V DCTypical power consumption approx.500 mAMax. number of measured values116Weight250 g

Dimensions L x W x H (mm) 117.2 x 45 x 113.5 mm

RoHS (Restriction of Hazardous Substances)

CE conformity

Yes

Enclosure rating

IP 20

Order no.

CANopen - PROFIBUS®-DP V1 gateway complete 1044462

Modbus RTU gateway

The CANopen - Modbus RTU gateway is an interface based on CANopen, which connects the DULCOMARIN® II swimming pool controller or disinfection controller to a Modbus RTU network. Here the DULCOMARIN® II is configured as the slave and the PLC is the master. Data traffic can be cyclic or acyclic. The measured values are transmitted cyclically. Setpoints can be changed, the system can be set to pause control and Eco!Mode operation can be activated in acyclic traffic. The corresponding description table can be found in the operating instructions. It can be downloaded from the ProMinent homepage and is also contained on the enclosed data carrier.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the CAN bus in the same way as other modules. No specific identity code is needed.

A separate 24 VDC power supply is required.

Dimensions L x W x H (mm) 117.2 x 45 x 113.5 mm

RoHS (Restriction of Hazardous Substances)

CE conformity

Yes

Enclosure rating

IP 20

Order n	ο.
---------	----

Gateway CANopen - Modbus RTU	1047247

P_MSRZ_0014_SW

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Ethernet KNX gateway

The Ethernet – KNX gateway is an Ethernet based interface that connects the DULCOMARIN® II swimming pool controller or disinfection controller to a KNX building control system. It can transmit the measured values and status messages from up to 2 systems/pools. No feedback effect from the KNX network is possible.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the LAN/ Ethernet connector of the DXCa. The DXCa needs to have communication option 5 = web server or 8 = web server + OPC server for this.

A separate 24 VDC power supply is required.

Voltage supply 12 – 24 V DC
Typical power consumption approx. 500 mA

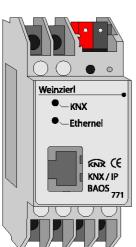
Max. number of measured values (max. 2-pool system) 20

Weight 100 g

Dimensions L x W x H (mm) 117.2 x 60 x 113.5 mm

RoHS (Restriction of Hazardous Substances)

CE conformity


Yes

Enclosure rating

IP 20

Order no.

Gateway Ethernet-KNX 1047326

P MSRZ 0017 SW1

ER75i mobile phone router (GSM/GPRS/EDGE)

Important for operation of the mobile communications router:

- The products do not include a mobile communications data contract, which has to be concluded separately with a mobile communications provider.
- Please check in advance the network coverage of your mobile communications provider
- Make sure that the installation can be installed in a place whether the received signal has sufficient strength and there is also a power supply

You can connect to your DULCOMARIN® II Disinfection Controller using the mobile phone router ER75i irrespective of the separation.

Mobile Ethernet makes it possible to use the available infrastructure for location-independent Ethernet communication.

In addition to GSM and GPRS, EDGE technology can also be used for data transfer. Stable and permanent connections are monitored and maintained through continuous control. An integrated DHCP server makes possible simple installation and fast Internet access. The ideal device for alarm signalling, remote control and remote service.

The mobile phone router ER75i is specially configured for the DULCOMARIN® II / Disinfection Controller. The DULCOMARIN® II Disinfection Controller must have at least communications option 5 = web server. This DXCa option does not include the mobile phone router.

Scope of supply: Router, CD, patch cable, magnetic foot aerial, plug-in power pack.

GPRS/EDGE (class 10) mobile phone router for industrial applications (max. download 236 Kbit/s, max. upload 118.4 Kbit/s)

Single web-interface, DHCP, DynDNS, VRRP, NTP, dial-in router control via SMS

Data volume / roaming control via SMS Status Information via SNMP and SMS

LED status display

Frequency bands: 850/900/1800/1900 MHz

Dimensions: 30 x 90 x 102 mm, plastic housing, also for wall mounting

Weight: 190 g (without aerial and plug-in power pack)

Degree of protection: IP 44, for use in dry rooms or offices

Order no.

GSM/GPRS/EDGE mobile phone router ER75i 1047329

P_MSRZ_0018_SW1

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

P_MSRZ_0019_SW1

UR5i mobile phone router (UMTS/HSPA+)

You can connect to your DULCOMARIN® II Disinfection Controller using the mobile phone router UR5i via UMTS/HSPA+ irrespective of the separation.

Mobile Ethernet makes it possible to use the available infrastructure for location-independent Ethernet communication.

UMTS/HSPA+ technology can be used for data transfer. Stable and permanent connections are monitored and maintained through continuous control. An integrated DHCP server makes possible simple installation and fast Internet access. The ideal device for alarm signalling, remote control and remote service.

With WLAN access. The WLAN access has no bridge function for connection of another WLAN network.

The mobile phone router is specially configured for the DULCOMARIN® II / Disinfection Controller.

The DULCOMARIN® II Disinfection Controller must have at least communications option 4 = alarm signalling via SMS / email, or greater. This DXCa option does not include the mobile phone router.

Scope of supply: Router, CD, patch cable, magnetic foot aerial, plug-in power pack. Degree of protection: IP 44, for use in dry rooms or offices.

UMTS/HSPA+ Tri-Band (max. download 14.4 Mbit/s, max. upload 5.7 Mbit/s)

WLAN supported NAT/PAT and X.509

Integrated firewall (SPI)

Single web-interface, DHCP, DynDNS, VRRP, dial-in router control via SMS

Data volume / roaming control via SMS

Status information via SNMP and SMS

Extensive mobile connection statistics options

LED status display

Frequency bands: GSM/GPRS/EDGE: 850/900/1800/1900 MHz

UMTS: 850/900/1900/2100 MHz

External GSM aerial: SMA - 50Ω **Power supply:** $10 \dots 30 \text{ V DC}$ **Working temperature range:** $-30 \text{ °C} \dots +60 \text{ °C}$

Dimensions: 50 x 84 x 117 mm, DIN top hat rail 35 mm

Weight: 207 g

Degree of protection: IP 44

Order no.

UMTS/HSPA+ mobile phone router UR5i v2F 1047330

Important for operation of the mobile communications router:

- The products do not include a mobile communications data contract, which has to be concluded separately with a mobile communications provider.
- Please check in advance the network coverage of your mobile communications provider
- Make sure that the installation can be installed in a place whether the received signal has sufficient strength and there is also a power supply

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Sensor for Free Chlorine CLE 3-CAN

253

Standard sensor for measuring free chlorine in clear water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Operation on the CAN-bus with all the associated benefits

Measured variable Free chlorine (hypochlorous acid HOCI)

Reference method 5.5 ... 8.0 pH range 5 ... 45 °C **Temperature** Max. pressure 1.0 bar

Intake flow 30...60 l/h (in the DGM or DLG III) Supply voltage Via CAN interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated Selectivity Free chlorine as against combined chlorine, even if there is not an

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Amperometric, 2 electrodes, diaphragm-covered Measuring principle,

technology

Measuring range

Order no.

CLE 3-CAN-10 ppm	0.0110.0 mg/l	1023425

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

pk_6_096

Sensor for Free Chlorine CLE 3.1-CAN

253

Ø 25

pk_6_096

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no cross sensitivity to combined chlorine (chloramines) even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Operation on the CAN-bus with all the associated benefits

Measured variable Free chlorine (hypochlorous acid HOCI) with large proportions of

bound chlorine; to detect bound chlorine using DULCOMARIN® II and

Sensor for Total Chlorine type CTE 1-CAN

Reference method pH range 5.5 ... 8.0 5 ... 45 °C **Temperature** Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGMa or DLG III) Supply voltage Via CAN interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Free chlorine Selectivity

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm. Disinfectants

with organic chlorine, e.g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM. DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications Potable water with higher volumes of combined chlorineSwimming

pools, To determine the combined chlorine from the difference: Total chlorine minus free chlorine in the controller DULCOMARIN® II

Resistance to Salts, acids, alkalis, Not surfactants

Measuring principle, Amperometric, 2 electrodes, diaphragm-covered

technology

Measuring range Order no.

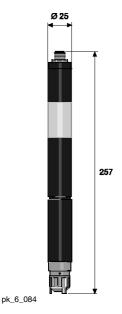
CLE 3.1-CAN-10 ppm 0.01...10.0 mg/l 1023426

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Sensor for Total Chlorine CTE 1-CAN



Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl-), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® II swimming pool controller)

Measured variableTotal chlorineReference methodDPD4pH range5.5 ... 9.5

(up to pH 8.5 with D1C pH correction)

Temperature $5 \dots 45 \,^{\circ}$ CMax. pressure $3.0 \, \text{bar}$

Intake flow 30...60 l/h (in DGMa or DLG III)
Supply voltage Via CAN interface (11 - 30 V)

 Output signal
 Uncalibrated, temperature-compensated, electrically isolated

 Selectivity
 Not selective, cross-sensitive towards many oxidation agents

 Disinfection process
 Chlorine gas, hypochlorite, electrolysis with diaphragm,

Monochloramine

Bypass: open sample water outlet

Installation Bypass: open sample w

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications CTE 1-mA-0.5 ppm: Potable water; CTE 1-mA-2/5/10 ppm: Potable,

industrial, process, waste water. In swimming pools combined with

CLE 3.1 to detect combined chlorine

Resistance to Surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

CTE

	Measuring range	Order no.
1-CAN-10 ppm	0.0110.0 mg/l	1023427

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Measuring a

Sensor for Total Available Chlorine CGE 2-CAN

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid when used in swimming pools. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Measured variable Total available chlorine: Total of organic combined chlorine (e.g. bound

to cyanuric acid) and free chlorine

 Reference method
 DPD1

 pH range
 5.5 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 3.0 bar

Intake flow 30...60 l/h (in the DGM or DLG III)

Supply voltage Via CAN interface (11 – 30 V DC)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Selectivity Only limited against combined chlorine (chloramines)

Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

Typical applications Swimming pool water, Disinfection processes with chloro(iso)cyanuric

acid derivatives

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

 Measuring range
 Order no.

 CGE 2-CAN-10 ppm
 0.01...10.0 mg/l
 1024420

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for Total Available Bromine BRE 3-CAN

Ø 25

pk_6_084

257

Sensor for free and combined bromine, also for use with slightly contaminated water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available bromine from BCDMH and other oxidative-acting bromine organic disinfectants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Use with high pH values by optimisation of the electrolyte diaphragm system
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® II swimming pool controller)

Total available bromine

Measured variable Reference method pH dependence

For DBDMH, free bromine: DPD1.For BCDMH: DPD4

If the pH changes from pH 7 to pH 8, the sensor sensitivity is reduced a) in the case of DBDMH and free bromine by approx. 10 %

b) in the case of BCDMH by approx. 25 %

Temperature 5 ... 45 °C Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage Via CAN interface (11 – 30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated Selectivity Not selective, cross-sensitive towards many oxidation agents **Disinfection process** DBDMH (1,3-dibromo-5,5-dimethyl-hydantoin), BCDMH (1-bromo-3-

chloro-5,5-dimethyl-hydantoin), Free bromine (HOBr, OBr)

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control equipment

DULCOMARIN® II

Typical applications Swimming pools/whirlpools and cooling water; can also be used in sea

water

Resistance to Surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
BRE 3-CAN-10 ppm	0.0210.0 mg/l	1029660

Note: a mounting kit (order no. 815079) is required for initial fitting of the bromine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-113

Chlorine Dioxide Sensor CDR 1-CAN

Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross sensitivity to free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

P_DT_0071_SW1

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Reference methodDPD1pH range1.0 ... 10.0Cross sensibilityOzoneTemperature5 ... 45 °CMax. pressure1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)
Supply voltage Via CAN interface (11-30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Response time sensor t_{90} ~ 3 min.

SelectivityChlorite, chlorate, free chlorineInstallationBypass: open sample water outlet

Sensor fitting DGMa/DLGIII

Measuring and control

equipment

DULCOMARIN® II

Typical applications Contaminated industrial, process water, containing surfactants,

cooling water, irrigation water, slightly contaminated waste water,

warm water

Resistance to Surfactants, water-soluble pollutants, solids/dirt, biofilms

Amperometric 2 electrodes, membrane severed

Measuring principle,

technology

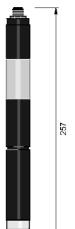
Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.	
CDR 1-CAN-10 ppm	0.0110.0 mg/l	1041155	

 Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Chlorite Sensor CLT 1-CAN


Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For use on controllers with **CAN-bus** connection

Your benefits

Measured variable

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

P DT 0070 SW1

Chlorite anion (ClO₂-)

Reference method DPD method, chlorite together with chlorine dioxide

pH range 6.5 ... 9.5 Cross sensibility Ozone **Temperature** 1 ... 40 °C 10 har Max. pressure

30...60 l/h (in DGM or DLG III) Intake flow Supply voltage Via CAN interface (11-30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Response time sensor

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

equipment

DULCOMARIN® II

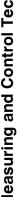
Monitoring of potable water or similar water treated with chlorine **Typical applications**

dioxide. Selective measurement of chlorite and chlorine dioxide,

chlorine and chlorate is also possible.

Resistance to Surfactants

Measuring principle,


technology

Amperometric, 2 electrodes, membrane-covered

Measuring range Order no.

CLT 1-CAN-2 ppm 0.05...2.00 mg/l 1041156

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.1.2015 Product Catalogue 2015

2.4.24 Technical Data for the DULCOMARIN® II Multi-Channel Measuring and **Control System**

Measuring range pH -1...15

ORP: -1,200 ... +1,200 mV

Chlorine, free 0.01...10 ppm/100 ppm Chlorine, total 0.01...10 ppm Chlorine, combined 0.01... 2.00 ppm

Bromine: 0.01...10 ppm Chlorine dioxide: 0.01...10 ppm Chlorite anion: 0.10...2 ppm

-20 ... 150 °C **Temperature**

Pt 100 or Pt 1000

Resolution 0.01 pH / 1 mV / 0.01 ppm / 0.1 °C

0.5% of the final value of the measuring range (at 25 °C) Accuracy

ph and ORP via terminal mV Measurement input Chlorine via CANopen bus

Control characteristic P/PI/PID control, intelligent control

Control Acid and/or alkali and chlorine (2 control circuits), temperature **Digital inputs** 5 potential-free inputs (sample water, pause, 3 pump failures, 2nd

Signal current output $4 \times 0/4$ -20 mA max. load 600 Ω range adjustable. **An isolating**

amplifier, e.g. order no. 1033536, is required for connection to

units which are not electrically isolated!

3 reed contacts for acid, alkali or flocculants and chlorine (pulse **Control outputs**

frequency to control metering pumps)

3 relays (pulse length) contact type changeover to control solenoid

valves or peristaltic pumps

LAN, SD-expansion slot

Alarm relay 250 V ~3 A, 700 VA contact type, changeover

Electrical connection 100...240 V~. 50/60 Hz Permissible ambient temperature -5...45 °C

Storage temp. -10...70 °C **Enclosure rating IP 65**

Interfaces

Climate Permissible relative humidity: 95% non-condensing

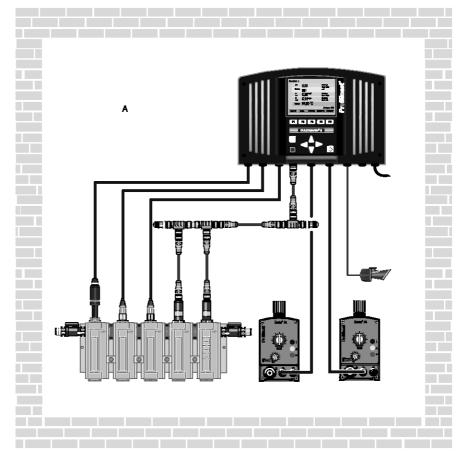
DIN IFC 60068-2-30

Dimensions H x W x D 227 x 342 x 78 mm

Compliance of all devices with CANopen specifications:

On the hardware side, all devices comply with the harmonised CAN specification 2.0 (ISO99-1, ISO99-2). This includes the CAN protocol (ISO 11898-1) and details on the physical layer in compliance with ISO 11898-2 (high speed CAN up to 1 Mbit/sec) and ISO 11898-3 (low speed CAN up to 125 kBit/sec). The unit complies with the CAN-Open specification CIA-DS401 that forms the basis of the European standard EN50325-4 and also complies with the controller device profile CiA-404.

2.4.25


Application Examples: Treatment of Swimming Pool Water in Public Baths

A public swimming pool with measurement of free and combined chlorine

Tasks and applications

The pool water of a frequently-used indoor swimming pool in a hotel is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as the disinfectant. The disinfectant is to be regulated on the basis of the concentration of chlorine. The filters and pool are older, which is why the percentage of combined chlorine has to be continuously measured for safety reasons (regular calibration with a DPD 1+3 measuring unit is necessary). Document all measured values with a recorder.

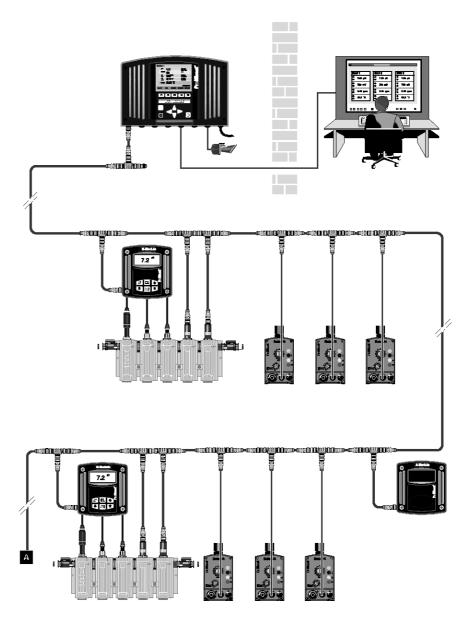
A Plant room

pk_5_020_1_SW3

Components of the measuring/control station

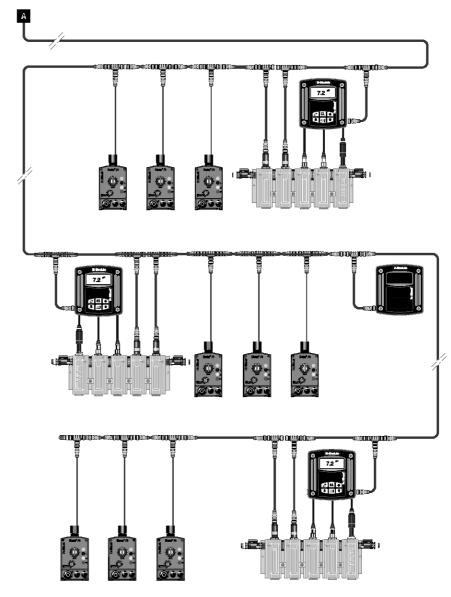
Name	See page	Order no.
DULCOMARIN® II central unit with measuring and control modules and integral screen writer	→ 2-49	DXCaW001MA PSEN01
Chlorine sensor CLE 3.1-CAN-10 ppm	→ 1-55	1023426
Chlorine sensor CTE 1-CAN-10 ppm	→ 1-66	1023427
Cable combination coaxial 2 m - SN6 - pre- assembled	→ 2-71	1024106
pH sensor PHEP 112 SE	→ 1-13	150041
ORP sensor RHES-Pt-SE	→ 1-33	150703
Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	→ 1-115	725122
Bypass fitting DGMa with sample water limit contact	→ 1-120	DGMa322T000
	DULCOMARIN® II central unit with measuring and control modules and integral screen writer Chlorine sensor CLE 3.1-CAN-10 ppm Chlorine sensor CTE 1-CAN-10 ppm Cable combination coaxial 2 m - SN6 - pre-assembled pH sensor PHEP 112 SE ORP sensor RHES-Pt-SE Signal cable, sold by the metre 2 x 0.25 mm² Ø 4 mm	DULCOMARIN® II central unit with measuring and control modules and integral screen writer Chlorine sensor CLE 3.1-CAN-10 ppm → 1-55 Chlorine sensor CTE 1-CAN-10 ppm → 1-66 Cable combination coaxial 2 m - SN6 - preassembled pH sensor PHEP 112 SE → 1-13 ORP sensor RHES-Pt-SE → 1-33 Signal cable, sold by the metre 2 x 0.25 mm² \oslash 4 mm → 1-115

All cables, T-pieces and termination resistors needed to connect the sensors are supplied.


Benefits

- The integral data logger and screen writer document the hygiene parameters required by law
- Continuous measurement of the bound chlorine provides information about the water quality
- The measuring and control system can be subsequently extended, for instance if a whirlpool is planned

Public swimming pool with several pools


Tasks and applications

The pool water in 5 filtration circuits in a frequently-used leisure and adventure pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as the disinfectant. The disinfectant is to be regulated on the basis of the concentration of chlorine. Owing to the fact that the pool is heavily used, the percentage of combined chlorine is to be continuously measured for safety reasons (regular calibration with a DPD 1+3 measuring unit is necessary). Document all measured values with a recorder and transmit the measured values via OPC for process visualisation on the control panel. Metering pumps with a CAN bus connector are used. The filtration circuits each lie 50 m apart from each other.

pk_5_050

pk_5_051

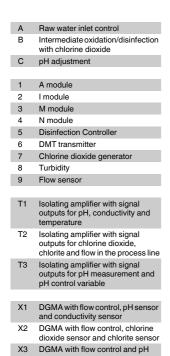
Components of the measuring/control station

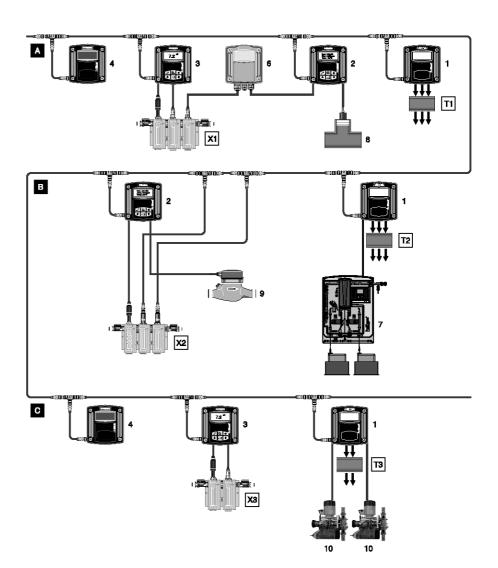
Quantity	Name	See page	Order no.
1	DULCOMARIN® II central unit with screen writer, LAN connector and web+OPC server	→ 2-49	DXCaW06100 PSEN01
5	DXMa measuring module, measurement and control of pH, ORP, free and bound chlorine and temperature	→ 2-57	DXMAMW0SE N01
5	Chlorine sensor CLE 3.1-CAN-10 ppm	→ 1-55	1023426
5	Chlorine sensor CTE 1-CAN-10 ppm	→ 1-66	1023427
10	Cable combination coaxial 2 m - SN6 - pre- assembled	→ 2-71	1024106
5	pH sensor PHEP 112 SE	→ 1-13	150041
5	ORP sensor RHES-Pt-SE	→ 1-33	150703
10 m	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	→ 1-115	725122
5	Bypass fitting DGMa with sample water limit contact	→ 1 - 120	DGMa322T000
2	Power supply modules DXMaN	→ 2-57	DXMANW3000 01
300 m	Connecting cable - CAN, sold by the metre	→ 2-71	1022160
5	CAN bulk cable connection kit	→ 2-71	1026589

All cables, T-pieces and termination resistors needed to connect the sensors are supplied.

Benefits

- All hygiene parameters in the five filtration circuits, together with all key parameters, such as air conditioning or heating parameters in the building management system, can be displayed by the PLC server
- Monitoring of all measured values and control parameters from one central location, such as the pool plant room
- The integral data logger and screen writer document the hygiene parameters required by law

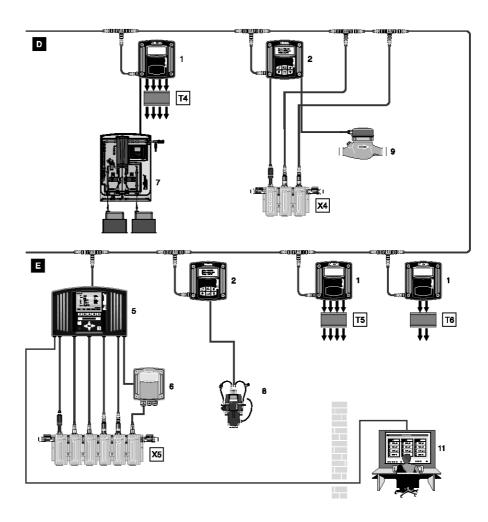

2.4.26


Application Example: Measurement of Key Chemical Water Parameters at Various Points in the Treatment of Drinking Water

Tasks and applications

Measuring and control stations are needed at the following points in the treatment cycle and in the control room in the treatment of potable water in a water works:

- Assessment of the raw water at the inlet of the water works: pH, electrolytic conductivity, turbidity
- Intermediate oxidation/disinfection of the raw water with chlorine dioxide by combined flow- and variable-dependent control
- Control of the pH value on the basis of variable-dependent metering of lime milk
- Disinfection of the treated water to protect the distribution system network by the flow-proportional metering of chlorine dioxide
- Measuring stations for final inspection of the treated water: pH, electrolytic conductivity, turbidity, chlorine dioxide and chlorite and ORP



AP_PTW_0003_1_SW3

D	CIO ₂ disinfection
Е	Final inspection
1	A module
2	I module
3	M module
4	N module
5	Disinfection Controller
6	DMT transmitter
7	Chlorine dioxide generator
8	Turbidity
9	Flow sensor
T4	Isolating amplifier with signal outputs for chlorine dioxide
	measurement, control variable,
	chlorite, flow
T5	Isolating amplifier with signal
	outputs for pH, ORP, chlorine dioxide and chlorite
T6	
10	Isolating amplifier with signal outputs for turbidity and
	conductivity
X4	DGMA with flow control, chlorine
	dioxide sensor and chlorite sensor
X5	DGMA with flow control, pH, ORP, chlorine dioxide, chlorite and
	conductivity sensors
	,
11	Control panel (OPC server)
	, , ,

AP_PTW_0003_2_SW3

The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.2 ppm
- Raw water: surface water with a pH of 7.0-7.5 and a temperature of 5 °C-17 °C
- Installation of the measuring stations in the bypass of the process flow
- Distributed system at a distance of 300 m with bidirectional communication between
 - a The central unit located in the plant monitoring room at the outlet of the water works and used to display, register and transmit all measured values and actuating variables to the control panel via the OPC server. Optionally all measured values can be transmitted via 4-20 mA signals to the control panel
 - **b** Modular measuring and control units located adjacent to the relevant bypass installation to connect the sensors, display the measured value, calibrate the measuring station and transmit the measured value to the central unit and via an electrically isolated 4-20 mA signal to the control panel.
- Alarm signalling the infringement of preset upper and lower limit values and ingress of the sample water flow

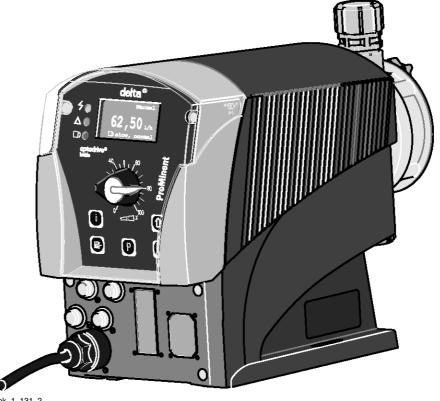
Components of the measuring/control station

Quantity Name See page Order no.

Measurin	g and control units		
1	DULCOMARIN® II multi-channel measuring and control system for the treatment of potable water	→ 2-38	DXCA WD61MINDEN01
2	M module	→ 2-54	DXMA MW0DEN01
6	A module	→ 2-56	DXMa AW0DEN01
3	I module	→ 2-55	DXMa IW0DEN01
3	N module	→ 2-57	DXMa NW200001
6	Isolating amplifier 4-channel for mA outputs of the A module	→ 2-71	1033536
Sensors			
3	pH sensor PHEP 112 SE	→ 1-13	150041
1	RHEP-Pt-SE	→ 1-35	150094
3	CDR 1-CAN-10 ppm	→ 1-74	1041155
2	Conductivity LFT 1 DE	→ 1-97	1001376
2	Turbidity	-	External unit with 4-20 mA signal
2	CLT 1-CAN-2 ppm	→ 1-76	1041156
Connecti	ng cable		
300 m	Connecting cable - CAN, sold by the metre	→ 2-71	1022160
5	CAN bulk cable connection kit	→ 2-71	1026589
5	Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	→ 1-115	725122
4	Cable combination coaxial 2 m - SN6 - pre-assembled	→ 2-71	1024106
2	Measuring line type LKT for conductivity sensors Ø 6.2 mm	→ 1-114	1046024
Fitting			
1	Bypass fitting DGMA	→ 1-120	DGMA 320T000
2	Bypass fitting DGMA	→ 1-120	DGMA 302T000
1	Bypass fitting DGMA	→ 1-120	DGMA 332T000
1	Bypass fitting DGMA	→ 1-120	DGMA 301T000

Benefits

- Cost-savings due to distributed system with only one central unit
- Cost-savings and enhanced cabling safety by means of a BUS system
- Improved process safety by the permanent and reliable availability of digital measured data and operating statuses, as well as automated process management and alarm signalling by bidirectional BUS intercommunication of all measuring and control units and communication to the higher-order control system via the OPC server
- Excellent data transparency at field level by the registration, display and traceability of all relevant measured and operating data in the central unit



2.5 Controller with Integral Metering Pump

2.5.1

Controller with Integral Metering Pump

You can find the Solenoid Driven Metering Pump delta $^{\! @}$ with controller module in Volume 1, see page \rightarrow 1-21

pk_1_131_2 delta®

2.6 DULCOMETER® Transmitters

2.6.1

DULCOMETER® Transmitter DMTa

The compact 2-wire transmitter - the link to the PLC and DULCOMETER®.

The transmitter DULCOMETER® DMTa converts the sensor signals for pH, ORP value, chlorine concentration and conductivity into an interference-insensitive 4-20 mA analogue signal. Flexible, safe and always the optimum resolution of measured value.

2600 ps

30,0

pk_5_001

The 2-wire transmitter DMTa converts the following sensor signals into an interference-insensitive 4-20 mA analogue signal: pH, ORP, temperature, chlorine and conductivity.

It is fed via the 2-wire analogue input of a PLC or via a 2-wire analogue input of a ProMinent controller. The 4-20 mA analogue current proportional to the measured value is transmitted via the same two lines.

The DMTa offers an on-site calibration option of the sensor and galvanic separation between the sensor input and measured value output.

Your benefits

- Flexibility in the choice of measured variable with pH, ORP and temperature
- Excellent operational safety, thanks to sensor monitoring (pH)
- Galvanic isolation between the sensor and supply
- Always the optimum measured value resolution by auto-ranging with conductivity measurement
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Various installation options: wall-mounted, installation on an upright or in a control cabinet

Technical details

Measuring ranges:

■ pH: - 1.00 / 15.00

ORP: -1,200 ... +1,200 mV

■ Chlorine: 0.01 ... 50.0 mg/l

■ Temperature: -20 ... +150 °C

Conductivity: 1 μS/cm ... 200 mS/cm (auto-ranging), depending on the cell constant

Cell constant k: 0.006...12.0 cm⁻¹

Dissolution:

- pH: 0.01
- ORP: 1 mV
- Chlorine: 0.01 ppm/0.1 ppm, depending on the measuring range
- Temperature: 0.1 °C
- \blacksquare Conductivity: 0.001 $\mu\text{S/cm},$ 0.01 $\mu\text{S/cm},$ 1 $\mu\text{S/cm},$ 1 mS/cm, depending on the measuring range

Measuring accuracy: 0.5 % of the full-scale reading

Measuring inputs:

- mV terminal (pH, ORP); input resistance > $0.5 \times 10^{12} \Omega$
- Chlorine terminal (DMT chlorine probes)
- Pt 100/Pt 1000 terminal
- Conductivity terminal (2 or 4-line connection)

Correction variable: Temperature via Pt 100/Pt 1000 (pH, chlorine, conductivity) **Correction range:** Chlorine: 5 ... 45 °C, pH: 0 ... 100 °C, conductivity: 0 ... 100 °C

Current loop: 4...20 mA

Current in the event of an error: 23 mA

Feed voltage: 2-wire transmitter, 16... 35 V DC, nominal 24 V, PROFIBUS®- DP design, 16... 30 V DC,

24 V nominal

Communication interface: PROFIBUS®-DP (wall-mounted only)

Permissible ambient temperature: 0...55 °C

Climate: Relative humidity up to 95% (non-condensing)

Degree of protection: IP 65 (wall-mounted, pipe installation), IP 54 (installation in a control cabinet)

Display: Graphic display **Housing material:** PPE

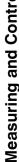
Dimensions: W x H x D 135 x 125 x 75 mm

Weight: 0.45 kg

DULCOMETER® Transmitters 2.6

Area of application

Measuring technology in water treatment in the following sectors:


- Processes and process technology
- Food and beverage industry
- Chemical industry
- Pharmaceuticals
- Waste water treatment
- Power station technology

A complete measuring station comprises the following:

- DMTa measuring transducer (see Identity code)
- In-line probe fitting: DGMa..., DLG III ..., immersible in-line probe fitting
- Chlorine sensor (dependent on Identity code)
- Assembly set for chlorine sensor
- pH sensor (dependent on Identity code)
- ORP sensor (dependent on Identity code)
- Temperature sensor Pt 100 /Pt 1000 (dependent on Identity code)
- Conductivity sensor
- Sensor cable
- PROFIBUS® DP connection accessories

(For further information: Immersion Sensor Fittings see p. → 1-122; Sensors for Chlorine see p. → 1-49; pH Sensors With SN6 or Vario Pin Plug-in Head see p. → 1-10; ORP Sensors with Fixed Cable see p. → 1-43; Temperature Sensors see p. → 1-46; Conductivity Sensors see p. \rightarrow 1-85; Sensor Accessories see p. → 1-113;

Metering Monitor, Signal Cable see Volume 1 p. → 1-76)

2.6 DULCOMETER® Transmitters

2.6.2

Identity Code Ordering System for Transmitter DMTa

DULCOMETER® Transmitters

DMT	Series												
	Α	Versio	n										
		Install	ation	on									
		W	Wall m	ounted	(also pil	lar mour	nted)						
		s	Contro	l panel	installati	on ¹⁾	,						
			Versio	•									
			0	With ProMinent® logo									
				Power supply 9 Current loop 4-20 mA (two wire technology), operating voltage 1640 V DC, nominal 24 V DC (only if communicat							16 40 V DC nominal 24 V DC (only if communication point		
				٥	= none)								To+0 V BO, Horristal 24 V BO (only it communication point
				5	PROFIBUS® DP, operating voltage 1630 V DC, nominal 24 V DC (only if communication interface = PROFIBUS® I								
					Comm	unicati	on inte	rfaces					
					Communication interfaces 0 None								
					4		IBUS® F)P (asse	mbly ty	pe W on	lv)		
					'		ired vai			po o	,		
						P	lpH	iable i					
						R	ORP						
						T	Tempe	rature					
						Ċ	Chlorin						
						ľ	Condu						
						-		-	riabla 2	(Carra)	tion w	ariable)	
							1			Pt 1000/F		ariable)	
							o					d variable	o T\
							U				easure	u variabii	e i)
									sure rat				
							0 Standard						
							Language						
									D E	germai			
									F	english	ı		
										french	_		
									S	spanis	n		
									I	italian			
											ting A,	probe	
										0			Minent® buffer solution pH 4-7-10
										D			I 19266 pH 4-7-9
										٧			recognition
												tting B,	
											0		. temperature measurement (standard)
											1		Il temperature measurement
											2		./manual temperature measurement
							9 No temperature measurement			•			
								Presetting C, output		tting C, output			
												0	Prop. measured variable (standard)
												1	Manual adjustable current value
												2	Proportional or manual
												3	Proportional or manual hold
												4	4 mA constant current

The last four figures in the identity code represent the software defaults, e.g. cell constants for conductivity, temperature compensation, etc.

0 = standard parameters

The measuring transducer can be factory-set. The defaults can be easily changed in the operating menu.

Note:

¹ The rear housing part is omitted for control panel mounting.

2.6 DULCOMETER® Transmitters

2.6.3

Application Example: Measurement of Free Chlorine with Connection to a PLC

Tasks and applications

In the treatment of drinking water in a water works with a PLC as the higher-order control system, simple measuring stations are needed to measure the disinfectant "free chlorine" at the outlet of the water works and thereafter to monitor protection of the network in the distribution system. Metering is proportional to the flow and is controlled by the PLC. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.1 ppm
- Raw water: groundwater with a pH of 7.5 and a temperature of 8-13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of the measurement result and calibration by a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the PLC via an electrically isolated 4-20 mA signal
- Power supply to the measuring instrument via the PLC (two wire instrument)

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	Transmitter DMTa	→ 2-91	DMTa
			W090C00E0000
1	Sensor for free chlorine CLE 3-DMT-5 ppm	→ 1-53	1005511
1	5-core universal cable, 5-pin round plug	→ 1-114	1001300
1	Bypass fitting DGMA	→ 1-120	DGMa 101T000

Benefits

- Simple, compact and cost-effective measuring station close to the bypass installation
- Electrical installation cost-savings due to power supply over a two wire system
- No need for electrical isolation of the output signal by electrical isolation integral to the DMT

2.6 DULCOMETER® Transmitters

2.6.4

DULCOMETER® Transmitter DULCOPAC

The compact transmitter for installation in control cabinets.

The transmitter DULCOMETER® DULCOPAC is a complete PID controller for the key measuring parameters in water treatment. It can be installed on a top hat rail inside a control cabinet.

The DULCOPAC transmitter in a DIN housing is intended for installation on a top hat rail (in a control cabinet). It measures and regulates the measured variables in aqueous solutions: pH, ORP, chlorine, bromine, peracetic acid, hydrogen peroxide and conductivity.

With the measured variables pH and ORP, it is possible to select between a DULCOPAC transmitter with a highly-ohmic coaxial input (direct connection of a pH/ORP sensor) or a 4-20 mA two-wire input. A transmitter is also needed when connecting pH or ORP via 4-20 mA (part no. 809126 for pH and part no. 809127 for ORP).

Two analogue outputs (0/4...20 mA) are available for recording purposes and two potential-free low voltage relays with a changeover contact for control of metering pumps. The analogue outputs are electrically isolated. The DULCOPAC is operated and configured using buttons and the integrated LC display via codes.

The power supply is provided via a special DULCOPAC power supply and can feed up to 10 DULCOPAC units. It provides the requisite galvanic isolation to the mains power supply.

Your benefits

- Space-saving: Direct installation in a control cabinet
- Safe measuring technology: galvanic isolation between the sensor and power supply

Technical details Measuring ranges:

- pH: 2.00 ... 14.00
- ORP: -1,500 ... +1,500 mV
- Chlorine, bromine: 2 ppm to 100 ppm in 6 ranges
- Conductivity: 2 electrodes 100 µS/cm to 10 mS/cm, k=0.1 to 10 cm⁻¹
- Hydrogen peroxide: 0-200 to 50,000 ppm
- Peracetic acid: 0-50 to 5,000 ppm
- Temperature: 0 ... 100 °C

Correction variable: Temperature for pH and conductivity via Pt 100

Correction range: 0 ... 100 °C Control characteristic: P/PID control

Control: Bidirectional control

 $\textbf{Signal current output: } 2 \times 0/4\text{-}20 \text{ mA electrically isolated, range and assignment (measured or control or cont$

variable) can be adjusted

Control output: 2 low voltage relays, 48 V at 1 A are used as a control output with pulse frequency or pulse

width modulation or limit value output

Electrical connection: 24 V DC, 3 W, via a DULCOPAC power supply

Permissible operating temperature range: -10...50 $^{\circ}\text{C}$

Degree of protection: IP 20

Dimensions: 60 x 90 x 55 mm (H x W x D)

Weight: 0.3 kg

P_DM_0021_SW

P_DM_0023_SW

DULCOPAC CI/°C

(2) (2)

 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$

 $|\oplus |\oplus | \odot | \odot | \odot | \oplus | \oplus$

P_DM_0022_SW

2.6 DULCOMETER® Transmitters

Area of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Processes and process technology
- Electroplating
- Waste water treatment

	Order no.
DULCOPAC pH (mV)	1036425
DULCOPAC pH (mA)	1036426
DULCOPAC ORP/redox (mV)	1036427
DULCOPAC ORP/redox (mA)	1036428
DULCOPAC Chlorine	1036429
DULCOPAC Conductivity (mA)	1036430
DULCOPAC Conductivity (direct)	1036431
DULCOPAC PAA (peracetic acid)	1036432
DULCOPAC PEROX	1036433
DULCOPAC Bromine	1036434
DULCOPAC power supply unit, 230 V AC - 24 V DC	1036436

Measuring and Control Technology

DULCOMETER® Transmitters

2.6.5 **Application Examples for DULCOPAC**

This chapter describes typical combinations of components for measuring stations with DULCOPAC transducers.

Measurement of pH with connection to a PLC

Tasks and applications

The pH value is to be measured in the bypass of a process water pipe, temperature 35 $^{\circ}$ C, pressure 3 bar, no solid matter content The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	DULCOPAC pH (mV)	→ 2-95	1036425
1	DULCOPAC power supply unit, 230 V AC - 24 V DC	→ 2-95	1036436
2 m	Coaxial cable Ø 5 mm, 10.0 m - S	→ 1-113	305040
1	pH sensor PHEP 112 SE	→ 1-13	150041
1	Bypass fitting DGMA with sample water limit contact	→ 1-120	DGMa310T000

Measurement of free chlorine with connection to a PLC

Tasks and applications

The concentration of chlorine is to be measured in the bypass of a process water pipe. Chlorine concentration approx. 0.6 ppm, water temperature approx. 35 °C, total pressure approx. 1 bar, no solid matter. The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	DULCOPAC Chlorine	→ 2 - 95	1036429
1	DULCOPAC power supply unit, 230 V AC - 24 V DC	→ 2-95	1036436
2 m	Signal cable, sold by the metre $2 \times 0.25 \text{mm}^2 \text{Ø} 4 \text{mm}$	→ 1-115	725122
1	Chlorine sensor CLE 3-mA-2 ppm	→ 1-51	792920
1	Bypass fitting DGMA	→ 1-120	DGMa 301T000

Measurement of conductive conductivity with connection to a PLC

Tasks and applications

The electrolytic conductivity is to be measured in the bypass of a process water pipe. Conductivity approx. 7500 µS/cm, water temperature approx. 35 °C, total pressure approx. 1 bar, no solid matter. The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	DULCOPAC Conductivity (direct)	→ 2-95	1036431
1	DULCOPAC power supply unit, 230 V AC - 24 V DC	→ 2-95	1036436
1	Measuring line type LKT for conductivity sensors Ø 6.2 mm	→ 1-114	1046024
1	Conductivity LFT 1 DE	→ 1-97	1001376
1	Bypass fitting DGMA with sample water limit contact	→ 1-120	DGMa310 T000

2.7.1

Portable Meter Portamess® Measured Variable pH/ORP

Robust manual measuring instrument to withstand the most severe mechanical and chemical loading.

Measuring range pH -2.00 to + 16.00, ORP -1,300 ... +1,300 mV

1

pH and ORP measurement with Portamess® pH/ORP - battery-powered, hand-held meter with automatic or manual temperature compensation.

The Portamess® pH/ORP is used to measure the pH and ORP value in the industrial, environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, pre-selectable buffer sets.

Your benefits

- Robust and leak-tight
- Long lifespan: Over 2,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display

Technical details

- Measuring ranges pH: -2.00 ... +16.00, ORP: -1,300 ... +1,300 mV
- Measuring errors pH: < 0.01, ORP: < 0.1 % of the measured value ±0.3 mV
- Sensor adaptation: 8 buffer sets to choose from
- Temperature compensation: Manual
- Degree of protection: IP 66
- Operating time: 2,000 hours with 3 no. AA cells
- **Dimensions:** H x W x D 160 x 133 x 30
- Weight: 560 g with batteries
- Scope of delivery: Measuring instrument, field case, operating instructions in German, English and French.
- Caution: Order the pH sensor separately.

Area of application

- Industry
- Environmental protection
- Food production
- Water or waste water inspection
- Hard-wearing membrane keypad
- Large, easy-to-read LCD display
- Integrated sensor quiver to protect the sensor
- Sturdy housing (IP 66 degree of protection)
- Robust, watertight, gold-plated sockets

Accessories

	Capacity	Order no.
	ml	
PHEKT-014F	_	1036537
Coaxial cable Ø 5 mm, 0.8 m - SD*	-	305098
Buffer pH 7.0	50	506253
Buffer pH 4.0	50	506251

fitting for all ProMinent® pH sensors with SN6 connection

Sensor quiver see p. → 2-104

2.7.2

Portamess Portable Meters Measured Variable, Conductivity

Robust measuring instrument to withstand the most severe mechanical and chemical loading. Measuring range 0.01 μS/cm to 1,000 mS/cm

The measuring instrument Portamess® conductivity is a robust, leak-tight and battery-operated handheld measuring instrument with a large measuring range and automatic or manual temperature compensation, which can be used in the industrial, environmental, food and waste water sectors.

pk_5_098

The Portamess[®] conductivity is used to measure conductivity and temperature in the industrial. environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, preselectable buffer sets.

Your benefits

- Robust and leak-tight
- Long lifespan: Over 1,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display

Technical details

Measuring ranges:

- Conductivity instrument: 0.01 µS/cm ... 1,000 mS/cm, with sensor LF204: 1 µS/cm ... 500 mS/cm
- Temperature: -20 ... 120 °C
- Salinity: 0.0 ... 45.0 g/kg (0 ... 30 °C)
- TDS: 0 ... 1,999 mg/l (10 ... 40 °C)

Measuring error:

- Conductivity < 0.5% of the measured value (with conductivities of > 500 mS/cm < 1% of the measured value) ±1 digit
- Temperature < 0.3 K ±1 digit

Sensor adaptation: Direct input of the cell constants, automatic establishment of the cell constants with KCI solution 0.01 or 0.1 mol/l, cell adaptation with any known solutions

Cell constant k: 0.010 ... 199.9 cm⁻¹ (adjustable)

Temperature compensation: Configurable, manual or measured

Degree of protection: IP 66

Operating time: Approx. 1,000 hours with 3 no. AA cells

Dimensions: 160 x 133 x 30 mm (H x W x D)

Weight: 560 g with batteries

Scope of delivery: Measuring instrument, field case, conductivity sensor LF 204, operating instructions in

German, English and French

Area of application

- Environmental protection
- Food production
- Water or waste water inspection

Order no.

Portamess® 911 Cond

1008713

Note:

The scope of delivery does include the conductivity sensor LF 204.

Conductivity sensor LF 204 see p. → 2-104, Sensor quiver see p. → 2-104

2.7.3

Photometer

Precise measurement results through high-quality interference filters

Photometers measure nearly all disinfectants and the pH value based on the photometric principle. They are portable, compact and make safe, simple measurement possible.

P_DT_0074_SW Photometer

The photometers DT1B, DT2C, DT3B and DT4B are used, among other things, as a reference method for calibrating the electrochemical sensors for chlorine, chlorine dioxide, fluoride, chlorite, H_2O_2 , bromine and ozone. They have been adapted to today's requirements and can be used in almost all areas of water analysis. High-quality interference filters and long-term stable LEDs are used as the light source in the high-precision optics. The entire measuring unit is maintenance-free. Precise and reproducible analysis results are achieved with minimum time and effort. The units are winning customers over with their excellent operating convenience, ergonomic design, compact dimensions and ease of use.

Your benefits

- Portable and compact
- Simple to operate with text support
- Safe, simple measurement of chlorine, chlorine dioxide, fluoride, chlorite, H₂O₂, bromine, ozone, pH and trichloroisocyanuric acid
- Can be calibrated
- Memory function for the last measurements
- Backlit display
- Real-time clock
- Countdown
- Watertight, degree of protection IP 68

Technical details

Measuring ranges of the DT1B:

- 0.05... 6.0 mg/l free chlorine (DPD1) + total chlorine (DPD1+3)
- 5 ... 200 mg/l free chlorine (high range)
- 0.1 ... 13.0 mg/l bromine (DPD1)
- 0.05 ... 11 mg/l chlorine dioxide (DPD1)
- 0.03 ... 4.0 mg/l ozone (DPD4)
- 6.5 ... 8.4 pH (phenol red)
- 1 ... 80 mg/l cyanuric acid

Measuring ranges of the DT2C:

- 0.05 ... 2.0 mg/l fluoride
- 0.05... 6.0 mg/l free chlorine and total chlorine
- 0.05 ... 11.0 mg/l chlorine dioxide

Measuring ranges of the DT3B:

■ 1 ... 50 / 40 ... 500 mg/l hydrogen peroxide (H₂O₂)

Measuring ranges of the DT4B:

- 0.03 ... 2.5 mg/l chlorite
- 0.05 ... 11 mg/l chlorine dioxide
- 0.05 ... 6 mg/l chlorine

Measuring tolerance: Depending on the measured value and measuring method

Battery: 4 no. AA/LR6 batteries

Permissible ambient temperature range: 5...40 °C Relative humidity: 30 ... 90 % (non-condensing)

Degree of protection: IP 68 Housing material: ABS Keypad: Polycarbonate film

Dimensions: 190 x 110 x 55 mm (L x W x H)

Weight: 0.4 kg

Area of application

- Swimming pools
- Potable water
- Process water

	Order no.
Photometer DT1B	1039315
Photometer DT2C	1039316
Photometer DT3B	1039317
Photometer DT4B	1039318

Photometers supplied with accessories, container vessels and reagents.

Consumable items

	Order no.
DPD 1 buffer, 15 ml	1002857
DPD 1 reagent, 15 ml	1002858
DPD 3 solution, 15 ml	1002859
Phenol red tablets R 175 (100 in each)	305532
Cyanuric acid tablets (100 in each)	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer during fluoride determination	1010382
3 spare cells: round cells with covers for DPD phenol red and cyanuric acid detection (DT1 and DT2B)	1007566
3 spare cells for fluoride detection (DT2A and B)	1010396
DPD reagent set, 15 ml each: 3 x DPD 1 buffer, 1 x DPD 1 reagent, 2 x DPD 3 solution	1007567
Chlorine dioxide tablets no. 1	1039732
Chlorine dioxide tablets no. 2	1039733
Chlorine HR tablets (100 off)	Chlorine_tablets
ACIDITYING tablets (100 off)	AC_tablets

Spare parts

Chlorite Photometer

	Order no.
Stirrer for purging of chlorine dioxide (DT4)	1022754
3 spare cells: round cells with covers for DPD phenol red and cyanuric acid detection (DT1 and DT2B)	1007566

H₂O₂ measurement

	Order no.
Reagent for H ₂ O ₂ (DT3), 15 ml	1023636
Spare cell, 5x, for H ₂ O ₂ (DT3)	1024072

Ø 25

pk_5_064

2.8 Accessories for Measuring and Control Devices

2.8.1 Measuring Transducer 4...20 mA (Two Wire)

Benefits:

- Reliable signal transmission, even over large distances
- Interference-resistant 4 ... 20 mA signal
- Simple installation directly on the sensor

Typical applications:

Transmission of the measuring signal even over long distances and/or transmission of interference-resistant measured signals (e.g. pH, ORP) in conjunction with controllers type D1C, D2C and DULCOMARIN® or direct connection to PCs and/or a PLC. If using a PLC, it has to have an electrically isolated input.

pH measuring transducer 4 ... 20 mA type pH V1

Measuring range pH 0 ... 14

Measuring error Better than 0.1 pH (typical ±0.07 pH)

 $\begin{array}{ll} \text{Socket} & \text{SN6} \\ \text{Input resistance} & > 5 \times 10^{11} \, \Omega \\ \end{array}$

Signal current output $4 \dots 20 \text{ mA} \approx -500 \dots +500 \text{ mV} \approx \text{pH } 15.45 \dots -1.45 \text{ not calibrated},$

not electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (Ø)

Order no.

pH measuring transducer 4 ... 20 mA type pH V1 809126

ORP measuring transducer 4 ... 20 mA type RH V1

Measuring range 0 ... 1000 mV

Measuring error Better than ±5 mV (typical ±3 mV)

Signal current output $4 \dots 20 \text{ mA} \approx 0 \dots +1000 \text{ mV}$ not electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (Ø)

Order no.

ORP measuring transducer 4 ... 20 mA type RH V1 809127

Temperature measuring transducer 4 ... 20 mA type Pt100 V1

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Measuring error Better than ± 0.5 °C (typical ± 0.3 °C)

 $\begin{array}{ll} {\rm Socket} & {\rm SN6} \\ {\rm Input \ resistance} & {\rm \sim 0 \ \Omega} \\ \end{array}$

Signal current output $4 \dots 20 \text{ mA} \approx 0 \dots +100 ^{\circ}\text{C}$ not electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (\emptyset)

Order no.

Temperature measuring transducer 4 ... 20 mA type Pt 100 V1 809128

2-102 Product Catalogue 2015 1.1.2015

2.8 Accessories for Measuring and Control Devices

PEROX transducer

The microprocessor-based PEROX transducer is used to control and activate the PEROX sensor and to evaluate the sensor signal. It is screwed directly on to the sensor head. The transducer can be directly connected to the D1C controller via a 3-core signal cable.

The PEROX transducer is approx. 205 mm long with a diameter of 32 mm.

PEROX transducer for ${\rm H_2O_2}$ measurement

Includes an internal selector switch for the three ranges:

1 ... 20, 10 ... 200 and 100 ... 2000 mg/l H_2O_2

	Order no.
PEROX transducer V2 for DACa	1047979

PEROX transducer V1 for D1Ca on request.

Accessory:

	Order no.
Signal cable, sold by the metre 2 x 0.25 mm ² Ø 4 mm	725122

2.8 Accessories for Measuring and Control Devices

2.8.2

Accessories for Portable Meters Portamess®

Sensor quiver

Set of 5, for water tight storage of sensors. For Portamess® pH and Cond

Sensor quiverOrder no.1008716

Conductivity sensor LF 204

Number of electrodes

Sensor shaftBlack epoxySensorsGraphiteShaft length120 mmShaft diameter15.3 mmCable length1.5 m

Temperature sensor NTC (30 k Ω) -5 ... 100 °C

Conductivity sensor LF 204 Order no. 1008723

pk_5_093

3.0 Overview of Panel-Mounted Measuring/Control Stations

ProMinent

3.0.1 Selection Guide

3.0.2

Measuring, control and monitoring tasks in water treatment

DULCOTROL® DWCa_P potable water/F&B

Treatment of potable water, water similar to potable water and treatment of rinsing water, industrial and process water in the food and beverage industry

- Disinfection
- Cleaning In Place (CIP)
- pH value adjustment
- Monitoring

DULCOTROL® DWCa_W waste water

Treatment of industrial and municipal waste water

- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitoring

Identity Code Specifications in the DULCOTROL® Ordering System

We are offering DULCOTROL® measuring and control stations from the 1st quarter of 2015 in the new DWCa product range for applications in potable water/F&B and waste water. Until then the DULCOTROL® product line will be available as specified in the 2013 product catalogue with the product ranges PWCa, CWCa, WWCa and FCCa.

The measuring and control stations can be configured using the respective identity code ordering system. All the components, except the sensors, are mounted on a polypropylene panel on the "Panel-mounted" design. In the "Assembly kit" design, all components are supplied loose in a package. The DULCOTROL® ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control station, largely without any great technical understanding. One or two measured variables can be configured in each product range. The identity code specifications are explained in more detail below. The content and scope of delivery contained in the specifications are described in Chapter 3.1.3 (Technical Description of the Scope of Delivery).

Specification: "Application"

The "Application" specification is used to define the application ("potable water", "waste water") in which the measuring and control station is deployed. This defines the types of sensors and fittings.

Specification: "Water to be measured"

This is used to further characterise the sample water (e.g. "clear water" or "turbid water") selected via the main application (e.g. potable water, waste water). The sensor type, measuring range (e.g. CLE 3-mA-2ppm) and fitting (e.g. DGMA) are defined in conjunction with the main application.

Specification: "Measured variable 1" and "Measured variable 2"

They are used to determine the measured variable to be measured or controlled (e.g. pH or chlorine). Up to two measured variables can be simultaneously selected within the scope of the specified options. This defines the sensor class (e.g. pH sensor or chlorine sensor) and the controller suitable for the measured variable and the appropriate measuring cable. We use the diaLog DACa controller for all measured variables except conductivity. We configure the Compact conductivity controller for the measured variable conductivity. The possible combinations of measured variables are listed in the tables in the "Technical Description of the Scope of Delivery" chapter.

Specification: "Communication interface"

This specification defines whether a PROFIBUS® DP interface is fitted on the controller. This interface is available from the 3rd quarter of 2015.

Specification: "Data logger"

This specification defines whether a data logger is available in the controller.

Specification: "Hardware expansion"

This specification defines whether a protective RC circuit is fitted to protect relays exposed to high loads.

Specification: "Sensor equipment"

This specification determines whether the measuring/control panel is supplied with or without sensors. If "with sensors" is selected, the sensors are also supplied in the original packaging. Select "without sensors" if the types of sensor supplied cannot be used (see chapter 3.1.3: Technical Description of the Scope of Delivery) (for example: Inapplicable measuring range) or if the measuring plates are to be stored.

3.0 Overview of Panel-Mounted Measuring/Control Stations

Specification: "Design"

This specification defines whether the measuring and control station is to be supplied as a completely assembled panel or an assembly kit and which label the panel is to have.

Specification: "Sample water preparation"

This specification defines whether a filter is fitted (for panel-mounted measuring and control stations) or is supplied ready for connection (for assembly kits).

Specification: "Certification"

This specification defines the approvals and certificates.

Specification: "Documentation"

This specification defines the operating language of the controller and the operating instructions.

3.1 Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

3.1.1 DULCOTROL® Ordering System for Potable Water/F&B

Measuring and control stations DULCOTROL® for the potable water/F&B application are specially tailored to the potable water sector and food and beverage industry.

In addition, they also meet the particular requirements within these sectors: on the one hand, for potable water/product water treatment and, on the other hand, for the treatment of rinsing water, industrial water and process water.

Therefore, in the following identity code, if the Potable water/F&B application is selected under "Water to be measured", then the following types of water can be selected. Other types of water cannot be selected here.

- "Potable/product water treatment": this refers to the final treatment (e.g. disinfection) of water similar to potable water, as is the case in the production of potable water but also in the production of beverages or food.
- Rinsing/process/industrial water": this includes all rinsing process in the food and beverage industry, which aim to clean and disinfect pipework, vessels and machinery and/or more highly contaminated process or industrial process water.

Panel-Mounted Mea

3.1.2 Identity Code Ordering System for DULCOTROL® Measuring and Control Panels DWCA_P: Potable Water/F&B

DWCa	Applic	ation														
	Р	Potable	water													
				neasure												
		1		able water/product water sing water/industrial water/process water												
		2						water								
					easured		le 1				1.0		2.25			
			C0		hlorine <		0				L0		uctivity			
			C1 G0		hlorine p				rino)		Z0 F0	Ozone				
			P0	pH	hlorine	rree and	a combii	nea cnic	orine)		H0		de (pH min.= 5.5, pH max. = 9.5) gen peroxide			
			R0	ORP							A0	•	gen peroxide etic acid			
			D0	-	ne dioxio	le					X0		ved oxygen			
			10	Chlorit							7.0	2.000.	Tou oxygon			
				Chann	nel 2, m	easure	d variab	le 2 (or	otional)							
				00	None			. (-1	,							
				C0	Free c	nlorine <	c pH 8									
				C1	Free c	nlorine p	H value	> 8 and	d stable							
				G0		hlorine	(free and	d combi	ned chlo	rine)						
				P0	pН											
				R0	ORP											
				D0		e dioxid	le									
				10	Chlorit Condu											
				L0 Z0	Ozone	,										
				F0			nin – 5 5	nH ma	x. = 9.5	١						
				H0		en perd		, pri ma	x. – 0.0,	′						
				A0		tic acid	,,,,,,,									
				X0	Dissolv	ed oxy	gen									
							ontroll	ing								
				0 All measured variables measurable												
					9	All mea	asured v	ariables	s bidirec	tionally	controll	able				
							-	ion interface								
						0	withou									
						4		BUS®-[JP*							
						Data logger 0 without										
							1			th maas	ured va	lue dien	lay on SD card			
							'		are exp			iao aiop	ay on ob oard			
								0	withou		-					
								1	Protec	tive RC	circuit f	or outpu	rt relay			
										r equip						
									0	_	ensors					
									1		ut sensc	ors				
										Versic 0	-	.mounte	d with ProMinent Logo			
										В			without panel with ProMinent logo			
										(M)		ed desig				
										, ,			r treatments			
											0	withou				
											1	With fi	lter			
													ications			
												01	CE (Standard)			
													Documentation language DE German			
													EN English			
													FR French			
													IT Italian			
													NL Dutch			
													ES Spanish			
													PL Polish			
													SV Swedish			
													HU Hungarian			
													PT Portuguese			
													CS Czech			
DWC	аР	1	C0	P0	9	0	1	0	0	0	1	01	DE Identity code as a representative example			

^{* *} Available from 3rd quarter of 2015

Permissible measured variable combinations for DULCOTROL® DSWa_P: Potable water/F&B see \rightarrow 3-9

Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

3.1.3

P_DVT_0024_SW1

similar figure

DULCOTROL® potable water/F&B examples

Example 1: DWCa_P_D0_I0_1_9_0_0_0_0_0_01_DE

Application in potable water/F&B:

Measurement of chlorine dioxide and chlorite in potable water/product water with an integrated data logger.

Controller

■ DACa PA 6 1 4 0 0 0 0 1 0 01 0 DE

Fitting

- DGM_A_3_2_0_T_0_0_2:
 - 1 measuring module: Chlorine dioxide sensor
 - 1 measuring module: Chlorite sensor
 - 1 continuous flow control module

Sensors

- CDE-2-mA 0.5 ppm
- CLT1-mA-0.5 ppm

P_DVT_0029_SW1 similar figure

Example 2: DWCa_P_P0_C0_2_9_0_0_1_0_0_01_DE

Application in potable water/F&B:

Two-way control of pH and chlorine in rinsing water. The sample water is filtered through a 100 μm filter. The controller contains a relay protective RC circuit.

Controller

■ DACa PA 6 1 4 0 0 0 0 0 1 01 0 DE

Fitting

■ DLG III for pH and chlorine monitoring + flow control

- CBR1-mA 2ppm
- PHER 112-SE

Panel-mounted water treatment

■ Filter

3.1 Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

3.1.4

DULCOTROL® Ordering System for Waste Water

The measuring and control stations DULCOTROL® for use with waste water are used in all branches of industry where waste water is treated.

The "Water to be measured" specification in the identity code ordering system is used to define which of the wetted components are suitable. Other types of water cannot be selected here.

- "Clear water": this means all types of waste water, containing hardly any or no visible solid fractions.
- "Water with solid fractions, turbid": this means all types of waste water, which have a low solids content, discernible as a milky turbidity.
- "Water with solid fractions, sludge-like": this means all types of waste water, which have a high solids content. In a sample taken, solid fractions either clearly settle out or the sample no longer lets through light.
- "Water with fluoride and pH < 5": this type of water generally has a higher content of free hydrofluoric acid (HF), which can damage certain materials (e.g. glass).</p>

3.1.5 Identity Code Ordering System for DULCOTROL® Measuring and Control Panels DWCA_W: Waste Water

	cation											
W	Waste		neasur	a al								
	water 4		n eas uro vaste w									
	5			vith solic	l particle	fraction	n, turbid					
	6	Waste	water v	vith solic	particle	fraction	n, contai					
	7	Waste	water,	clear or	turbid, w	ith fluor	ide cont	ent and	pH < 7			
				easure		ole 1						
		C0		hlorine ·						L0	Condu	· ·
		C1	Free c	hlorine	pH value	> 8 an	d stable			Z0	Ozone	
		G0 P0	pH	chlorine	(free an	a combi	nea cnic	orine)		F0 H0		e (pH min.= 5.5, pH max. = 9.5)
		R0	ORP							A0	, ,	gen peroxide stic acid
		D0		ne dioxi	de					X0		ved oxygen
		10	Chlori									,.
			Chan	nel 2, m	easure	d varial	ole 2 (o _l	ptional)				
			00	None				,				
			C0		hlorine «							
			C1				e > 8 and					
			G0 P0		chlorine	(tree an	d combi	ned chic	orine)			
			R0	pH ORP								
			D0	_	ne dioxid	de						
			10	Chlori		-						
			L0	Condu	ıctivity							
			Z 0	Ozone								
			F0				5, pH ma	x. = 9.5)			
			H0	,	gen per							
			A0 X0		etic acid							
			ΛU		ved oxy uring - (_	lina					
				0			variable:	s measu	rable			
				9			variables			controlla	able	
					Comm	nunicat	ion inte	rface				
					0	withou						
					4		IBUS®-I	DP*				
							ogger					
						0	withou		th maac	sured va	lua dienl	ay on SD card
						'		vare exp			iiue uispi	ay on 3D card
							0	withou		•		
							1	Protec	tive RC	circuit f	or output	relay
								Senso	r equip	ment		
								0		ensors		
								1		ut sensc	ors	
									Version			ducible DooMin and Lane
									0 B			d with ProMinent Logo rithout panel with ProMinent logo
									(M)		ed desig	
									()			treatments
										0	withou	
										1		ter(not with waste water = 6)
												cations
											01	CE (Standard)
												Documentation language DE German
												EN English
												FR French
												IT Italian
												NL Dutch
												ES Spanish
												PL Polish
												SV Swedish
												HU Hungarian
												PT Portuguese
												CS Czech
Ca W					0	1	0	0			01	DE Identity code as a representative exam

 ^{*} Available from 2nd quarter of 2015

Permissible measured variable combinations for DULCOTROL® DSWa_W: Waste water see \rightarrow 3-10

Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

3.1.6

DULCOTROL® waste water examples

Example 3: DWCa_W_H0_00_5_9_0_0_0_1_1_01_DE

Waste water application:

Two-way control of the hydrogen peroxide in turbid waste water. The controller contains a relay protective RC circuit and a data logger.

Controller

■ DACa PA 6 1 0 0 0 0 0 1 1 01 0 DE

Fitting

DLG III for hydrogen peroxide monitoring and flow control

Sensors

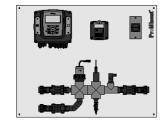
■ PER-mA-50-ppm

P_DVT_0030_SW1 similar figure

Example 4: DWCa_W_P0_L0_6_9_0_0_0_1_1_01_DE

Waste water application:

Two-way control of pH and measurement of conductivity in waste water containing sludge. The controller contains a relay protective RC circuit and a data logger.


- For pH: DACa PA 6 1 4 0 0 0 0 1 1 01 0 DE
- For conductivity: Compact Controller

Fitting

■ Piping + flow control

Sensors

- ICT 1
- PHEX 112-SE

P_DVT_0025_SW1 similar figure

3.1.7 Permissible measured variable combinations for DULCOTROL® DSWa_P: Potable water/F&B

Sample water 1: Potable water, product	Sample water 1: Potable water, product water														
Measured variable 1 (channel 1)		Mea	sured	varia	ble 2	(chan	nel 2)								
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8	C0	х			Χ	Х	Х	Х							
Free chlorine < pH 8 and stable	C1	х			Χ	Х	Х	Х							
Total chlorine (free and combined chlorine)	G0	Х				Х	Х								
рН	P0	х				Х									
ORP	R0	х				Х									
Chlorine dioxide	D0	х				х	х		х						
Chlorite	10	х													
Conductivity	L0	х				Х	Х								
Ozone	Z0	х				Х	Х								
Fluoride	F0	х				Х									
Hydrogen peroxide	H0	х				Х									
Peracetic acid	A0	х				х				х					
Dissolved oxygen	X0	х				х									

Sample water 2: Rinsing water, process water, industrial process water															
Measured variable (channel 1)		Mea	sured	varia	ble (c	hanne	el 2)								
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8	C0	х				Х	Х								
Free chlorine < pH 8 and stable	C1	х				Х	Х								
Total chlorine (free and combined chlorine)	G0	х				Х	Х								
pH	P0	х				Х									
ORP	R0	х				Х									
Chlorine dioxide	D0	х				Х	Х								
Chlorite	10	х													
Conductivity	L0	х				Х	Х								
Ozone	Z0	х				Х	Х								
Fluoride	F0	х				Х									
Hydrogen peroxide	H0	х				Х									
Peracetic acid	A0	Х				Х				Х					

3.1.8 Permissible measured variable combinations for DULCOTROL® DSWa_W: Waste water

Sample water 4,5,7: clear and turbid waste water															
Measured variable 1 (channel 1)		Mea	sured	varia	ble 2	(chan	nel 2)								
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8	C0	х				х	X								
Free chlorine < pH 8 and stable	C1	х				Х	Х								
Total chlorine (free and combined chlorine)	G0	х				Х	Х								
рН	P0	х				Х									
ORP	R0	х				х									
Chlorine dioxide	D0	х				Х	Х								
Chlorite	10	х													
Conductivity	L0	х				Х	Х								
Ozone	Z0	х				Х	Х								
Fluoride	F0	х				Х									
Hydrogen peroxide	H0	х				х									
Peracetic acid	A0	х				Х				Х					

With sample water 6: waste water conta	ining slເ	ıdge													
Measured variable 1 (channel 1)		Mea	surec	l varia	ble 2	(chan	nel 2)								
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8	C0														
Free chlorine < pH 8 and stable	C1														
Total chlorine (free and combined chlorine)	G0														
рН	P0	х				Х	Х								
ORP	R0	х				х									
Chlorine dioxide	D0														
Chlorite	10														
Conductivity	L0	х				Х	Х								
Conductivity	L0														х
Ozone	Z0														
Fluoride	F0														
Hydrogen peroxide	H0														
Peracetic acid	A0														
Dissolved oxygen	X0	х				Х									

ProMinent

3.1.9

Technical Description of the Scope of Supply for DULCOTROL® DWCa

Controller

(For detailed information see chap. Measuring and Control Technology)

The DULCOMETER® dialog DACa controller is used for measuring all measured variables with the exception of conductivity. The Compact controller is configured for conductivity measurement.

The DULCOMETER® diaLog DACa Controller used with the DULCOTROL® DWCa is available as a single or two-channel measuring and control device. The following versions of the device can be separately selected using the DULCOTROL® identity code ordering system:

■ Specification: Communication interface

This specification defines whether a PROFIBUS® DP interface should be available on the measuring and control device. This interface is available from the 2nd quarter of 2014.

■ Specification: Data logger

This specification defines whether a data logger should be available on the measuring and control device.

■ Specification: Hardware expansion

This specification defines whether a protective RC circuit is to be available for the protection of relays subject to higher loading.

Hardware version and identity code of diaLog DACa controllers:

1-channel device without RC, without data logger DACa PA 6 1 0 0 0 0 0 0 1 0 D 1-channel device with RC, without data logger DACa PA 6 1 0 0 0 0 0 0 1 0 1 0 D 2-channel device without RC, without data logger DACa PA 6 1 4 0 0 0 0 0 0 0 1 0 D
2-channel device without RC, without data logger DACa PA 6 1 4 0 0 0 0 0 0 1 0 D
A L LL L W BO W LLL L BAO BAO A COCCACACA
2-channel device with RC, without data logger DACa PA 6 1 4 0 0 0 0 0 1 01 0 D
1-channel device without RC, with data logger DACa PA 6 1 0 0 0 0 1 0 01 0 D
1-channel device with RC, with data logger DACa PA 6 1 0 0 0 0 0 1 1 01 0 D
2-channel device without RC, with data logger DACa PA 6 1 4 0 0 0 0 1 0 01 0 D
2-channel device with RC, with data logger DACa PA 6 1 4 0 0 0 0 1 1 01 0 D
1-channel device, PROFIBUS® DP DACa PA 6 1 0 0 0 0 4 0 0 0 1 0 D
2-channel device, PROFIBUS® DP DACa PA 6 1 4 0 0 0 4 0 0 01 0 D
1-channel device with RC, PROFIBUS® DP DACa PA 6 1 0 0 0 0 4 0 1 01 0 D
2-channel device with RC, PROFIBUS® DP DACa PA 6 1 4 0 0 0 4 0 1 01 0 D
1-channel device, PROFIBUS® DP, with data logger DACa PA 6 1 0 0 0 0 4 1 0 01 0 D
1-channel device with RC, PROFIBUS® DP, with data logger DACa PA 6 1 0 0 0 0 4 1 1 01 0 D
2-channel device, PROFIBUS® DP, with data logger DACa PA 6 1 4 0 0 0 4 1 0 01 0 D
2-channel device with RC, PROFIBUS® DP, with data logger DACa PA 6 1 4 0 0 0 4 1 1 01 0 D

	Order no.
Compact controller for conductive conductivity	DCCaW006L30010EN
Compact controller for inductive conductivity	DDCaW006L60010DE

Sensors

(For detailed information see chap. Sensor Technology DULCOTEST®)

The identity code specifications "Application", "Measured variable" and "Water to be measured" define the sensor type to be used as specified below in the tables.

If another sensor type is necessary, the measuring/control panel can also be supplied without sensors (see identity code specification: "Sensor equipment"). The desired sensor should then be ordered separately.

Sensor types for the defined specifications "measured variable" and "water to be measured" for the potable water ("P") application

Measured variable	Sample water	Sensor type	Order no.
Free chlorine with pH value < 8	1	CLE 3-mA-0.5 ppm	792927
Free chlorine with pH value > 8	1	CBR 1-mA-0,5 ppm	1038016
Free chlorine	2	CBR 1-mA-2 ppm	1038015
Total chlorine	1	CTE 1-mA-0.5 ppm	740686
Total chlorine	2	BCR 1-mA-2 ppm	1040115
pH	1	PHEP 112 SE	150041
pH	2	PHER 112 SE	1001586
ORP	1	RHEP-Pt-SE	150094
ORP	2	RHER-Pt-SE	1002534
ORP combined with ozone: R0 Z0	1/2	RHEP-Au-SE	1003875
Chlorine dioxide	1	CDE 2-mA-0.5 ppm	792930
Chlorine dioxide (temperature-corrected)	2	CDR 1-mA-2 ppm	1033393
Chlorite	1/2	CLT 1-mA-0.5 ppm	1021596
Conductivity, conductive	1	LFTK 1 DE	1002822
Conductivity, inductive	2	ICT 1	1023244
Ozone	1/2	OZE 3-mA-2 ppm	792957
Fluoride (temp.corr.)	1/2	FLEP 010-SE / FLEP 0100-SE	1028279
		Reference electrode, REFP-SE	1018458
		Pt 100 SE	305063
		Measuring transducer 4-20 mA FPV1	1028280
Hydrogen peroxide	1	PER 1-mA-200 ppm	1022509
Hydrogen peroxide	2	PER 1-mA-2000 ppm	1022510
Peracetic acid	1	PAA 1-mA-200 ppm	1022506
Peracetic acid	2	PAA 1-mA-2000 ppm	1022507
Dissolved oxygen	1/2	DO 1-mA-20 ppm	1020532
Temperature	1/2	Pt 100 SE	305063

3.1 Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

Sensor types for the defined specifications "measured variable" and "water to be measured" for the waste water ("W") application

Measured variable	Sample water	Sensor type	Order no.
рН	4	PHEP 112 SE	150041
pH	5	PHER 112 SE	1001586
pH	6	PHEX 112 SE	305096
рН	7	PHEF 012 SE	1010511
ORP	4	RHEP-Pt-SE	150094
ORP	5	RHER-Pt-SE	1002534
ORP	6	RHEX-Pt-SE	305097
ORP combined with ozone: R0 Z0	1/2	RHEP-Au-SE	1003875
Fluoride (temp.corr.)	4/5/7	FLEP 010-SE / FLEP 0100-SE	1028279
		Measuring transducer 4-20 mA FP 100 V1	1031331
Temperature		Pt 100 SE	305063
		Reference electrode, REFP-SE	1018458
Conductivity, inductive	4/5/6/7	ICT 1	1023244
Total chlorine	4/5	BCR 1-mA-2 ppm	1040115
Free chlorine	4/5	CBR 1-mA-2 ppm	1038015
Hydrogen peroxide	4/5	PER 1-mA-50 ppm	1030511
Dissolved oxygen	4/5	DO 1-mA-20 ppm	1020532
Ozone	4/5	OZE 3-mA-2 ppm	792957
Chlorine dioxide (temperature-corrected)	4/5	CDR 1-mA-2 ppm	1033393
Peracetic acid	4/5	PAA 1-mA-200 ppm	1022506
Temperature	4/5/6	Pt 1000 SE	1002856

Panel-Mou

3.1 Measuring and Control System DULCOTROL® Potable Water/F&B, DULCOTROL® Waste Water

Sensor fittings

(For detailed information see chap. Sensor Technology DULCOTEST®)

The bypass fitting used depends in particular on the water to be measured but sometimes also on the measured variable or the combination of measured variables.

Fittings for the potable water/F&B ("P") application

In the Potable water/F&B ("P") application, the fitting type DGMa is used for all potable water type clear water. Fitting type DLG III is used for rinsing/industrial/process water with a turbid appearance in application "P".

Measured variable	Sample water	Sensor type
Free chlorine	1	DGMA
Total chlorine	1	DGMA
рН	1	DGMA
ORP	1	DGMA
Chlorine dioxide (CDE 2)	1	DGMA
Chlorite	1	DGMA
Conductivity	1	DGMA
Ozone	1	DGMA
Hydrogen peroxide	1	DGMA
Peracetic acid	1	DGMA
Temperature	1	DGMA
Free chlorine	2	DLGIII
Total chlorine	2	DLGIII
pH	2	DLGIII
ORP	2	DLGIII
Chlorine dioxide (CDR)	2	DLGIII
Chlorite	2	DLGIII
Ozone	2	DLGIII
Hydrogen peroxide	2	DLGIII
Peracetic acid	2	DLGIII
Temperature	2	DLGIII
Conductivity, inductive	2	ICT 3 in T-piece
Fluoride (temp.corr.)	1/2	DLGIV
Dissolved oxygen (DO1)	1	Adapter d75 pipe

Fittings for the waste water/F&B ("W") application

In the "Waste water" ("W") application, the fitting type DLGIII is used for all clear water or water with only a low solid fraction. For sludge containing water in the "W" application the sensors are, wherever possible, fitted directly using adapters in the DN 40 PVC sample water line.

Measured variable	Sample water	Sensor type
Chlorine dioxide (CDR)	4/5	DLGIII
Fluoride	4/7	DLG IV (PVC) + magnetic stirrer
Dissolved oxygen (DO1)	4/5	Adapter for PVC pipe d75
Dissolved oxygen (DO2)	6	With pipe adapter for immersion pipe
Total chlorine	4/5	DLGIII
Conductivity, inductive (ICT 1)	4/5/6	Adapter for PVC pipe DN 40 (bypass on plate)
Ozone	4/5	DLGIII
ORP	6	T-piece / DN 40
ORP	4/5	DLGIII
Temperature	6	T-piece / DN 40
Temperature	4/5	DLGIII
Hydrogen peroxide	4/5	DLGIII
рН	6	T-piece / DN 40
pH	4/5/7	DLGIII

Hydraulic connector, piping

An 8 x 5 mm hose connector is used as the hydraulic connection for the sample water with "Water to be measured" 1, 2, 4, 5, 7 and a DN 25 connector for the "Water to be measured" 6 (containing sludge). Generally there is a shut-off ball valve fitted upstream and downstream of the bypass fitting. If ordered, a sample water filter is fitted upstream of the bypass fitting. The bypass fittings each contain a sampling tap. A metal pin is incorporated in the bypass fittings for potential equalisation.

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see
*	=	for bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)
**	=	does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, relative to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM (Hypalon®)** and **IIR (butyl rubber)** used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70 % H ₂ SO ₄ + 5 % K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10 % CrO ₃
Hydrochloric acid	≥ 25 % HCI
Hydrogen peroxide	\geq 5 % H ₂ O ₂
Hydrofluoric acid	≥ 0 % HF

Explanation of abbreviations used as column headings:

Acrylic:	Acrylic resistance
PVC:	PVC, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	PVDF resistance
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
Tygon:	Tygon® R-3603 resistance
Pharmed:	Pharmed® resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WGK:	water endangering class

Viton® is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1 = slightly hazardous to water
 2 = hazardous to water
 3 = severely hazardous to water
 (X) = no classification. Classification according to conclusion by analogy.
 To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

The data has been taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	-	+/0	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	-	+	0	+	1
Acetic Ether => Ethyl Acetate	, <u>, , </u>													
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	n	+	+	
Acetyl Chloride	CH ₃ COCI	100%	-	+	n	-	0	+	-	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	n	+	+	1
Acetylene Dichloride => Dichlo														
Acetylene Tetrachloride => Tet	rachloro Ethane													
Acrylonitril	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	-	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	-	0	+	+/0	2
Aluminium Acetate	AI(CH ₃ COO) ₃	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	S	+	+	+	+	-	+	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+	+/0	1
Aluminium Hydroxide	Al(OH) ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	Al(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	$Al_2(SO_4)_3$	S	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	$(NH_4)_2CO_3$	40%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH₄CI	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Ammonium Fluoride	NH₄F	s	+	0	+	+	0	+	+	+	+	+	+	1
Ammonium Hydroxide	"NH ₄ OH"	30%	+	+	+	+	+	-	+	+	+	+	+	2
, and a second	14114011	0070		•	•	(25 °C)					•	•	•	_
Ammonium Nitrate	NH ₄ NO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Oxalate	(COONH ₄) ₂ * H ₂ O	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ ClO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	(NH ₄) ₂ S ₂ O ₈	s	+	+	+	+	5%	+	+	+	+	+	5%	2
Ammonium Phosphate	(NH ₄) ₃ PO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphate	(NH ₄) ₂ SO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphide	(NH ₄) ₂ S	s	+	+	+	+	n	+	+	n	n	+	n	2
Ammoniumaluminium	NH ₄ Al(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Sulphate														
Amyl Alcohol	C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCl	s	n	+	+	+	-	+/0	+/0	-	0	+	+	2
Antimony Trichloride	SbCl ₃	s	+	+	+	+	-	+	+	+	+	+	n	2
Aqua Regia	3 HCI + HNO ₃	100%	-	+	-	+	-	-	0	-	-	-	-	2
Arsenic Acid	H ₃ AsO ₄	S	+	+	+	+	+	+	+	20%	0	+	+	3
Barium Carbonate	BaCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Barium Hydroxide	Ba(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphide	BaS	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Benzaldehyde	C ₆ H ₅ CHO	100%	-	-	+	-	+	+	+	-	-	0	+	1
Benzene	C ₆ H ₆	100%	-	-	0	+	+	0	-	-	-	0	+	3
Benzene Sulphonic Acid	C ₆ H ₅ SO ₃ H	10%	n	n	+	+	+	+	-	-	-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	s	+	+	+	+	+	+	+	-	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI	100%	-	n	0	n	0	+	+	n	n	0	+	2

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF			EPDM	Tygon	PharMed		HastelloyC	
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇	100%	-	-	+	0	+	+	-	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	-	0	+	2
Bitter Salt => Magnesium Sulpl														
Bleach => Sodium Hypochlorite														
Blue Vitriol => Copper Sulphate	9													
Borax => Sodium Tetraborate														
Boric Acid	H ₃ BO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Brine		S	+	+/0	+	+	+/0	+	+	+	+	+	+	1
Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	-	+	2
Bromine Water	$Br_2 + H_2O$	s	-	+	-	+	-	-	-	n	n	-	n	(2)
Bromo Benzene	C ₆ H ₅ Br	100%	n	n	0	+	+	0	-	-	-	0	+	2
Bromochloro Methane	CH ₂ BrCl	100%	-	-	-	+	+	n	+/0	-	-	0	+	2
Bromochlorotrifluoro Ethane	HCCIBrCF ₃	100%	-	-	0	+	+	+	-	+	+	0	+	(3)
Butanediol	HOC ₄ H ₈ OH	10%	n	+	+	+	+	0	+	+	+	+	+	1
Butanetriol	C ₄ H ₁₀ O ₃	s	+	+	+	+	+	0	+	+	+	+	+	1
Butanol	C ₄ H ₉ OH	100%	-	+	+	+	+	0	+/0	-	-	+	+	1
Butyl Acetate	C ₇ H ₁₃ O ₂	100%	-	-	+	+	+	-	-	-	+/0	+	+	1
Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	-	+/0	-	+	1
Butyl Alcohol => Butanol														
Butyl Amine	C ₄ H ₉ NH ₂	100%	n	n	n	-	+	-	-	n	n	+	+	1
Butyl Benzoate	C ₆ H ₅ COOC ₄ H ₉	100%	-	-	0	n	+	+	+	-	-	0	+	2
Butyl Mercaptane	C ₄ H ₉ SH	100%	n	n	n	+	n	+	-	n	n	n	n	3
Butyl Oleate	C ₂₂ H ₄₂ O ₂	100%	n	n	n	+	+	+	+/0	n	n	n	+	1
Butyl Stearate	C ₂₂ H ₄₄ O ₂	100%	0	n	n	+	+	+	-	n	n	n	+	1
Butyraldehyde	C ₃ H ₇ CHO	100%	-	n	+	n	+	-	+/0	-	-	+	+	1
Butyric Acid	C ₃ H ₇ COOH	100%	5%	20%	+	+	+	+	+		+/0	+	+	1
Calcium Acetate	(CH ₃ COO) ₂ Ca	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Bisulphite	Ca(HSO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Carbonate	CaCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Chloride	CaCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Calcium Cyanide	Ca(CN) ₂	s	+	+	+	+	n	+	+	+	+	+	n	3
Calcium Hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Hypochlorite	Ca(OCI) ₂	s	+	+	0	+	-	0	+	+	+	+	+	2
Calcium Nitrate	Ca(NO ₃) ₂	s	+	50%	50%	+	+	+	+	+	+	+	+	1
Calcium Phosphate	Ca ₃ (PO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphate	CaSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphide	CaSO ₄	s	+	+	+	+	n	+	+	+	+	+	+	(2)
Calcium Sulphite	CaSO ₃	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Thiosulphate		s	+	+	+	+	-	+	+	+	+	+	·	1
Carbolic Acid => Phenole	CaS ₂ O ₃	3	T	т	т	т		T	т	T	т	т	т	•
Carbon Disulphide	CS ₂	100%	-	_	0	+	+	+	_	-	_	0	+	2
Carbon Tetrachloride	CCI ₄	100%	-	-	-	+	+	+	-	-	-	0	+	3
Carbonic Acid	"H ₂ CO ₃ "				+				+					1
Caustic Potash => Potassium		S	+	+	+	+	+	+	+	+	+	+	+	
Caustic Soda => Sodium Hydro	,													
Chloric Acid	HCIO ₃	20%	+		_		-	0	^	,	,	10%		2
Chlorinated Lime => Calcium F		20%	+	+	-	+	-	U	0	+	+	10%	+	_
Chlorine Dioxide Solution	••	0.5%	•		_		-	_	-	•	-	_		
	CIO ₂ + H ₂ O		0	+	0	+		0		0		0	+	
Chlorine Water	Cl ₂ + H ₂ O	\$	+	+	0	+	-	+	+	0	-	0	+	
Chloro Benzene	C ₆ H ₅ Cl	100%	-	-	+	+	+	+	-	-	-	0	+	2
Chloro Ethanol	CICH ₂ CH ₂ OH	100%	-	-	+	0	+	-	0	-	+	+	+	3
Chloro Ethylbenzene	C ₆ H ₄ ClC ₂ H ₅	100%	-	-	0	n	+	0	-	-	-	0	+	(2)
Chloro Phenole	C ₆ H ₄ OHCl	100%	-	n	+	+	+	n	-	-	-	+	+	2
Chloro Toluene	C ₇ H ₈ Cl	100%	-	-	n	+	+	+	-	-	-	n	+	2
Chloroacetone	CICH ₂ COCH ₃	100%	-	-	n	n	+	-	+	-	-	n	+	3
Chlorobutadiene	C ₄ H ₅ Cl	100%	-	-	n	n	+	+	-	-	-	n	+	1
Chloroform	CHCl ₃	100%	-	-	0	+	+	+	-	-	0	-	+	2
Chlorohydrin	C ₃ H ₅ OCI	100%	-	n	+	-	+	+	0	-	+	+	+	3
Chloroprene => Chlorobutadie														
Chlorosulphonic Acid	SO ₂ (OH)CI	100%	-	0	-	+	-	-	-	-	-	-	0	1
Chrome-alum => Potassium Cl	hrome Sulphate													
Chromic Acid	H ₂ CrO ₄	50%	-	+*	0	+	10%	+	-	0	0	+	10%	3

Chemical	Formula	Conc	Acryl		PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Chromic-Sulphuric Acid	K ₂ CrO ₄ + H ₂ SO ₄	S	-	+*	-	+	n	n	n	-	-	-	n	3
Chromium Sulphate	$Cr_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Citric Acid	C ₆ H ₈ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	1
Cobalt Chloride	CoCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
Copper-II-Acetate	Cu(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Arsenite	Cu ₃ (AsO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Carbonate	CuCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Copper-II-Chloride	CuCl ₂	s	+	+	+	+	1%	+	+	+	+	+	+	2
Copper-II-Cyanide	Cu(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(3)
Copper-II-Fluoride	CuF ₂	s	+	+	+	+	+	+	+	+	+	+	+	(2)
Copper-II-Nitrate	Cu(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+/0	2
Copper-II-Sulphate	CuSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	2
Cresols	C ₆ H ₄ CH ₃ OH	100%	0	0	+	+	+	+	-	-	-	+	+	2
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	-	-	+	+	3
Cubic Nitre => Sodium Nitrate	<u> </u>													
Cumene => Isopropyl Benzene)													
Cyclo Hexane	C ₆ H ₁₂	100%	+	-	+	+	+	+	-	-	-	+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-	-	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	-	+	+	1
Cyclohexyl Alcohol => Cyclohe	0 .0													
Cyclohexylamine	C ₆ H ₁₁ NH ₂	100%	n	n	n	n	+	-	n	n	n	n	+	2
Decahydronaphthaline	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0		-	-	0	+	2
Decaline => Decahydronaphth														
Dextrose => Glucose														
Diacetonalcohol	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+	-	-	+	+	1
Dibromoethane	$C_2H_4Br_2$	100%	-	-	n	+	+	+	-	-	-	-	+	3
Dibutyl Ether	$C_4H_9OC_4H_9$	100%	-	-	+	+	+	-	0	-	-	+	+	2
Dibutyl Phthalate	C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	0	+	0	+	2
Dibutylamine	$(C_4H_9)_2NH$	100%	n	n	+	+	+	-	-	n	n	+	+	1
Dichloro Acetic Acid	Cl ₂ CHCOOH	100%	-	+	+	+	+	-	+	-	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	_	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-	-	0	+	+	+		_		0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	_	0	+	+	+		_	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	_	0	+	+	0	-	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-	-	0	_	+	2
Dichloroisopropyl Ether		100%	-	-	0	n	+	0	0	-	-	0	+	(2)
	(C ₃ H ₆ Cl) ₂ O	100%	-	-				-	-	-				2
Dicyclohexylamine Dicthylonoglycol	(C ₆ H ₁₂) ₂ NH				0	n	+					0	+	1
Diethyleneglycol	C ₄ H ₁₀ O ₃	S 1000/	+	+	+	+	+	+	+	+	+	+	+	
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	-	0	+	+	1
Diethylether Diethylether	C ₂ H ₅ OC ₂ H ₅		-	-	0	+	+	-	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+	+/0	+	+	3
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	0	+	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	0	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+	-	-	+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	-	n	n	+	+	1
Dimethyl Ketone => Acetone														
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%	-	-	+	-	+	-	+	-	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%	n	n	+	n	+	-	+	n	n	+	+	3
Dioctyl Phthalate	$C_4H_4(COOC_8H_{17})_2$	100%	-	-	+	+	+	-	+/0	0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100%	-	-	0	-	+	-	+/0	-	-	+	+	1
Disodium Hydrogenphosphate Disulfur Acid Oleum	Na ₂ HPO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-	-	-	n	n	
DMF => Dimethylformamide														
Engine Oils		100 %	n	+/0	+	+	+	+	-	-	-	+	+	2
Epsom salts => Magnesium Su	ılphate													
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	-	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%	0	n	+	-	+	-	+/0	-	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%	-	-	35%	+	+	-	+/0	-	+/0	+	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%	-	-	+	0	+	-	+/0	-	-	+	+	2
J J	-23	. 5070												_

Chemical	Formula	Conc	Acryl	PVC	PP				EPDM	Tygon	PharMed		HastelloyC	WPC
Ethyl Benzene	C ₆ H ₅ -C ₂ H ₅	100%	-	-	0	+	+	0	-	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	-	+/0	+	+	1
Ethylacrylic Acid	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/0	n	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	n	+	0	2
Ethylene Dibromide => Dibrom														
Ethylene Dichloride => Dichloro	Ethane													
Ethylene Glycol => Glycol														
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n	+	+	+	n	+/0	-	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0	-	0	+	+	1
Ferric Chloride	FeCl ₃	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	Fe ₂ (SO ₄) ₃	S	+	+	+	+	0	+	+	+	+	+	+	1
Ferrous Chloride	FeCl ₂	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Fixing Salt => Sodium Thiosulp	· · · · · · · · · · · · · · · · · · ·													
Fluoro Benzene	C ₆ H ₅ F	100%	-	-	+	+	+	0	-	-	-	0	+	2
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	25%	0	40%	+/0	2
Formaldehyde		40%	+	+	+	+	+	-	+/0	-	-	+	+	2
•	CH ₂ O	40 /0	т	т	т	T	т	-	+ /0	-	-	т	т	2
Formalin => Formaldehyde Formamide	ПСОИП	1000/								n	n			1
	HCONH ₂	100%	+	/-	+	+	+	+	+	n . /-	n . /-	+	+	1
Formic Acid		S 4000/	-	+/0	+	+	+	-	-	+/0	+/0	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	-	n	-	-	+	+	3
Furane Aldehyde	C ₅ H ₅ O ₂	100%	n	n	n	0	+	-	+/0	-	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	-	+	+	1
Gallic Acid	C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	+	+	+	+/0	+	+	+	+	1
Gasoline		100 %	-	-	+	+	+	+	-	-	-	+	+	2
Glauber's Salt => Sodium Sulp														
Glucose	C ₆ H ₁₂ O ₆	S	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol	$C_3H_5(OH)_3$	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	$C_3H_5(CH_3COO)_3$	100%	n	n	+	+	+	-	+	n	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	+	1
Glycol	$C_2H_4(OH)_2$	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+	+/0	+	+	1
Gypsum => Calcium Sulphate														
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-	-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	s	n	+	+	+	-	n	+	n	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%	n	n	+	+	+	-	+/0	-	-	+	+	1
Hexane	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n	+	-	0	+	+	1
Hexantriol	C ₆ H ₉ (OH) ₃	100%	n	n	+	+	+	+	+	n	n	+	+	1
Hexene	C ₆ H ₁₂	100%	n	+	+	+	+	+	-	-	-	+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S	+	+	+	+	+	n	+	-	0	+	+	3
Hydrobromic Acid	HBr	50%	+	+	+	+	-		+	+	-	+	0	1
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	+	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40%	40%		-	+	0	40%	-	40%		1
,				*	**			-					., -	-
Hydrogen Cyanide	HCN	s	+	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H ₂ O ₂	90%	40%	40%*	30%	+	+	30%	30%	30%	+	+	+	1
Hydroiodic Acid	HI	S	+	+	+	+	-	-	n	+	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+	+/0	+	+	2
Hydroxylamine Sulphate	(NH ₂ OH) ₂ * H ₂ SO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	S	+	+	0	+	-	+	+/0	+	+	0	+	(1)
lodine	l ₂	S	0	-	+	+	-	+	+/0	+	+	0	+/0	
Iron Vitriol => Ferrous Sulphate														
Isobutanol => Isobutyl Alcohol														
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%		+	+	+	+	+	+	-	0	+	+	1
,	-230(01.1/01.13													

1.1.2015 5

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Isopropanol => Isopropyl Alcoh		1.5-							,		,			
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂		-	-	+	+	+	-	+/0	-	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	-	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHCICH ₃	80%	-	-	0	+	+	+	-	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	-	0	0	+	1
Kitchen Salt => Sodium Chlorid											,			
Lactic Acid	C ₃ H ₆ O ₃	100%	-	+	+	+	+/0	+	10%	-	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate	DECO	_												(0)
Lead Sulphate	PbSO ₄	S 1000/	+	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	Pb(C ₂ H ₅) ₄	100%	+	+	+	+	+	+	-	n	n	+	+	3
Lime Milk => Calcium Hydroxid														
Liquid Ammonia => Ammonium Lithium Bromide	LiBr					+				,	+	+	+	1
Lithium Chloride	LiCI	s	+	+	+	+	+	+	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate	LICI	5	т	т	т	т	-	т	т	т	т	т	11	
Magnesium Carbonate	MgCO ₃	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium Chloride	MgCl ₂	s	+	+	+	+	0	+	+	+	+	+	+/0	1
Magnesium Hydroxide	Mg(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate	MgSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	$C_4H_4O_4$	s	+	+	+	+	+	+	+	-	0	+	+	1
Malic Acid	C ₄ H ₆ O ₅	s	+	+	+	+	+	+	+	+	+	+	+	1
Manganese-II-Chloride	MnCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone	WI11304	3	•	•	•	•	•	•	•	•	•	•	•	•
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	S	+	+	+	+	-	+	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	$Hg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	_		n	n	+	_	+/0	-	_	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0	-	+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	-	+/0	+	+	1
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0		0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	-	+/0	+	+	2
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	-	+	+	2
Methyl Catechol	$C_6H_3(OH)_2CH_3$	s	+	+	+	+	+	+		+	+0	+	+	(1)
Methyl Cellulose	06113(011)20113	S	+	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	-	+	+	2
Methyl Cyclopentane	$C_5H_9CH_3$	100%	+	+	+	+	+	+	-	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-	-	+	-	+	-	+	-	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+		+/0			+	+	1
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%	-	-	+	+	+	-	-	-	-	+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	-	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	+	2
Methylene Chloride => Dichloro														
Mirabilit => Sodium Sulphate														
Morpholine	C ₄ H ₉ ON	100%	-	-	+	-	+	n	n	-	-	+	+	2
Muriatic Acid => Hydrochloric A														
Natron => Sodium Bicarbonate														
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
	_		+	+	+	+	+	+	+	+	+	+	+/0	2
Nickel-II-Nitrate	Ni(NO ₂) ₂	5	-											
Nickel-II-Nitrate Nickel-II-Sulphate	Ni(NO ₃) ₂ NiSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	2

Chemical	Formula	Conc	Acryl		PP	PVDF					PharMed		HastelloyC	WPC
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	-	-	+	n	+	-	+/0	-	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	+	+	0	-	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+	-	-	-	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n	-	-	+	+	(1)
Oil => Engine Oils	1 27													
Oleum	$H_2SO_4 + SO_3$	s	n	-	-	-	+	+	-	+	+	-	+	2
Orthophosphoric Acid => Phos														
Oxalic Acid	(COOH) ₂	s	+	+	+	+	10%	+	+	+/0	+/o	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	-	+	+	1
Pentanol => Amyl Alcohol	-5.12													
Perchloric Acid	HClO₄	70%	n	10%	10%	+	-	+	+/0	0	+	+	n	1
Perchloroethylene => Tetrachle														
Perhydrol => Hydrogen Peroxi														
Petroleum Ether	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-	-	-	+	+	1
Phenole	C ₆ H ₅ OH	100%	_	-	+	+	+	+	-	10%	+	+	+	2
Phenyl Ethyl Ether	$C_6H_5OC_2H_5$	100%	-	-	+	n	+	-		-	-	+	+	2
Phenyl Hydrazine	$C_6H_5OC_2H_5$ $C_6H_5NHNH_2$	100%	-	-	0	+	+	0	-	-	-	0	+	2
Phosphoric Acid		85%	50%	+										1
•	H ₃ PO ₄			т	+	+	+	+	+	+ n	+	+	+	
Phosphorous Oxychloride	POCI ₃	100%	-		+	+	n	+	+	n	n ./o	+	+	1
Phosphorous Trichloride	PCl ₃	100%	-	-	+	+	+	0	+	+	+/0	+	+	1
Phthalic Acid	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+	-	+	+	+	1
Picric Acid	C ₆ H ₂ (NO ₃) ₃ OH	S	+	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	-	n	+	2
Potash Alum => Potassium Alu	· · · · · · · · · · · · · · · · · · ·													
Potassium Acetate	CH ₃ COOK	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate		S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	s	n	+	+	+	+	+	+	+	+	+	+	1
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	s	+	+	+	+	10%	+	+	+	+	+	0,1	1
Potassium Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	55%	+	+	1
Potassium Chlorate	KCIO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Chloride	KCI	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Potassium Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	3
Potassium Chrome Sulphate	KCr(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN	S	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	S	+	+	+	+	5%	+	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	$K_2Cr_2O_7$	s	+	+	+	+	25%	+	+	+	+	+	10%	3
Potassium Fluoride	KF	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Hydroxyde	KOH	50%	+	+	+	+	+	-	+	10%	10%	+	+	1
1 olassium riyuroxyue	KOH	JU /0	т	Т	т	(25 °C)			т	10 /0	10 /0	т	т	
Potassium Iodide	KI	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄	S	+	+	+	+	+	+	+	6%	6%	+	+	2
Potassium Persulphate	K ₂ S ₂ O ₈	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => P														
Potassium Sulphate	K ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Sulphite	K ₂ SO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Propionic Acid		100%	0	+		+	+			-	+/0	+	+	1
·	C ₂ H ₅ COOH				+			+	+		1 /U			
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	- /-	-	-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	-	+	+	1
Propylene Glycol	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	+	1
Prussic Acid => Hydrogen Cya														2
Pyridine	C ₅ H ₅ N	100%	-	-	0	-	+	-	-	-	0	+	+	

1.1.2015 7

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	-	+	+	2
Roman Vitriol => Copper Sulp	hate													
Salicylic Acid	HOC ₆ H ₄ COOH	S	+	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chlor														
Saltpeter => Potassium Nitrat														
Silic Acid	SiO ₂ * x H ₂ O	S	+	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	+	1
Silver Chloride	AgCl	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hydr	roxide													
Soda => Sodium Carbonate														
Sodium Acetate	NaCH ₃ COO	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate	C ₆ H ₅ COONa	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bicarbonate	NaHCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphite	NaHSO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate	NaBO ₂	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bromate	NaBrO ₃	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBr	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Carbonate	Na ₂ CO ₃	S	+	+	+	+	+/0	+	+	+	+	+	+	1
Sodium Chlorate	NaClO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Chloride	NaCl	s	+	+	+	+	-	+	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	+	10%	2
Sodium Chromate	Na ₂ CrO ₄	S	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Cyanide	NaCN	S	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dithionite		S	+	10%	10%	+	+	n	n	+	+		+/0	1
Sodium Fluoride	Na ₂ S ₂ O ₄ NaF						10%							
Sodium Hydrogen Sulphate =		S	+	+	+	+	10%	+	+	+	+	+	+	1
		E00/								100/	200/			1
Sodium Hydroxide	NaOH	50%	+	+	+	+ (60%/ 25 °C)	+	-	+	10%	30%	+	+	1
Sodium Hypochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	+	0	> 10%	2
Sodium Iodide	Nal	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Metaphosphate	(NaPO ₃) _n	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrate	NaNO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrite	NaNO ₂	S	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Oxalate	Na ₂ C ₂ O ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Perborate	NaBO ₂ *H ₂ O ₂	s	+	+/0	+	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	s	+	+	+	+	+	+	+	n	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	S	+	+	+	+	+	n	n	+	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na_2SiO_3	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+		+	+	+	+	+	+	2
Sodium Sulphite	_						+						50%	1
	Na ₂ SO ₃	S	+	+	+	+	50%	+	+	+	+	+		
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Thiosulphate	Na ₂ S ₂ O ₃	S	+	+	+	+	25%	+	+	+	+	+	25%	1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	S	+	+	+	+	+	+/0	+	+	+	+	+	1
Starch	(C ₆ H ₁₀ O ₅) _n	S	+	+	+	+	+	+	n	+	+	+	+	1
Starch Gum		S	+	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	-	0	+	2
Sublimate => Mercury-II-Chlo	ride													
Succinic Acid	C ₄ H ₆ O ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup		S	+	+	+	+	+	+	+	+	+	+	+	1
Sulphur Chloride => Disulphu	r Dichloride													
Sulphuric Acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	+	30%	30%	80%	+	1
	eum													
Sulphuric Acid, fuming> Ole							400/							(1)
	H ₂ SO ₃	s	+	+	+	+	10%	+	+	+	+	+	+	(')
Sulphurous Acid		s 100%	+	-	-	0	10% n	+	0	+	-	-	n	1
Sulphuric Acid, fuming> Ole Sulphurous Acid Sulphuryl Chloride Tannic Acid	H ₂ SO ₃													

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloromethane => Carbo	n Tetrachloride													
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	-	0	+	3
Tetralin => Tetrahydro Naphtha	alene													
THF => Tetrahydrofurane														
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	S	+	0	+	+	-	+	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	s	n	+	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	s	n	+	+	+	-	+	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	n	+	+	2
Tributyl Phosphate	(C ₄ H ₉) ₃ PO ₄	100%	n	-	+	+	+	-	+	0	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	-	0	0	+	3
Trichloro Methane => Chlorofo														
Trichloroacetaldehyde Hydrate	CCI ₃ CH(OH) ₂	s	-	-	0	-	+	0	0	n	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+	+/0	+	+	1
Tricresyl Phosphate	(C ₇ H ₇) ₃ PO ₄	90%	-	-	+	n	+	0	+	0	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	-	0	+	+	1
Trilene => Trichloro Ethane														
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	0	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	S	+	+/0	+	+	+	+	+	20%	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	-	+/o	+	+	2
Water Glass => Sodium Silicat	e													
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-	-	-	+	+	0	-	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+	+	+	1
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	+	n	1
Zinc Sulphate	ZnSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+	=	resistant
0	=	conditionally resistant
-	=	not resistant

The data has been taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetic acid	50	0
Acetic acid (wine vinegar)		0
Acetic acid anhydride	100	-
Acetic acid, aqueous	10	+
Acetic ester	100	-
Acetone	all	-
Acetylene tetrabromide	100	-
Aluminium salts, aqueous	all	+
Alums of all kinds, aqueous	all	+
Ammonium salts	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Butanol	100	+
Butyl acetate	100	-
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Calcium chloride, aqueous	all	+
Carbon disulphide	100	-
Carbonic acid	all	+
Caustic potash	15	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Copper sulphate, aqueous	all	+
Creosote		-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Difluorodichloromethane	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Ferric chloride, aqueous	all	+
Fertilizing manure salt, aqueous	all	+
Formaldehyde, aqueous	30	0
Glacial acetic acid	100	-
Glucose, aqueous	saturated	+
Glycerol	100	-
Halogens	all	
Halogens	an	

0 1.1.2015

Corrosive agent	Concentration in %	Evaluation
Hydrochloric acid	15	+
Hydrogen bromide	10	Ŧ
Hydrogen peroxide	to 10	+
Hydrogen sulphide, gaseous	100	-
Ink		+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Nitric acid, aqueous	25	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+
Silver nitrate	10	+
Sodium chloride, aqueous	all	+
Sodium hydroxide	aqueous	+
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sulphur dioxide, gaseous	all	+
Sulphuric acid	30	+
Tetrachloromethane	100	-
Toluene	100	-
Trichloroethylene	100	-
Urea, aqueous	all	+
Xylene	100	-
Zinc salts	all	+

Product catalogue 2015

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2015.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview

ProMinent®

Motor-driven and process metering pumps for all capacity ranges

Issued by:

ProMinent Dosiertechnik GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2015

Product Catalogue Volume 3

Motor Driven and Process Metering Pumps

Performance by design

Industrial applications using fluid metering technology are many and varied. They are often critical and each industry has its own specific requirements. You will find the right product here, regardless of whether you require a reliable metering pump for a routine or more complex application.

Chapter 1 offers virtually all-purpose motor-driven diaphragm metering pumps for use in the low-pressure range up to a capacity of 1,000 l/h, to ensure that your processes operate safely to meet maximum requirements. Advanced technology for demanding applications.

Chapter 2 focuses on heavy-duty pumps for extreme applications. Process metering pumps for hazardous production processes in the petrochemical industry or in the oil and gas industry, tailored specifically for high-end applications. They have proved themselves able to meter, even under very high pressure and at extreme temperatures - even toxic, corrosive and flammable liquids.

We're there for you!

The selection of a product depends on a number of different factors.

Our team will be happy to be of assistance should you have any questions about our metering technology. Give us a call! We look forward to hearing from you.

Monday to Friday 8:00 - 16:30

ProMinent Germany Sales

+49 6221 842-0 info-de@prominent.com

Technical Consulting

+49 6221 842-0 service@prominent.com

Pump Guide

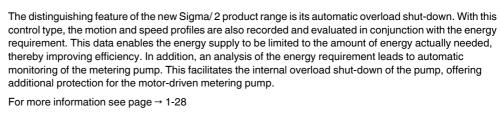
You can also find information online. Try out the ProMinent Selection Guide on our website. Just enter the required pump capacity and back pressure – and the Pump Guide will present you with a list of suitable metering pumps. It's the quickest and easiest way to track down the right pump for your needs.

www.pump-guide.com

Note:

We can also support you by phone in selecting the right products and, in many cases, optimising entire applications. For more complex requirements, our consultants will hand the task over to a field sales colleague, who will then clarify your requirements in person on site.

After-sales Service


Our service technicians are on hand to help you. Regardless of whether you need assistance with initial installation or with maintenance and repair – we'd be happy to help!

+49 6221 842-0 service@prominent.com

New Products; Motor driven and Process Pumps

Automatic Overload Shut-down as Pump Protection Function

Hydraulic Diaphragm Metering Pump Orlita® Evolution

The EF3a marks the launch of the Orlita $^{\odot}$ Evolution family, which will be showcased at ACHEMA 2015. The 4 product ranges EF1a to EF4a of the new family of process pumps to comply with API 675 provide a capacity ranging from 4 to 7,426 l/h at 400 to 10 bar.

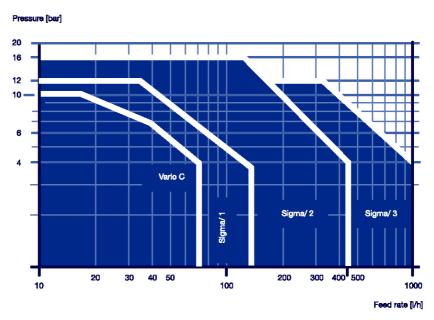
For more information see page \rightarrow 2-56

Contents

Moto	or-drive	en and process pumps for all capacity ranges	page
1	Moto	or Driven Metering Pumps	1-1
•	1.0	Overview of Motor Driven Metering Pumps	1-1
	1.0	1.0.1 Selection Guide	1-1
		1.0.2 Installation Options	1-2
	1.1	Motor Driven Metering Pump Vario C	1-3
		1.1.1 Motor Driven Metering Pump Vario C	1-3
		1.1.2 Identity Code Ordering System for VAMc	1-5
		1.1.3 Spare Parts	1-6
	1.2	Motor Driven Metering Pump Sigma/ 1 (Basic type)	1-7
		1.2.1 Motor Driven Metering Pump Sigma/ 1 (Basic type)	1-8
		1.2.2 Spare Parts	1-12
	1.3	Sigma/ 1 Control Type (S1Cb)	1-14
		1.3.1 Sigma/ 1 Control Type (S1Cb)	1-14
		1.3.2 Spare Parts	1-18
	1.4	Sigma/ 2 Basic Type (S2Ba)	1-22
		1.4.1 Sigma/ 2 Basic Type (S2Ba)	1-22
		1.4.2 Spare Parts	1-26
	1.5	Sigma/ 2 Control Type (S2Cb)	1-28
		1.5.1 Sigma/ 2 Control Type (S2Cb)	1-28
		1.5.2 Spare Parts	1-32
	1.6	Sigma/ 3 Basic Type (S3Ba)	1-34
		1.6.1 Sigma/ 3 Basic Type (S3Ba)	1-34
		1.6.2 Spare Parts	1-38
	1.7	Sigma/ 3 Control Type (S3Cb)	1-40
		1.7.1 Sigma/ 3 Control Type (S3Cb)	1-40
	4.0	1.7.2 Spare Parts	1-44
	1.8	Hydraulic/Mechanical Accessories	1-47
		1.8.1 Foot Valves	1-47
		1.8.2 Injection Valves	1-49
		1.8.3 Back Pressure Valves/Relief Valves	1-52
		1.8.4 Suction Lances/Suction Assemblies 1.8.5 Fittings	1-55
		1.8.5 Fittings 1.8.6 Pulsation Damper	1-58 1-59
		1.8.7 Accumulators	1-62
		1.8.8 Accumulators Without Diaphragm	1-63
		1.8.9 Connector Parts, Seals, Hoses	1-66
		1.8.10 Metering Pump Wall Mounting Bracket	1-71
	1.9	Electrical Accessories	1-72
	1.0	1.9.1 Speed Controllers	1-72
		1.9.2 General Electrical Accessories	1-74
	1.10	Special Accessories	1-77
	0	1.10.1 Custom Accessories	1-77
	1.11	Application Examples	1-81
		1.11.1 Metering of Highly Viscous Substances	1-81
		1.11.2 Mixing Two Reagents	1-82
		1.11.3 Safe and Reliable Chemical Metering with Reduced Pu	ulsation 1-84
2	Proc	ess Metering Pumps	2-1
_	2.0	Overview of Process Metering Pumps	2-1
		2.0.1 Selection Guide	2-1
		2.0.2 Installation Applications	2-2
	2.1	Diaphragm Metering Pump EXtronic®	2-3
		2.1.1 Diaphragm Metering Pump EXtronic®	2-3
		2.1.2 Identity Code Ordering System for EXBb	2-5
		2.1.3 Spare Parts	2-6
		2.1.4 Ex-Proof Ancillary Equipment	2-8
	2.2	Diaphragm Metering Pump Makro TZ	2-11
		2.2.1 Diaphragm Metering Pump Makro TZ	2-11
		2.2.2 Identity Code Ordering System for TZMb	2-13
		2.2.3 Spare Parts	2-14

Contents

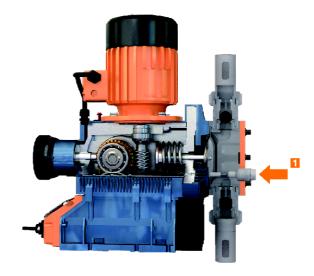
lotor-drive	en and process pumps for all capacity ranges	page
2.3	Diaphragm Metering Pump Makro/ 5	2-17
	2.3.1 Diaphragm Metering Pump Makro/ 5	2-17
	2.3.2 Identity Code Ordering System M5Ma	2-19
	2.3.3 Spare Parts	2-20
2.4	Hydraulic Diaphragm Metering Pumps Hydro	2-21
	2.4.1 Hydraulic Diaphragm Metering Pumps Hydro	2-21
	2.4.2 Identity Code Ordering System HP2a	2-23
	2.4.3 Spare Parts Kits	2-24
2.5	Hydraulik-Membrandosierpumpe Hydro/ 3	2-25
	2.5.1 Hydraulik-Membrandosierpumpe Hydro/ 3	2-25
	2.5.2 Identity Code Ordering System HP3a	2-27
	2.5.3 Spare Parts Kits	2-28
2.6	Hydraulik-Membrandosierpumpe Hydro/ 4	2-29
	2.6.1 Hydraulik-Membrandosierpumpe Hydro/ 4	2-29
	2.6.2 Identity Code Ordering System HP4a	2-31
	2.6.3 Spare Parts Kits	2-32
2.7	Hydraulic Diaphragm Metering Pump Makro/ 5	2-34
	2.7.1 Hydraulic Diaphragm Metering Pump Makro/ 5	2-34
	2.7.2 Identity Code Ordering System for M5Ha	2-37
	2.7.3 Spare Parts	2-39
2.8	Hydraulic Diaphragm Metering Pumps Orlita® MF	2-40
	2.8.1 Hydraulic Diaphragm Metering Pumps Orlita® MF	2-40
	2.8.2 Orlita® MFS 18 (MF1a) Hydraulic Diaphragm	
	Metering Pumps	2-44
	2.8.3 Orlita® MFS 35 (MF2a) Hydraulic Diaphragm	0.40
	Metering Pumps	2-46
	2.8.4 Orlita [®] MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps	2-48
	2.8.5 Orlita® MFS 180 (MF4a) Hydraulic Diaphragm	2-40
	Metering Pumps	2-50
	2.8.6 Orlita® MFS 600 (MF5b) Hydraulic Diaphragm	
	Metering Pumps	2-52
	2.8.7 Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm	
	Metering Pumps	2-54
2.9	Hydraulic Diaphragm Metering Pumps Orlita® Evolution 3	2-56
	2.9.1 Hydraulic Diaphragm Metering Pumps Orlita® Evolution 3	2-56
2.10	Hydraulic Diaphragm Metering Pumps Orlita® MH	2-58
	2.10.1 Hydraulic Diaphragm Metering Pumps Orlita® MH	0.50
0.44	with Metal Diaphragm	2-58
2.11	Hydraulic Metal Diaphragm Metering Pump High-pressure MHHP	2-60
	2.11.1 Hydraulic Metal Diaphragm Metering Pump High-pressure MHHP	2-60
2.12	9 •	2-60
2.12	Plunger Metering Pump Sigma/ 2 (Basic Type)	
	2.12.1 Plunger Metering Pump Sigma/ 2 (Basic Type)	2-61
	2.12.2 Identity Code Ordering System for SBKa	2-64
0.10	2.12.3 Spare Parts Kits	2-65
2.13	Plunger Metering Pump Sigma/ 2 (Control Type)	2-66
	2.13.1 Plunger Metering Pump Sigma/ 2 (Control Type)	2-66
	2.13.2 Identity Code Ordering System for SCKa	2-68
0.14	2.13.3 Spare Parts Kits	2-68
2.14	Plunger Metering Pump Meta	2-69
	2.14.1 Plunger Metering Pump Meta	2-69
	2.14.2 Identity Code Ordering System for MTKa	2-71
o 4 =	2.14.3 Spare Parts	2-72
2.15	Plunger Metering Pumps Makro TZ	2-73
	2.15.1 Plunger Metering Pumps Makro TZ	2-73
	2.15.2 Identity Code Ordering System TZKa	2-76
<u>.</u>	2.15.3 Spare Parts Kits	2-77
2.16	Plunger Metering Pumps Makro/ 5	2-78
	2.16.1 Plunger Metering Pumps Makro/ 5	2-78
	2.16.2 Identity Code Ordering System for M5Ka	2-81
	2.16.3 Spare Parts Kits	2-83


Contents

Mot	or-drive	en and process pumps for all capacity ranges	page
	2.17	Plunger Metering Pumps Orlita® PS 2.17.1 Plunger Metering Pumps Orlita® PS	2-84 2-84
	2.18	Plunger Metering Pump Orlita® DR 2.18.1 Plunger Metering Pump Orlita® DR	2-87 2-87
	2.19	Diaphragm Process Pump Zentriplex 2.19.1 Diaphragm Process Pump Zentriplex	2-89 2-89
	2.20	Diaphragm Process Pump TriPower® 2.20.1 Diaphragm Process Pump TriPower®	2-91 2-91
	2.21	Hydraulic/Mechanical Accessories 2.21.1 Return/Pressure Relief Valve, Spring-loaded	2-93 2-93
		2.21.2 Safety Valve 2.21.3 Pulsation Damper	2-94 2-95
3		Required for Specification of Metering Pump and ssories	3-1
4		inent® Chemical Resistance List	4-1
	Freque	ance of Materials Used in Liquid Ends to the Chemicals Most ntly Used	4-1
		ew of the Resistance of Soft PVC Hoses (Guttasyn®) to the ommon Chemicals	4-10

1.0 Overview of Motor Driven Metering Pumps

1.0.1 Selection Guide



pk_2_diagramm

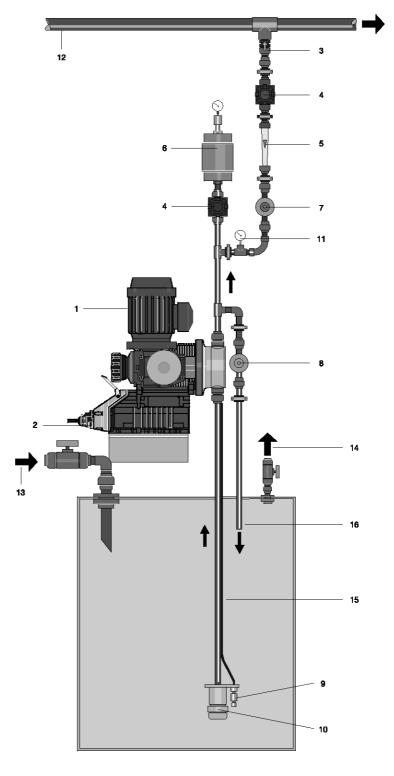
ProMinent offers an extensive range of metering pumps with a capacity rating of up to 1,000 l/h. All oscillating positive-displacement pumps feature a leak-free, hermetically sealed metering chamber and an identical operating structure.

Applications

- General: Chemical metering up to 1,000 l/h
- Potable water treatment: Metering of disinfectants
- Cooling circuits: Metering of disinfectants
- Waste water treatment: Metering of flocculants
- Paper industry: Metering of additives
- Plastics production: Metering of additives
- Textile industry: Metering of dyeing additives

P SI 0064 C3

Sigma multi-layer safety diaphragm (1: Diaphragm rupture warning system)


1.0 Overview of Motor Driven Metering Pumps

1.0.2

Installation Options

The smooth operation of metering systems depends not only on choosing the correct model for your application, but also on the correct installation of application-specific accessories. The drawing below illustrates a variety of accessory components, not all of which will be required for every plant, but which give an overview of what can be achieved in practical terms.

We are always at your service, to help you choose the right accessories for your processing application, and to provide any additional technical advice (e.g. calculating pipework requirements).

pk_2_000_1

Hellet Valve in by
Float switch

Metering pump Actuation and control options Injector valve Isolation assembly Flow measurement/monitoring Pulsation damper Back pressure valve Relief valve in bypass line

Motor Driven Metering Pump Vario C

pk_2_126

Vario C

Motor Driven Metering Pump Vario C

The basic pump for simple applications

Capacity range 8 - 76 l/h, 10 - 4 bar

The motor-driven metering pump Vario C delivers a high level of process quality for continuous metering within simple metering tasks. It can be used, for example, in the metering of additives or flocculants in chemical metering.

Your benefits

- Excellent suction capacity, gentle metering stroke and consistently precise metering
- Excellent process quality: Metering reproducibility is better than ± 2% within the stroke length adjustment range of 30 to 100%
- Flexible adjustment of the pump capacity by means of the stroke length in 1% increments
- Fibreglass-reinforced plastic housing
- Good adaptation to the specific application, thanks to 4 different gear reduction ratios and 2 sizes of liquid ends in 4 material designs
- Power end optionally available with three-phase or single-phase AC motor
- Customised designs are available on request

Technical details

- Stroke length: 3 mm
- Stroke length adjustment range: 30 100%
- Stroke length adjustment: manually by means of self-locking rotary dial
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PP, PVC, PVDF, stainless steel 1.4571/1.4404
- PTFE diaphragm
- Motor: Three-phase AC motor (0.07 KW, 230/400 V, 50/60 Hz) or single-phase AC motor (0.06 kW, 230 V 50 Hz or 115 V 60 Hz)
- Degree of protection: IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all motor-driven metering pumps during installation for safety reasons.

Field of application

- Chemical metering in potable water, cooling and waste water circuits
- Metering of additives, flocculants etc.

1.1 Motor Driven Metering Pump Vario C

Technical Data

Type VAMc	With 1500 rpm motor at 50 Hz				With 1800 rpm motor at 60 Hz			Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side
	Deli	•	ate at max. k pressure	Max. stroke rate		Delivery rate at back pressure	Max. stroke rate			
	bar	I/h	ml/stroke	Strokes/min	psi	I/h/gph (US)	Strokes/min	mWC	bar	G-DN
10008	10	8	4	38	145	9.6/2.5	45	7	2.8	3/4–10
10016	10	16	4	77	145	19.2/5.0	92	7	2.8	3/4–10
07026	7	26	4	120	100	31.2/8.2	144	7	2.8	3/4-10
07042	7	42	4	192	100	50.4/13.3	230	7	2.8	3/4–10
07012	7	12	5	38	100	14.4/3.8	45	6	1.7	3/4–10
07024	7	24	5	77	100	28.8/7.6	92	6	1.7	3/4–10
04039	4	40	5	120	58	48.0/12.6	144	6	1.7	3/4–10
04063	4	64	5	192	58	76.8/20.2	230	6	1.7	3/4–10

The shipping weight of all pump types is 6/7.2 kg (PVDF/SS)

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat
PPE	PP	PP	EPDM	Ceramic	PP
PCB	PVC	PVC	FKM	Ceramic	PVC
PVT	PVDF	PVDF	PTFE	Ceramic	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4404	PTFE

Motor Data

Identity code characteristic		Voltage supply		Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.07 kW
		250-280 V/440-480 V	60 Hz	0.07 kW
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.06 kW
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.06 kW

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

1.1 Motor Driven Metering Pump Vario C

1.1.2

Identity Code Ordering System for VAMc

Vario Diaphragm Metering Pump

VAMc	Type*								
		bar	l/h						
	10008	10	8						
	10016	10	16						
	07026	7	26						
	07042	7	42						
	07012	7	12						
	07024	7	24						
	04039		40						
	04063		64						
			al Liqui	id end					
				al EPDM					
		PCB		eal FKM					
		PVT		PTFE seal					
		SST		ss steel, PT					
		331		end versi					
			Diquid 0		on pring (standa	and DVC			
			1		e springs. H				
			'						
					connection				
					andard conne /C union nut				
					union nut a				
				_	/DF union nu				
						union nut and insert			
						nd hose nozzle			
						and hose nozzle			
						t and hose nozzle			
				8 St	8 Stainless steel union nut and hose nozzle				
					ersion				
				0		oMinent® logo (standard)			
				1		ProMinent® logo			
				M modified					
				Electrical power supply					
					S	3 ph, 230 V / 400 V; 50/60 Hz			
					M	1 ph AC 230 V; AC 50/60 Hz			
				N 1 ph AC 115 V; AC 60 Hz					
						Stroke sensor			
						0 no stroke sensor			
						3 with stroke sensor (Namur)			
						Stroke length adjustment			
						0 manual (standard)			

^{*} Digits 1 and 2=back pressure [bar]; digits 3, 4, 5=flow rate [l/h]

1.1 Motor Driven Metering Pump Vario C

1.1.3 Spare Parts

Vario spare parts kit

The spare parts kit generally includes wear parts for the liquid ends.

Scope of supply for PPE, PCB, PVT material versions

- 1 Metering diaphragm
- 1 Suction valve assembly
- 1 Discharge valve assembly
- 2 Valve balls
- 1 Seal set (O-rings or cover rings for PVT version, ball seat housings)

Scope of supply for SST material version

- 1 Metering diaphragm
- 2 Valve balls
- 1 Seal set (cover rings, flat seals, ball seat)

Applicable to Identity code: Type VAMc 10008, 10016, 07026, 07042

Liquid end	Materials in contact with the medium	Order no.
FM 042 - DN 10	PPE	910753
FM 042 - DN 10	PCB	910754
FM 042 - DN 10	PVT	1003641
FM 042 - DN 10	SST	910751

Applicable to Identity code: Type VAMc 07012, 07024, 04039, 04063

Liquid end	Materials in contact with the medium	Order no.
FM 063 - DN 10	PPE	910758
FM 063 - DN 10	PCB	910759
FM 063 - DN 10	PVT	1003642
FM 063 - DN 10	SST	910756

Pump diaphragms

	Order no.
Vario with FM 042 Type VAMc 10008, 10016, 07026, 07042	811458
Vario with FM 063 Type VAMc 07012, 07024, 04039, 04063	811459

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- Suction Lances/Suction Assemblies See page → 1-55
- Speed Controllers See page → 1-72

Spare Parts

■ Custom Accessories See page → 1-77

1.2.1

P_SI_0128_SW Sigma/ 1 Basic version

P_SI_0065_C1

1: Diaphragm rupture sensor

Motor Driven Metering Pump Sigma/ 1 (Basic type)

The robust pump for safe and reliable use

Capacity range 17 - 144 l/h, 12 - 4 bar

The Sigma/ 1 Basic is an extremely robust motor-driven metering pump with patented multi-layer safety diaphragm for excellent process safety. It offers a wide range of power end designs, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

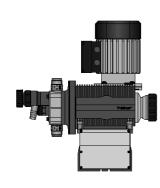
The Sigma/ 1 diaphragm metering pump together with pumps of type Sigma/ 2 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

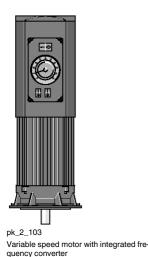
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % within the 30-100% stroke length adjustment range under certain defined conditions and after proper installation.

Flexible adaptation to the process:


- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Adaptation to specific installation situations, as the "Liquid end on left" is available as standard
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details


- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2 % within the 30-100% stroke length adjustment range under certain defined conditions and after proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExelIT3, II2GEExdIICT4)
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0152_SW Sigma / 1 liquid end on left

Sigma Basic Type Control Functions (S1Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100 %. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.18 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

Upon request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

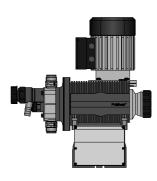
The speed controller assembly consists of a frequency converter and a variable speed motor of 0.09 kW

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510


Available for material version PVT and SST.

Identity code example: S1BaH04084PVTS00 F S000

Sigma / 1 Basic Type version "left liquid end "

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1BaH07042PVTS00 5 S000

P_SI_0152_SW

Motor Driven Metering Pumps

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic type)

Technical Data

Type S1Ba	With	า 1500	rpm moto	or at 50 Hz	With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure	Connection, suction/	Shipping weight	
	D	ma	y rate at ax. back ressure	Max. stroke rate	Deliv	ery rate at max. back pressure	Max. stroke rate		suction side	discharge side	
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg
12017 PVT	10	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	9
12017 SST	12	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	12
12035 PVT	10	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	9
12035 SST	12	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	12
10050 PVT	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4–10	9
10050 SST	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4–10	12
10022 PVT	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	9
10022 SST	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4–10	12
10044 PVT	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	9
10044 SST	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	12
07065 PVT	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	9
07065 SST	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	12
07042 PVT	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	10
07042 SST	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	14
04084 PVT	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	10
04084 SST	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	14
04120 PVT	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	10
04120 SST	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	14

Performance data for TTT, see type PVT

Materials in contact with the medium

Material	Dosing head	Suction/pressure onnector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT*	PTFE + 25 % carbon	PVDF	PTFE/PTFE	Ceramic	_

^{*} specifically for areas at risk from explosion

The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.09 kW	
		265-280 V/440-480 V	60 Hz	0.09 kW	
Т	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.09 kW	With PTC, speed adjustment range 1:5
		265-280 V/440-480 V	60 Hz	0.09 kW	
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.09 kW	With PTC, speed adjustment range
					1:20 with external fan 1ph 230 V; 50/ 60Hz
V0	1 ph, IP 55	230 V ±10 %	50/60 Hz	0.18 kW	Variable speed motor with integrated frequency converter control range 1:20
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.12 kW	
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.12 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.12 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.12 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18 kW	With PTC, speed adjustment range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the

Sigma/ 1 Basic Type (S1Ba)

	Drive type												
		Pump											
			bar	bar		I/h							
		12017		12*		17							
		12035 10050		12* 10		35 50							
		10030		10		22							
		10044		10		44							
		07065		7		65							
		07042		7		42							
		04084		4		84							
		04120		4		120							
			Mater	ial of li	quid er	nd							
			PV		(max. 1								
			SS		ess stee								
			TT			carbon	(max.	10 bar)					
					nateria								
				Т	PTFE								
					Diaph S		avor ca	foty dia	nhraam	with op	tical ru	atura in	dicator
					A		•	•					(contact)
					l'`		•	ersion	piliagili	withing	otaro or	ga	, (contact)
						0	No sp						
						1		-	prings,	Hastell	oy C, 0.	1 bar	
- [4**							ve spring, only with PV and SS
						5**							alve springs, only with PV and SS
						6**							out valve spring, only with PV and SS
						7**					PDM se	al, with	valve spring, only with PV and SS
									nnecti	on			
							0	Stand		l PVC ir	oort		
							2	-		PP ins			
							3			PVDF			
							4			SS ins			
							7	Union	nut and	PVDF	hose no	zzle	
							8	Union	nut and	SS hos	se nozz	le	
							9	Union	nut and	l stainle	ss stee	hose n	nozzle
								Versi			_		
								0		ProMine			dard)
								M	Modifi	ut ProM	inent® i	ogo	
								F			nical sat	ety (FD	OA) in respect of wetted materials
								5		uid end		Cty (i D	77) III respect of wetter materials
										ical po		nnlv	
									S				/60 Hz, 0.09 kW
									Т	3 ph, 2	230 V/4	00 V 50	1/60 Hz, with PTC
									R	Variab	le spee	d moto	r 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 $$
									V (0)				r with integrated frequency converter 1 pH, 230 V, 50/60 Hz
									Z				1 ph 230 V, 50/60 Hz (variable speed motor + FC)
									M				0 Hz, 0.09 kW
									N L				z, 0.09 kW
									P				0 Hz, (Exe, Exd) 0 Hz, (Exe, Exd)
									2				e (NEMA)
									3			_	6 (DIN)
											sure ra		- ()
										0		standa	rd)
										1	Exe m	otor ve	rsion ATEX-T3
- [2	Exd m	otor ve	rsion ATEX-T4
						1	1	1				e sens	
						1	1	1			0		oke sensor (standard)
						1	1	1			2		g relay (reed relay)
- [3		e sensor (Namur) for hazardous locations
- [e length adjustment
												0	Manual (standard)
							1					1 2	With stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 115 V/60 Hz
												3	With stroke positioning motor, 115 V/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz
												4	With stroke control motor, 020 mA 230 V/50/60 Hz
												5	With stroke control motor 020 mA 230 V/30/60 Hz
- 1												6	With stroke control motor 420 mA 115 V/60 Hz
							1			1			

 $^{^{\}star\star}$ Standard with tube nozzle in the bypass. Threaded connection on request.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

1.2.2 **Spare Parts**

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- $1\ x\ metering\ diaphragm,\ 1\ x\ suction\ valve\ compl.,\ 1\ x\ discharge\ valve\ compl.,\ 2\ x\ valve\ balls$
- 1 x elastomer seal kit (EPDM, FKM-B)
- 2 x ball seat bushings, 2 x ball washers, 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls
- 2 x seal kits compl. (packing rings, ball seat washers)
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 1 for Design with Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.
FM 50 - DN 10	PVT/TTT	1035964
FM 50 - DN 10	SST	1035966
FM 50 - DN 10	SST (with 2 valve assemblies)	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.
FM 65 - DN 10	PVT/TTT	1035967
FM 65 - DN 10	SST	1035969
FM 65 - DN 10	SST (with 2 valve assemblies)	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.
FM 120 - DN 15	PVT/TTT	1035961
FM 120 - DN 15	SST	1035963
FM 120 - DN 15	SST (with 2 valve assemblies)	1035962

Spare parts kits for Sigma/ 1 for design with old diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.
FM 50 - DN 10	PVT	1010541
FM 50 - DN 10	SST	1010554
FM 50 - DN 10	SST (with 2 valve assemblies)	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.
FM 65 - DN 10	PVT	1010542
FM 65 - DN 10	SST	1010556
FM 65 - DN 10	SST (with 2 valve assemblies)	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.
FM 120 - DN 15	PVT	1010543
FM 120 - DN 15	SST	1010558
FM 120 - DN 15	SST (with 2 valve assemblies)	1010559

Sigma/ 1 spare parts kit for FDA design (physiologically safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.
FM 50 - DN 10	PVT	1046466
FM 50 - DN 10	SST (without valve)	1046468
FM 50 - DN 10	SST (with valve)	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.
FM 65 - DN 10	PVT	1046469
FM 65 - DN 10	SST (without valve)	1046471
FM 65 - DN 10	SST (with valve)	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.
FM 120 - DN 15	PVT	1046453
FM 120 - DN 15	SST (without valve)	1046465
FM 120 - DN 15	SST (with valve)	1046464

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering diaphragm (old version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare parts kits for integrated relief valve

Consisting of two Hast. C compression springs and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- Suction Lances/Suction Assemblies See page → 1-55
- Speed Controllers See page → 1-72

Spare Parts

■ Custom Accessories See page → 1-77

1.3.1

P SI 0129 SW

Sigma/ 1 control type

Sigma/ 1 Control Type (S1Cb)

The intelligent pump for safe and reliable use in many applications

Capacity range 17 - 117 l/h, 12 - 4 bar

The Sigma / 1 Control can be used flexibly in a number of applications as an extremely robust motor-driven diaphragm metering pump. Excellent process safety and reliability is guaranteed with the patented multi-layer safety diaphragm. Highlights include its intelligent features, such as removable control unit and adjustable metering profiles, as well as a variety of power end and control configurations.

The Sigma/ 1 Control diaphragm metering pump together with pumps of type Sigma/ 2 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump features a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:

- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Adaptation to specific installation situations, as the "Liquid end on left" is available as standard
- Various control options are available, as well as trouble-free connection to bus-networked systems by PROFIBLIS®
- Customised designs are available on request

Technical details

- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually using self-locking rotary dial in 1% increments
- Metering reproducibility is better than ± 2 % in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit (HMI) with large illuminated LC display
- Metering profiles for optimum metering results
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (110 W)
- Degree of protection IP 65
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

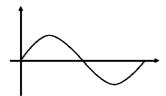
P_SI_0153_SW Sigma / 1 Control type design, liquid end on

P_SI_0099_SW3

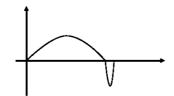
Detachable operating unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

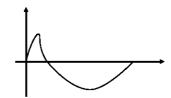
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 **F** UA10S0DE

Sigma / 1 Control Type version "left liquid end"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1CbH07042PVTS01 5 UA10S0DE

P_SI_0153_SW

Technical Data

Type S1Cb	De	-	rate at max. ck pressure	Max. stroke rate		livery rate at ack pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/stroke	Strokes/min	psi	gph (US)	mWC	bar	G-DN	kg
12017 PVT	10	21	3.8	90	145	5.5	7	1	3/4–10	9
12017 SST	12	21	3.8	90	174	5.5	7	1	3/4–10	12
12035 PVT	10	42	4.0	170	145	11.1	7	1	3/4-10	9
12035 SST	12	42	4.0	170	174	11.1	7	1	3/4–10	12
10050 PVT	10	49	4.0	200	145	12.9	7	1	3/4–10	9
10050 SST	10	49	4.0	200	145	12.9	7	1	3/4–10	12
10022 PVT	10	27	5.0	90	145	7.1	6	1	3/4–10	9
10022 SST	10	27	5.0	90	145	7.1	6	1	3/4–10	12
10044 PVT	10	53	5.1	170	145	14.0	6	1	3/4–10	9
10044 SST	10	53	5.1	170	145	14.0	6	1	3/4–10	12
07065 PVT	7	63	5.2	200	102	16.6	6	1	3/4-10	9
07065 SST	7	63	5.2	200	102	16.6	6	1	3/4–10	12
07042 PVT	7	52	9.5	90	102	13.7	3	1	1–15	10
07042 SST	7	52	9.5	90	102	13.7	3	1	1–15	14
04084 PVT	4	101	9.7	170	58	26.7	3	1	1–15	10
04084 SST	4	101	9.7	170	58	26.7	3	1	1–15	14
04120 PVT	4	117	9.7	200	58	30.9	3	1	1–15	10
04120 SST	4	117	9.7	200	58	30.9	3	1	1–15	14

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve	
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM	
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM	

The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification		Power supply			Remarks
IJ	1-phase IP 65	100 = 230 V +10 % / 240 V +6 %	50/60 Hz	110 W	

Sigma/ 1 Control Type (S1Cb)

S1Cb	Drive	type															
	Н	Main p		end, di	aphrag	m											
		Pump	type			.,,											
		12017		bar 12 *		I/h 21				07065		bar 7		I/h 63			
		12035		12 *		42				07042		7		52			
		10050		10		49				04084		4		101			
		10022		10		27				04120		4		117			
		10044		10		53											
			Dosi	ng hea	ad mat	erial											
			PV		(max		ır)										
			SS		less st												
				Seal	mater IPTFE												
				'	–		ent bo	dv									
					S				diaphr	agm with	tao r	ical rui	oture i	ndicato	or		
					Α		•	•		agm with							
						Dosi	ng hea	d ver	sion								
						0	no va	lve spi	ring (s	tandard)							
						1				gs, Haste	•						
						2				FKM sea							
						3 4**				FKM sea PM seal				_			
						5**				PM seal							
						6**				PDM se							
						7**				PDM se				_			
						8	with b	oleed v	alve, I	EPDM se	eal, r	no valv	e sprir	ng			
						9				EPDM se	eal, v	vith va	lve spi	ring			
								aulic d									
							0			onnection d PVC		r+				4 7	Union nut and stainless steel insert Union nut and PVDF tube nozzle
							2			nd PP in						8	Union nut and stainless steel tube nozzle
							3			nd PVDI		ert				9	Union nut and stainless steel welding sleeve
								Versi	on								
								0		ProMine		_					
								1		out ProM		_					
								F 5			_	satety	(FDA) in res	pect o	t wett	ed materials
								5		quid end		unnlı					
									U	ric pow			±10 %	5. 240 V	V ±6 %	5. 50/6	60 Hz, 110 W
										Cable				, =		,	, · · ·- · ·
										A		Europ	ре		С	2 m	Australia
										В	2 m	Swiss	3		D	2 m	USA
											Re						
											0	No re					2.4)
											1 3			ting re			3 A) 00 mA) + pacing relay (24 V, 100 mA)
											8			_	• •		fault indicating / pacing relay (24 V - 100 mA)
														rsions		P G C .	idan malading pasing rolay (2 · v · roo mily
												0				conta	act with pulse control
												1	as 0 -	+ analo	ogue +	mete	ring profiles
												6	as 1 -	+ PRO	FIBUS	® DP	interface, M 12
														load s			7.1.1
													0				switch-off
Langu DE	l age I Germ	an												Oper S	ating		,HMI) n cable)
EN	Englis													1		•	cable
ES	Spani													2			cable
FR	Frenc													3			n cable
IT	Italiar	1												Х	witho	ut ope	erating unit (HMI)
NL	Dutch														Acce	ss co	
PL	Polish														0		out access control; dynamic metering monitor
PT	Portu	guese													1	with	access control; dynamic metering monitor
						* 10 h	ar for	DVDI		.:							

^{* 10} bar for PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

 $^{^{\}star\star}$ Standard with tube nozzle in the bypass. Threaded connection on request.

Motor Driven Metering Pumps

Sigma/ 1 Control Type (S1Cb)

1.3.2 **Spare Parts**

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- $1\ x$ metering diaphragm, $1\ x$ suction valve compl., $1\ x$ discharge valve compl., $2\ x$ valve balls
- 1 x elastomer seal kit (EPDM, FKM-B)
- 2 x ball seat bushings, 2 x ball washers, 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls
- 2 x seal kits compl. (packing rings, ball seat washers)
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 1 for Design with Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.
FM 50 - DN 10	PVT/TTT	1035964
FM 50 - DN 10	SST	1035966
FM 50 - DN 10	SST (with 2 valve assemblies)	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.	
FM 65 - DN 10	PVT/TTT	1035967	
FM 65 - DN 10	SST	1035969	
FM 65 - DN 10	SST (with 2 valve assemblies)	1035968	

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.	
FM 120 - DN 15	PVT/TTT	1035961	
FM 120 - DN 15	SST	1035963	
FM 120 - DN 15	SST (with 2 valve assemblies)	1035962	

Spare parts kits for Sigma/ 1 for design with old diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.
FM 50 - DN 10	PVT	1010541
FM 50 - DN 10	SST	1010554
FM 50 - DN 10	SST (with 2 valve assemblies)	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.
FM 65 - DN 10	PVT	1010542
FM 65 - DN 10	SST	1010556
FM 65 - DN 10	SST (with 2 valve assemblies)	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.
FM 120 - DN 15	PVT	1010543
FM 120 - DN 15	SST	1010558
FM 120 - DN 15	SST (with 2 valve assemblies)	1010559

Sigma/ 1 spare parts kit for FDA design (physiologically safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium	Order no.	
FM 50 - DN 10	PVT	1046466	
FM 50 - DN 10	SST (without valve)	1046468	
FM 50 - DN 10	SST (with valve)	1046467	

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium	Order no.
FM 65 - DN 10	PVT	1046469
FM 65 - DN 10	SST (without valve)	1046471
FM 65 - DN 10	SST (with valve)	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium	Order no.	
FM 120 - DN 15	PVT	1046453	
FM 120 - DN 15	SST (without valve)	1046465	
FM 120 - DN 15	SST (with valve)	1046464	

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering diaphragm (old version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare parts kits for integrated relief valve (S1Ca, S1Cb)

Consisting of two Hast. C compression springs and four FKM-A and EPDM O-rings each $\,$

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202	

Spare parts kits for integrated bleed valve (S1Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each. For identity code feature "Dosing head version" with characteristic "2", "3", "8", "9".

	For material	Seals	Order no.
ETS	PVT/SST	FKM-A/EPDM	1043785

Motor Driven Metering Pumps

1.3 Sigma/ 1 Control Type (S1Cb)

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- \blacksquare Suction Lances/Suction Assemblies See page \rightarrow 1-55
- Speed Controllers See page \rightarrow 1-72

Spare Parts

■ Custom Accessories See page → 1-77

Sigma/ 2 Basic Type (S2Ba)

Sigma/ 2 Basic Type (S2Ba)

The robust pump for safe and reliable use Capacity range 50 - 420 l/h, 16 - 4 bar

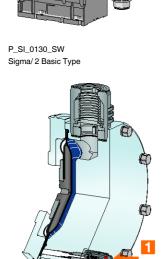
Robust motor-driven diaphragm metering pumps, like the Sigma/ 2 Basic guarantee excellent process reliability with their patented multi-layer safety diaphragm. The diaphragm metering pump offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The Sigma/ 2 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Excellent process safety and reliability:

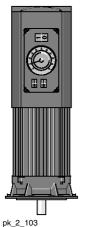
- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:


- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details

- Stroke length: 5 mm.
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.


Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P SI 0065 C1 1: Diaphragm rupture senso

Sigma/ 2 Basic Type (S2Ba)

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions (S2Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100 %. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.37 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103)

On request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW.

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" version comply with the FDA guideline.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S2BaHM07220PVTS00 F S000

Motor Driven Metering Pumps

Sigma/ 2 Basic Type (S2Ba)

Technical Data

Type S2Ba	Ba With 1500 rpm motor at 50 Hz			With 1800 rpm motor at 60 Hz			Suction Perm. pre- lift pressure	•	Shipping weight		
	Delivery rate at Max. max. back pressure stroke rate		Delivery rate at Max. max. back stroke pressure rate			suction side	discharge side				
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg
16050 PVT	10	50	11.4	73	145	60.0/15.8	87	7	3	1–15	15
16050 SST	16	47	11.4	73	232	56.0/14.7	87	7	3	1–15	20
16090 PVT	10	88	11.4	132	145	106.0/28.0	158	7	3	1–15	15
16090 SST	16	82	11.4	132	232	98.4/25.9	158	7	3	1–15	20
16130 PVT	10	135	10.9	198	145	156.0/41.2	238	7	3	1–15	15
16130 SST	16	124	10.9	198	232	148.0/39.0	238	7	3	1–15	20
07120 PVT	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	16
07120 SST	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	24
07220 PVT	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2–25*	16
07220 SST	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2-25*	24
04350 PVT	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	16
04350 SST	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	24

Performance data for TTT, see type PVT

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT**	PTFE + 25 % carbon	PVDF	PTFE/PTFE	Ceramic/glass*	-

^{*} With 07120, 07220, 04350

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.25 kW 0.25 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.25 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5 %	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter control range 1:20
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.18 kW	
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.18 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.18 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.18 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.21 kW	With PTC, speed adjustment range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

^{**} Specifically for areas at risk from explosion The ball seat is made of PVDF on the design "F"

1.4 Sigma/ 2 Basic Type (S2Ba)

Sigma/ 2 Basic Type (S2Ba)

S2Ba	Drive	type													
	НМ		drive, diaphragm												
		Pump	type												
			bar	bar		l/h									
		16050		16*		47									
		16090		16*		82									
		16130		16*		124									
		07120		7		126									
		07220		7 4		220 350									
		04350				350									
			PV		end material PVDF (max. 10 bar)										
			SS		ess stee	,									
			TT		+ 25 %		(max_1	0 bar)							
					nateria		(11100)(1-1	<i>5 24.</i> 7							
				T	PTFE										
					Diaph	ragm									
					S		•		_			oture ind			
					Α	Multi-l	ayer saf	ety dia	ohragm	with rup	ture si	gnalling	(contact)		
							end v								
						0	No spr	_							
						1				Hastello			. 1 34 707 100		
						4** 5**							ve spring, only with PV and SS		
						6**							live springs, only with PV and SS out valve spring, only with PV and SS		
						7**							valve spring, only with PV and SS		
						,			nnectic		DIVI 30	ai, witii	valve spring, only with the and se		
							0	Standa		,,,,					
							1	Union	nut and	PVC in	sert				
							2	Union	nut and	PP inse	ert				
							3	Union	nut and	PVDF i	nsert				
							4			SS inse					
							7			PVDF I					
							8			SS hos					
							9			stainles	ss stee	l hose n	ozzle		
			l					Version 0		roMino	st® loα	o (stand	dord)		
								1		ıt ProMi	_		dalu)		
								M	Modifie		HOH	logo			
								F			ical sa	fetv (FD	A) in respect of wetted materials		
										ical po			7		
									S			00 V 50	/60 Hz		
									Т				/60 Hz, with PTC		
									R				3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz		
									V (0)				r with integrated frequency converter 1 pH, 230 V, 50/60 Hz		
									Z				1 ph 230 V, 50/60 Hz (variable speed motor + FC)		
									M N			V/50/6			
									L			V, 60 F			
			1		ì					P				DHz, (Exe, Exd) DHz, (Exe, Exd)	
										1				ange, Gr. 71 DIN	
										2				NEMA 56 C	
											3			-	nge, Gr. 63 DIN
											Enclos				
										0		(standa	rd)		
										1	Exe m	otor vei	rsion ATEX-T3		
										2	Exd m	otor ve	rsion ATEX-T4		
												e senso			
											0		oke sensor (standard)		
											2	,	g relay (reed relay)		
											3		e sensor (Namur) for hazardous locations		
													e length adjustment		
												0	Manual (standard) With stroke positioning motor, 230 V/50/60 Hz		
												2	With stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 115 V/50/60 Hz		
												3	With stroke positioning motor, 115 V/50/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz		
												4	With stroke control motor, 420 mA 230 V/50/60 Hz		
												5	With stroke control motor, 420 mA 250 V/50/60 Hz		
												6	With stroke control motor, 420 mA 115 V/50/60 Hz		
•					* 10	bar w	ith the	PVDF	and T	T vers	ion.				

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

1.4 Sigma/ 2 Basic Type (S2Ba)

1.4.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- $1\ x$ metering diaphragm, $1\ x$ suction valve compl., $1\ x$ pressure valve compl., $2\ x$ valve balls,
- 1 x elastomer seal kit (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball washers, 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls, 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 2 for Design with Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT/TTT	1035951
FM 130 - DN 15	SST	1035957
FM 130 - DN 15	SST (with 2 valve assemblies)	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT/TTT	1035953
FM 350 - DN 25	SST	1035960
FM 350 - DN 25	SST (with 2 valve assemblies)	1035959

Spare parts kits for Sigma/ 2 for design with old diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT	740324
FM 130 - DN 15	SST	740326
FM 130 - DN 15	SST (with 2 valve sets)	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT	740325
FM 350 - DN 25	SST	740327
FM 350 - DN 25	SST (with 2 valve sets)	740329

Sigma/ 2 spare parts kit for FDA design (physiologically safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT	1046472
FM 130 - DN 15	SST (without valve)	1046473
FM 130 - DN 15	SST (with valve)	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT	1046475
FM 350 - DN 25	SST (without valve)	1046476
FM 350 - DN 25	SST (with valve)	1046477

1.4 Sigma/ 2 Basic Type (S2Ba)

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering diaphragm (old version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare parts kits for integrated relief valve

Consisting of two Hast. C compression springs and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203	

Gear oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- Suction Lances/Suction Assemblies See page → 1-55
- Speed Controllers See page → 1-72

Spare Parts

■ Custom Accessories See page → 1-77

1.5.1

Sigma/ 2 Control Type (S2Cb)

The intelligent pump for safe and reliable use in many applications

Capacity range 61 - 353 l/h, 16 - 4 bar

The Sigma/ 2 Control is a robust motor-driven diaphragm metering pump with a patented multi-layer safety diaphragm for outstanding process safety and reliability. The integrated automatic overload shutdown offers further protection for the pump. Its intelligent features, such as removable operating unit and adjustable metering profiles, as well as a variety of power end and control configurations, enable the versatile use of this pump in a number of applications.

The Sigma/ 2 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

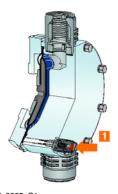
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Automatic integrated overload switch-off as a pump protection function
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:

- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Various control options are available, as well as trouble-free connection to bus-networked systems by PROFIBUS®
- Customised designs are available on request

Technical details


- Stroke length: 5 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2 % in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated automatic overload switch-off as a pump protection function
- $\hfill\blacksquare$ Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Power supply: 1-phase, 100 230 V ±10%, 240 V ± 6%, 50/60 Hz (220 W)
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0131_SW Sigma/ 2 control type

P_SI_0065_C1

1: Diaphragm rupture sensor

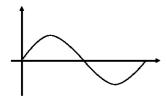
P_SI_0099_SW Abnehmbare Bedieneinheit

P_SI_0099_SW3

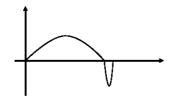
Detachable operating unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

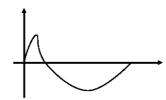
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P SI 0102 SW Diagram 1: Discharge stroke, suction stroke equal

P SI 0103 SW Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW Diagram 3: Short discharge stroke, long suction stroke

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Technical Data

Type S2Cb	Delivery rate at max. back pressure		Max. stroke rate	•	ate at max. k pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight	
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	mWC	bar	G-DN	kg
16050 PVT	10	61	11.4	90	145	16.1	7	3	1–15	15
16050 SST	16	56	10.4	90	232	14.8	7	3	1–15	20
16090 PVT	10	109	11.4	160	145	28.8	7	3	1–15	15
16090 SST	16	99	10.3	160	232	26.2	7	3	1–15	20
16130 PVT	10	131	10.9	200	145	34.6	7	3	1–15	15
16130 SST	16	129	10.9	200	232	34.1	7	3	1–15	20
07120 PVT	7	150	27.4	90	102	39.6	5	1	1 1/2–25	16
07120 SST	7	150	27.4	90	102	39.6	5	1	1 1/2–25	24
07220 PVT	7	271	27.7	160	102	71.6	5	1	1 1/2–25	16
07220 SST	7	271	27.7	160	102	71.6	5	1	1 1/2–25	24
04350 PVT	4	353	29.4	200	58	93.3	5	1	1 1/2–25	16
04350 SST	4	353	29.4	200	58	93.3	5	1	1 1/2–25	24

^{*} With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

^{*} With 07120, 07220, 04350

The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 – 230 V ±10 % / 240 V ±6 %	50/60 Hz	220 W	

Sigma/ 2 Control Type (S2Cb)

Cb Drive	t ype Main po	wer.	and di	anhro	am										
	Pump t		ena, ai	арпта	giii										
	rumpi		I/h												
	16050	16 *				16130	16 *	129			07220	7	271		
1 1	16090	16 *				07120		150			04350		353		
				ad ma	aterial										
					. 10 ba	ır)					SS	Stai	nless s	teel	
			Seal	mater	rial										
			Т	PTFE	seal										
				Disp	lacem	ent boo	ly								
				S		layer sa							ndicato	r	
				Α		layer sa	-	-	agm w	ith ele	ctrical s	gnal			
						ng head									
					0	no valv					C; 0.1 b	or			
					2					•	valve s				
					3						th valve				
					4**						valve sp	•	•		
					5**						n valve s	_			
					6**	with re	lief val	lve, E	PDM s	seal, n	o valve :	sprin	gs		
					7**						ith valve		_		
					8			,		,	o valve		•		
					9					seal, v	vith valv	e spi	ring		
						Hydra								4	Union with and attaining attacking out
						0			connec	ction /C inse	o et			4 7	Union nut and stainless steel insert Union nut and PVDF tube nozzle
						2				o inser				8	Union nut and stainless steel tube nozzle
						3				/DF in:				9	Union nut and stainless steel welding sleeve
							Versi								one management
									ProMi	nent® I	Logo				
							1	Witho	out Pro	Minen	t® Logo				
							F	with p	hysio	logical	safety (FDA) in res _l	oect o	f wetted materials
								Elect		wer s					
								U				10 %	, 240 \	/ ±6 %	6, 50/60 Hz, 220 W
										e and					
									A B	2 m S	Europe			C D	2 m Australia 2 m USA
									Ь	Rela				U	2 III OSA
										0	y No rela	av			
										1		•	ting rel	ay (23	30 V, 8 A)
										3			•	• •	4 V, 100 mA) + pacing relay (24 V, 100 mA)
										8	0/4-20	mA a	analogı	ue out	tput + fault indicating / pacing relay (24 V - 100 mA)
											Contr	ol ve	rsions		
											0	1			al contact with pulse control
											1				+ metering profiles
											6				JS® DP interface, M 12
													erload		
												0	_		erload switch-off ad switch-off
												l '			unit (HMI)
													S		(0.5 m cable)
													1		+ 2 m cable
													2		+ 5 m cable
													3		+ 10 m cable
													Х	witho	out operating unit (HMI)
														Acce	ess code
														0	without access control; dynamic metering monitor
														1	with access control; dynamic metering monitor
															Language
															DE German
				1	1										EN English
									1	1	1	1	1	l	ES Spanish
															FR French
															FR French IT Italian
															FR French IT Italian NL Dutch
															FR French IT Italian NL Dutch PL Polish
															FR French IT Italian NL Dutch

^{* 10} bar for PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

 $^{^{\}star\star}$ Standard with tube nozzle in the bypass. Threaded connection on request.

1.5.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- $1\ x$ metering diaphragm, $1\ x$ suction valve compl., $1\ x$ pressure valve compl., $2\ x$ valve balls,
- 1 x elastomer seal kit (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball washers, 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls, 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 2 for Design with Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT/TTT	1035951
FM 130 - DN 15	SST	1035957
FM 130 - DN 15	SST (with 2 valve assemblies)	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT/TTT	1035953
FM 350 - DN 25	SST	1035960
FM 350 - DN 25	SST (with 2 valve assemblies)	1035959

Spare parts kits for Sigma/ 2 for design with old diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT	740324
FM 130 - DN 15	SST	740326
FM 130 - DN 15	SST (with 2 valve sets)	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT	740325
FM 350 - DN 25	SST	740327
FM 350 - DN 25	SST (with 2 valve sets)	740329

Sigma/ 2 spare parts kit for FDA design (physiologically safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium	Order no.
FM 130 - DN 15	PVT	1046472
FM 130 - DN 15	SST (without valve)	1046473
FM 130 - DN 15	SST (with valve)	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium	Order no.
FM 350 - DN 25	PVT	1046475
FM 350 - DN 25	SST (without valve)	1046476
FM 350 - DN 25	SST (with valve)	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Motor Driven Metering Pumps

1.5 Sigma/ 2 Control Type (S2Cb)

Metering diaphragm (old version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare parts kit for integrated relief valve (S2Ca, S2Cb)

Consisting of two Hast. C compression springs and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203	

Gear oil

	Volume I	Order no.
Mobilgear 634 VG 460 gear oil	1	1004542

Spare parts kits for integrated bleed valve (S2Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each. For identity code feature "Dosing head version" with characteristic "2", "3", "8", "9".

	For material	Seals	Order no.	
ETS	PVT/SST	FKM-A/EPDM	1043785	

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- \blacksquare Connector Parts, Seals, Hoses See page \rightarrow 1-66
- $\,\blacksquare\,\,$ Suction Lances/Suction Assemblies See page \rightarrow 1-55
- Speed Controllers See page → 1-72

Spare Parts

■ Custom Accessories See page → 1-77

1.6.1

Sigma/ 3 Basic Type (S3Ba)

The robust pump for safe and reliable use

Capacity range 146 - 1,030 l/h, 12 - 4 bar

The patented multi-layer safety diaphragm for excellent process safety and reliability is just one feature of the extremely robust motor-driven diaphragm metering pump Sigma/3 Basic. It also offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The Sigma/ 3 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 2 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

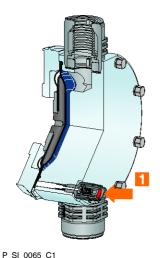
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

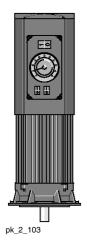
Flexible adaptation to the process:

- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details


- Stroke length: 6 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application


- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0132_SW Sigma/ 3

1: Diaphragm rupture sensor

Sigma Basic Type Control Functions (S3Ba)

Stroke length actuator/controller

Actuator with stroke positioning motor for automatic stroke length adjustment. Setting time approx. 1 sec for 1 % stroke length. Resistance potentiometer 1 k Ω . Enclosure rating IP 54.

Controller consisting of actuator with stroke positioning motor and in-built follower for stroke length adjustment via a standard signal. Standard signal current input 0/4-20 mA corresponds to stroke length 0 - 100 %. Can be switched between manual and automatic operation, key switch for stroke adjustment for manual operation. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.55 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

On request externally controllable via PROFIBUS® DP

Speed controllers in metal housing (identity code characteristic Z)

The speed controller assembly consists of a speed controller and a 0.55 kW variable speed motor.

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material design PVT and SST and DN 25 ball valve.

Identity code example: S3BaH120330PVTS00 F S000

Motor Driven Metering Pumps

1.6 Sigma/ 3 Basic Type (S3Ba)

Technical Data

Type S3Ba		Delivery	rate at	otor at 50 Hz Max. stroke rate	D	1800 rpm moto elivery rate at pack pressure	r at 60 Hz Max. stroke rate	Perm. pre- pressure suction side	Suction lift	Connection, suction/dis- charge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	bar	mWC	G-DN	kg
120145 PVT	10	146	33.7	72	145	174/45.9	86	2	5	1 1/2–25	22
120145 SST	12	146	33.7	72	174	174/45.9	86	2	5	1 1/2–25	26
120190 PVT	10	208	33.7	103	145	251/66.3	124	2	5	1 1/2–25	22
120190 SST	12	208	33.7	103	174	251/66.3	124	2	5	1 1/2–25	26
120270 PVT	10	292	33.8	144	145	351/92.7	173	2	5	1 1/2–25	22
120270 SST	12	292	33.8	144	174	351/92.7	173	2	5	1 1/2–25	26
120330 PVT*	10	365	33.8	180	145		-	2	5	1 1/2–25	22
120330 SST*	12	365	33.8	180	174		-	2	5	1 1/2–25	26
070410 PVT	7	410	95.1	72	102	492/129.9	86	1	4	2–32	24
070410 SST	7	410	95.1	72	102	492/129.9	86	1	4	2–32	29
070580 PVT	7	580	95.1	103	102	696/183.8	124	1	4	2-32	24
070580 SST	7	580	95.1	103	102	696/183.8	124	1	4	2-32	29
040830 PVT	4	830	95.1	144	58	1,000/264.1	173	1	3	2-32	24
040830 SST	4	830	95.1	144	58	1,000/264.1	173	1	3	2-32	29
041030 PVT*	4	1,030	95.1	180	58		-	1	3	2–32	24
041030 SST*	4	1,030	95.1	180	58		-	1	3	2–32	29

Performance data for TTT, see type PVT

Materials in contact with the medium

		DN 25 I	ball valves		DN 32 plate valves			
Material	Suction/pressure connector on dosing head	Seals	Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats	Integral relief valve
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM
SST	Stainless steel 1.4581	PTFE	Stainless steel 1.4404	PTFE**	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM
TTT***	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	-

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

On design "F", the ball seat is made of PVDF, only for DN 25 ball valves **Motor Data**

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW 0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed control range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.55 kW	With PTC, speed adjustment range 1:20 with separate fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5 %	50/60 Hz	0.55 kW	Variable speed motor with integrated frequency converter, control range 1:20 (1 ph, 230 V, 50/60 Hz)
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.55 kW	
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.55 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.37 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter. Mains feed: 3 ph + neutral + earth, control range 1:10

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Only available for 50 Hz.

^{***} Specifically for areas at risk from explosion

Sigma/ 3 Basic Type (S3Ba)

S3Ba Drive		.ر. م،	a.a.b											
Н	Main driv	,	aphrag	m										
	r unip ty		l/h				bar	I/h						
	120145					070410		410						
	120190	12 *	208			070580		580						
	120270					040830		830						
	120330				. •	041030	4	1,030						
				materi (max. 1										
		SS		ess stee	,									
		TT	PTFE	+ 25 %	25 % carbon (max. 10 bar)									
			_	s material										
			Т	T PTFE seal										
				Diaphragm S Multi-layer safety diaphragm with optical rupture indicator										
				Α		,	,					(contact)		
					Liquid	end ver								
					0	No valve		-		0.4	041	()		
					1							(standard for DN 32) /e springs, only with PV and SS		
					5							lve springs (standard at DN 32), only with PV and SS		
					6	With pre	ssure	relief v	alve, El	PDM se	al, witho	out valve spring, only with PV and SS		
					7					PDM se	al, with v	valve springs (standard at DN 32), only with PV and SS		
						Hydrau 0				connoc	tor (ac to	echnical data)		
						1		n nut ar			ioi (as le	Sommon adia)		
						2	Unio	n nut ar	nd PP ir	sert				
						3	-			F insert				
						4 7		n nut ar						
						8				F hose i ose noz				
						9					el hose i	nozzle		
							Vers							
							0			nt® logo				
							1 M	Modifi		inent® l	ogo			
							F			gical saf	ety (FDA	A) in respect of wetted materials (only for 12 bar version)		
										wer su				
								S		230 V/40		I DTO		
								T R			00 V, wit	th PTC 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 I		
								V (0)				with integrated frequency converter 1 ph, 230 V, 50/60 Hz		
								Z				1 ph 230 V//400 V (variable speed motor + FC)		
								М	1 ph, 2					
								N	1 ph, 1		20 1/ 0 0	27 I/M FO II= /Fvo Fvd)		
								L P				37 kW, 50 Hz, (Exe, Exd) 37 kW, 60 Hz, (Exe, Exd)		
								V (2)				with integr. FC Exd (delivery with frame)		
								1	No mo	otor, with	n B5 flan	nge, size 80 (DIN)		
								2				EMA flange		
								3		otor, with		nge, size 71 (DIN)		
									0	IP 55	ung			
									1		otor vers	sion ATEX-T3		
									2			sion ATEX-T4		
											senso			
										0		oke sensor (standard) relay (read relay)		
										3	_	sensor (Namur) for explosion-proof application		
											Stroke	length adjustment		
											0	Manual (standard)		
												With stroke positioning motor, 230 V/50/60 Hz		
												With stroke positioning motor, 115 V/50/60 Hz		
											1	With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz		
											1	With stroke control motor 020 mA 115 V/50/60 Hz		
												With stroke control motor 420 mA 115 V/50/60 Hz		
				* 1/	l Dhar fo	l or the P\	/DE	l and TT	I Tuoro	ion				

^{* 10} bar for the PVDF and TTT version

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

1.6.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm, 1 x suction valve compl., 1 x pressure valve compl., 2 x valve balls or valve plate with spring for DN 32, 1 x elastomer seal set (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls or valve plate with spring for DN 32,
- 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 3 for Design with Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium	Order no.
FM 330 - DN 25	PVT/TTT	1034678
FM 330 - DN 25	SST	1034679
FM 330 - DN 25	SST (with 2 valves compl.)	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium	Order no.
FM 1000 - DN 32	PVT/PPT/PCT/TTT	1034681
FM 1000 - DN 32	SST	1034682
FM 1000 - DN 32	SST (with 2 valves compl.)	1034683

Spare parts kits for Sigma/ 3 for design with old diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium	Order no.
FM 330 - DN 25	PVT	1005308
FM 330 - DN 25	SST	1005310
FM 330 - DN 25	SST (with 2 valve set)	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium	Order no.
FM 1000 - DN 32	PVT/PPT/PCT	1020032
FM 1000 - DN 32	SST	1005311
FM 1000 - DN 32	SST (with 2 valve set)	1005313

Sigma/ 3 spare parts kit for FDA design (physiologically safe)

Identity code type 120145, 120190, 120270, 120330

Liquid end	Materials in contact with the medium	Order no.
FM 330 - DN 25	PVT	1046478
FM 330 - DN 25	SST (without valve)	1046479
FM 330 - DN 25	SST (with valve)	1046480

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603

Metering diaphragm (old version)

	Order no.	
FM 330 Identity code: Type 120145, 120190, 120270, 120330	1004604	_
FM 1000 Identity code: Type 070410, 070580, 040830, 041030	1002835	

Spare parts kits for integrated relief valve

Consisting of two Hast. C compression springs and four FKM-A O-rings each

	for material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202

Gear oil

	Volume	Order no.
	1	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- Suction Lances/Suction Assemblies See page → 1-55
- Speed Controllers See page → 1-72

Spare Parts

■ Custom Accessories See page → 1-77

1.7.1

Sigma/ 3 Control Type (S3Cb)

The intelligent pump for safe and reliable use in many applications

Capacity range 182 - 1,040 l/h, 12 - 4 bar

The motor-driven diaphragm metering pump Sigma/ 3 Control guarantees excellent process reliability, thanks to its patented multi-layer safety diaphragm. Intelligent features, such as removable operating unit and adjustable metering profiles, as well as a variety of power end and control configurations, enable the versatile use of this pump in a number of applications.

The Sigma/ 3 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 2 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

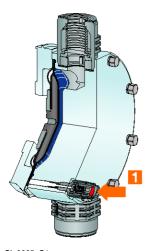
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process
- Metering reproducibility is better than ± 2 % with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:


- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Various control options are available, as well as trouble-free connection to bus-networked systems by PROFIBUS®
- Customised designs are available on request

Technical details


- Stroke length: 6 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2 % in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0101_SW Sigma/ 3 control type

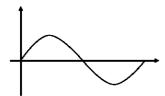
P_SI_0065_C1 1: Diaphragm rupture sensor

P SI 0099 SW3

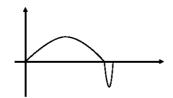
Detachable operating unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

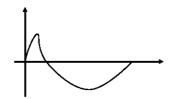
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P SI 0102 SW Diagram 1: Discharge stroke, suction stroke equal

P SI 0103 SW Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW Diagram 3: Short discharge stroke, long suction stroke

"Physiologically safe (FDA) in respect of wetted materials" version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Technical Data

Type S3Cb	De	.* .		Max. stroke rate	,	ate at max. k pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	mWC	bar	G-DN	kg
120145 PVT	10	182	33.7	90	145	48.0	5	2	1 1/2–25	22
120145 SST	12	182	33.7	90	174	48.0	5	2	1 1/2–25	26
120190 PVT	10	243	33.7	120	145	64.1	5	2	1 1/2-25	22
120190 SST	12	243	33.7	120	174	64.1	5	2	1 1/2–25	26
120270 PVT	10	365	33.8	180	145	96.4	5	2	1 1/2–25	22
120270 SST	12	365	33.8	180	174	96.4	5	2	1 1/2–25	26
070410 PVT	7	500	95.1	90	102	132.0	4	1	2–32	24
070410 SST	7	500	95.1	90	102	132.0	4	1	2–32	29
070580 PVT	7	670	95.1	120	102	176.9	4	1	2–32	24
070580 SST	7	670	95.1	120	102	176.9	4	1	2–32	29
040830 PVT	4	1,040	95.1	180	58	274.7	3	1	2–32	24
040830 SST	4	1,040	95.1	180	58	274.7	3	1	2–32	29

Materials in contact with the medium

		DN 25	ball valves		DN 32 plate valves				
Material	Suction/pressure connector	Seals	Valve balls	Valve	Seals	Valve plates/	Valve	Integral relief valve	
	on the dosing head			seats		valve springs	seats		
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast	PTFE	PVDF/FKM or EPDM	
						C. + CTFE*			
SST	Stainless steel 1.4581	PTFE	Stainless	PTFE**	PTFE	Stainless steel	PTFE	Stainless steel/FKM	
			steel 1.4404			1.4404/ Hast. C		or EPDM	

 $^{^{\}star}$ The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 – 230 V +10 % / 240 V +6 %	50/60 Hz	420 W	

^{**} The ball seat is made of PVDF on design "F"

Sigma/ 3 Control Type (S3Cb)

S3Cb	Dri	ve type													
		Main po	wer e	nd, dia	phrag	gm									
		Pump t	уре												
			bar						l/h				l/h		
		120145 120190		182			120270				070580		670		
		120190	. –		- al .a. a		070410	/	500		040830	4	1,040		
				ng hea PVDF									SS	Stainles	ss steel
					•		ω.,							O 10	,
Displacement body															
S Multi-layer safety diaphragm with optical rupture indicator A Multi-layer safety diaphragm with electrical signal															
					Α			-		gm wit	n electrical s	signa			
						0	ng head no valve			ndard)					
						1			٠,	,	elloy C; 0.1 I	oar (s	tandard	d for DN 3	32)
						2	with ble	ed va	lve, FK	(M sea	l, no valve s	pring			
						3					I, with valve	•	-		
						4**					, no valve s _i	_			
						5** 6**					, with valve al, no valve		_		
						7**					al, no valve al, with valv	•	_		
						8					eal, no valve		_		
						9	with ble	ed va	lve, EF	PDM se	eal, with valv	e sp	ring		
							Hydrau				.,				
							0		dard c		tion C insert			4 7	Union nut and stainless steel insert Union nut and PVDF tube nozzle
							2		on nut a					8	Union nut and stainless steel tube nozzle
							3	-			DF insert			9	Union nut and stainless steel welding sleeve
								Vers	sion						
								0			ent® Logo				
								1 F			Minent® Log		•		
								F		•		(FD)	A) in res	spect of v	vetted materials (only for 12 bar version)
									Liecu		ver supply 100 – 230 V	+10 9	% 240	V +6 % !	50/60 Hz, 420 W
											and plug		,0, = .0		50/00 T.E., 120 T.
											Europe			С	2 m Australia
											Swiss			D	2 m USA
										Re					
										0	No relay		n relav	(230 V, 8	8 A)
										3			• .		00 mA) + pacing relay (24 V, 100 mA)
										8					fault indicating / pacing relay (24 V - 100 mA)
											Control				
											0				ontact with pulse control
											6			0	etering profiles DP interface, M 12
											O			witch-of	,
												0			id switch-off
Langu														iting uni	
		man											S		5 m cable)
		glish											1		2 m cable
		anish nch											2		5 m cable 10 m cable
	Itali												X		operating unit (HMI)
	Dut													Access	· · · · · · · · · · · · · · · · · · ·
	Poli	ish												0 with	out access control; dynamic metering monitor
PT	Por	tuguese												1 with	access control; dynamic metering monitor

^{* 10} bar for PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

1.7.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm, 1 x suction valve compl., 1 x pressure valve compl., 2 x valve balls or valve plate with spring for DN 32, 1 x elastomer seal set (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls or valve plate with spring for DN 32,
- 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kit for Sigma/ 3 for Design with Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium	Order no.
FM 330 - DN 25	PVT/TTT	1034678
FM 330 - DN 25	SST	1034679
FM 330 - DN 25	SST (with 2 valves compl.)	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium	Order no.
FM 1000 - DN 32	PVT/PPT/PCT/TTT	1034681
FM 1000 - DN 32	SST	1034682
FM 1000 - DN 32	SST (with 2 valves compl.)	1034683

Spare parts kits for Sigma/ 3 for design with old diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	1005308
FM 330 - DN 25	SST	1005310
FM 330 - DN 25	SST (with 2 valve set)	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium	Order no.
FM 1000 - DN 32	PVT/PPT/PCT	1020032
FM 1000 - DN 32	SST	1005311
FM 1000 - DN 32	SST (with 2 valve set)	1005313

Sigma/ 3 spare parts kit for FDA design (physiologically safe)

Identity code type 120145, 120190, 120270, 120330

Liquid end	Materials in contact with the medium	Order no.
FM 330 - DN 25	PVT	1046478
FM 330 - DN 25	SST (without valve)	1046479
FM 330 - DN 25	SST (with valve)	1046480

Motor Driven Metering Pumps

1.7 Sigma/ 3 Control Type (S3Cb)

Multi-layer Safety Diaphragm (Standard)

	Order no.	
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604	
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603	

Metering diaphragm (old version)

	Order no.	
FM 330 Identity code: Type 120145, 120190, 120270, 120330	1004604	<u>.</u>
FM 1000 Identity code: Type 070410, 070580, 040830, 041030	1002835	

Spare parts kit for integrated relief valve (S3Ca, S3Cb)

Consisting of two Hast. C compression springs and four FKM-A O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202

Gear oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare parts kits for integrated bleed valve (S3Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each. For identity code feature "Dosing head version" with characteristic "2", "3", "8", "9".

		Pump type	For material	Seals	Order no.	
•	ETS	120145, 120190, 120270	PVT/SST	FKM-A/EPDM	1043785	
	ETS	070410, 070580, 040830	PVT/SST	FKM-A/EPDM	1043786	

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Motor Driven Metering Pumps

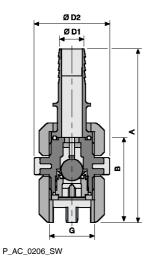
1.7 Sigma/ 3 Control Type (S3Cb)

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valves See page → 1-47
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-66
- Suction Lances/Suction Assemblies See page → 1-55
- Speed Controllers See page → 1-72


Spare Parts

■ Custom Accessories See page → 1-77

1.8.1 Foot Valves

For connection to the end of the suction line, used as a vacuum breaker and for protection of the pump against contamination. With filter meshes and ball check. Materials used as in the pump liquid ends. Union nuts and inserts/tube nozzles are included in the scope of supply with DN 10 and DN 15 foot valve sizes.

Important: Foot valves are not suitable as absolutely leak-tight shut-off devices.

PPE foot valve

Housing made of PP, seals made of EPDM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	59	40	101	16	809465
DN 15	1	66	47	142	20	924516
DN 20	1 1/4	77	55	_	_	803721
DN 25	1 1/2	84	60	_	-	803722
DN 32*	2	98	74	-	_	1006434
DN 40	2 1/4	113	90	-	-	1004204

^{*} PVDF/Teflon version

PCB foot valve

Housing made of PP, seals made of FKM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809464	
DN 15	1	66	47	142	20	924515	
DN 20	1 1/4	77	55	-	_	803723	
DN 25	1 1/2	84	60	-	_	803724	
DN 32*	2	98	74	-	_	1006434	
DN 40	2 1/4	113	90	-	-	1004193	

^{*} PVDF/Teflon version

PVT foot valve

Housing made of PVDF, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1029471	
DN 15	1	64	48	131	20	1029472	
DN 20	1 1/4	78	58	-	_	1029473	
DN 25	1 1/2	81	65	-	-	1029474	
DN 32	2	98	74	-	-	1006434	
DN 40	2 1/4	108	83	-	-	1029475	

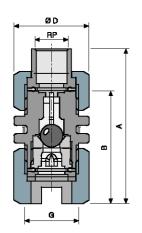
Ø D2 Ø D1 Ø D2 P_AC_0202_SW

TT foot valve

Housing made of PTFE, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

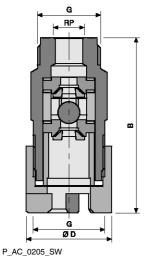
	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809466	
DN 15	1	66	47	142	20	924517	
DN 20	1 1/4	81	57	_	_	803725	
DN 25	1 1/2	86	64	-	-	803726	
DN 32*	2	98	74	-	-	1006434	
DN 40	2 1/4	116	89	-	-	1004205	


PVDF/Teflon version

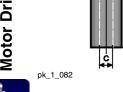
SS foot valve

SS housing, PTFE seals spring-loaded with ball check (1.4571/1.4581).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

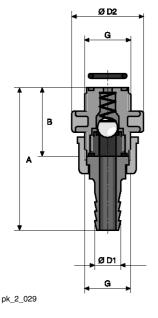

	G	Α	В	Rp	ØD	Order no.	
		mm	mm		mm		
DN 10	3/4	75	56	3/8	37	809467	
DN 15	1	83	59	1/2	48	924518	
DN 20	1 1/4	_	73	-	55	803727	
DN 25	1 1/2	-	82	-	63	803728	
DN 32	2	_	92	-	75	1006435	
DN 40	2 1/4	-	109	-	90	1004206	

P_AC_0204_SW


Foot valve SS for high-pressure pumps

	G	В	Rp	ØD	Order no.	
		mm		mm		
DN 10	3/4	70	1/4	41	803730	
DN 10	3/4	70	3/8	41	803731	

Ceramic weight for vertical alignment


	Ø A	В	ØС	Weight	Order no.
	mm	mm	mm	g	
Size 3	40	50	24	70	1030189

1.8.2 Injection Valves

For connecting the metering line to the metering station; metering valves consist of a non-return ball valve and a Hastelloy C spring (0.5 bar pre-pressure) and can be installed in any position. Used for generating pressure and preventing backflow. Materials match those in the pump liquid ends. Metering valve sizes DN 10 and 15 come with the required union nut and insert/hose socket.

Important: Metering valves are not suitable for use as tight-sealing shut-off elements.

PPE injection valve

PP housing, EPDM seals with spring-loaded ball check (glass), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar 50 °C - max. operating pressure 9 bar

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	41	40	83	16	809461
DN 15	1	43	47	108	20	924521
DN 20	1 1/4	55	55	_	_	803710
DN 25	1 1/2	60	58	-	-	803711
DN 32*	2	68	70	-	_	1002783
DN 40	2 1/4	85	84	-	-	804761

^{*} PVDF/Teflon version

PCB injection valve

PVC housing, FKM seals with spring-loaded ball check (glass), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	41	40	83	16	809460	
DN 15	1	43	47	108	20	924520	
DN 20	1 1/4	55	55	-	_	803712	
DN 25	1 1/2	60	58	-	-	803713	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804760	

^{*} PVDF/Teflon version

PVT injection valve

PVDF housing, PTFE seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.

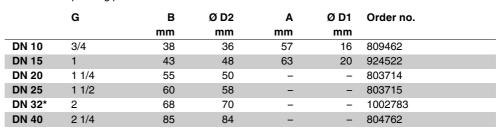
DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

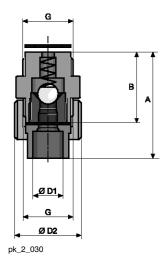
Operating range

25 °C - max. operating pressure 16 bar 65 °C - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	40	36	84	16	1029476
DN 15	1	43	48	110	20	1029477
DN 20	1 1/4	55	52	_	-	1029478
DN 25	1 1/2	61	56	-	-	1029479
DN 32	2	68	70	_	-	1002783
DN 40	2 1/4	85	81	-	-	1029480


TT injection valve

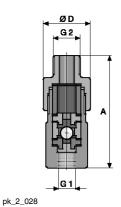
PTFE housing, PTFE seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.


DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

25 °C - max. operating pressure 10 bar 90 °C - max. operating pressure 5 bar

PVDF/Teflon version

SS injection valve


SS housing, PTFE seals with ball check (1.4571/1.4581), priming pressure approx. 0.5 bar.

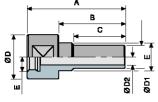
DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

Applications

90 °C - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	Α	Ø D1	Order no.
		bar	mm	mm	mm		
DN 10	3/4	320	38	36	55	3/8	809463
DN 15	1	240	43	48	63	1/2	924523
DN 20	1 1/4	130	55	55	_		803716
DN 25	1 1/2	70	60	58	-		803717
DN 32	2	45	69	68	_		1002801
DN 40	2 1/4	25	85	84	-		804763

SS Injection valve for Sigma/Meta/Makro TZ-HK


Housing and valve spring made of 1.4571, ball made of 1.4401, PTFE seals, priming pressure approx. 0.1 bar.

Applications

90 $^{\circ}\text{C}$ - max. operating pressure, see table

	Max. pressure	G1	G2	ØD	Α	Order no.	
	bar			mm	mm		
DN 8	320	Rp 1/4	Rp 1/2	42	85	803732	
DN 10	190	Rp 3/8	Rp 1/2	42	90	803733	

PVDF metering valve adapter

P_	AC	_0201	_SW
----	----	-------	-----

E	Α	В	С	ØD	Ø D1	Ø D2	Order no.
	mm	mm	m	mm	mm	mm	
R 3/4	93	63	49	42	22	15	1022052
R 1	95	65	50	47	27	18	1022053
G 1 1/4*	150	119	104	56	27	18	1040722
G 1 1/2*	171	135	118	64	31	20	1040723

^{*} In set with 1 x FKM and 1 x EPDM O-ring.

1.8.3

Back Pressure Valves/Relief Valves

DHV-U series back pressure valves can be used universally and are back pressure-free piston diaphragm valves with an internal flow. They can be used to generate a constant back pressure, used as relief valves and be assembled anywhere in the pipework system.

Back pressure valves are used to generate a constant back pressure for precise chemical feed and/or to protect against over metering with a free outlet, fluctuating back pressure or to dose into a vacuum. They can also be used in conjunction with pulsation dampers for low-pulsation metering.

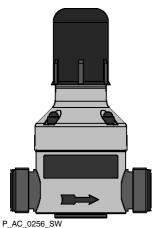
Relief valves are installed in the bypass to protect pumps, pipework and fittings from excess pressure as a result of operational errors or blockages. In the event of a malfunction, the pump conveys in a loop or back into the storage tank.

Important: Back pressure valves cannot be used as absolutely leak-tight shut-off devices. All relevant safety precautions should be taken when using with hazardous chemicals.

Important: Appropriate safety measures should be implemented when using as relief valves in conjunction with agglutinative media (e. g. milk of lime) (for instance flushing after activation).

Back Pressure Valve / Relief Valve Type DHV-U

Adjustable pressure


0.5 - 10 bar

Applications of PPE / PPB / PCE / PCB

20 °C - max. operating pressure 10 bar

Applications of PVT / SST

30 °C - max. operating pressure 10 bar

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1037285
PPB	DN 10	3/4	1038133
PCE	DN 10	3/4	1038144
PCB	DN 10	3/4	1037765
PVT	DN 10	3/4	1037767
SST	DN 10	3/4	1043194
PPE	DN 15	1	1036816
PPB	DN 15	1	1038145
PCE	DN 15	1	1038146
PCB	DN 15	1	1037764
PVT	DN 15	1	1037766
SST	DN 15	1	1043193
PPE	DN 20	1 1/4	1037284
PPB	DN 20	1 1/4	1038147
PCE	DN 20	1 1/4	1038148
PCB	DN 20	1 1/4	1037775
PVT	DN 20	1 1/4	1037777
SST	DN 20	1 1/4	1043192
PPE	DN 25	1 1/2	1036633
PPB	DN 25	1 1/2	1038149
PCE	DN 25	1 1/2	1038150
PCB	DN 25	1 1/2	1037774
PVT	DN 25	1 1/2	1037776
SST	DN 25	1 1/2	1043191

Materials

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-U (PP, PV, PVDF version)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M6	40
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

^{*} Approximate values

Dimensions of DHV-U (SS version)

|--|

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46

^{*} Approximate values

P_MOZ_0005_SW

P_AC_0256_m

Back pressure valve/relief valve type DHV 712-R


Adjustable pressure 0.5 – 10 bar

Applications of PPE / PCB

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Applications of PVT / TT / SS

30 °C - max. operating pressure 10 bar

Туре	G	Nominal diameter	Order no.
PPE	2	DN 32	1000035
PPE	2 1/4	DN 40	1000036
PCB*	2	DN 32	1000051
PCB*	2 1/4	DN 40	1000052
PVT	2	DN 32	1000057
PVT	2 1/4	DN 40	1000058
TT	3/4	DN 10	1000059
TT	1	DN 15	1000060
TT1	1 1/4	DN 20	1000061
TT1	1 1/2	DN 25	1000062
TT1	2	DN 32	1000063
TT1	2 1/4	DN 40	1000064
SS1	2	DN 32	1000069
SS1	2 1/4	DN 40	1000070

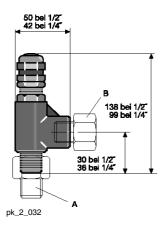
^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

pk_2_031

Dimensions of DHV 712-R

DN	G	Н	L	h	D	m
		mm	mm	mm	mm	
32	2	260	205	59** / 37***	147	M8
40	2 1/4	260	205	59** / 37***	147	M8

*= Approx. values;


** = PP, PVC, PVDF;

*** = TT, SS

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PP	EPDM	EPDM
PCB	PVC	PVC	FKM	FKM
PVT	PVDF	PTFE ²	PTFE ³	FKM
TT1	PTFE with carbon	PTFE ²	PTFE ³	PTFE ³

- ² PTFE (white)
- 3 Packing ring PTFE/FKM

Pressure relief valve/overflow valve for high-pressure applications

Connection

Use as a pressure relief valve (adjustable) and as a back pressure valve. Overflow valve and corresponding spring must be ordered separately.

Material: stainless steel 316/FKM

Temperature range: -18 °C to 120 °C

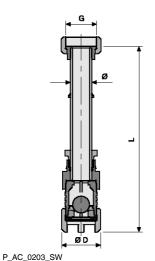
Recommended use up to 200 l/h

	Connection	Oraci iio.
Overflow valve	1/4" NPT inner and outer thread	202505
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	202519
24.0 - 52 bar	yellow	202520
52.0 - 103 bar	violet	202525
103.0 – 155 bar	orange	202524
155.0 – 207 bar	brown	202523
207.0 – 276 bar	white	202522
276.0 – 345 bar	red	202521

Order no

Recommended use up to 300 l/h

	Connection	Order no.
Overflow valve	1/2" NPT inner and outer thread	1005499
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	1005500
24.0 - 50 bar	yellow	1005501
50.0 – 100 bar	violet	1005502


Reducing pipe nipple

Connection	Order no.
1/4" NPT inner - 1/4 K outer (A)	359378
1/4" NPT outer - 1/4 inner (B)	359379
1/2" NPT inner - 1/2 K outer (A)	1005503
1/2" NPT outer - 1/2 inner (B)	1005504

1.8.4

Suction Lances/Suction Assemblies

PPE Suction assembly for 1,000 I tank

Connection	G	Ø	ØD	L	Order no.	
		mm	mm	mm		
DN 10	3/4	20	47	1,340*	790389	
DN 15	1	20	47	1,320*	790394	
DN 20	1 1/4	25	55	1,345*	790395	
DN 25	1 1/2	32	60	1,315*	790396	
DN 32	2	40	74	1,170*	1005524	

^{*} The length L can be adapted (shortened) on site by the customer.

An adapter can be used for tube applications: Intake fitting – hose connection kit → 1-57

PCB Suction assembly for 1,000 I tank*

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Connection	G	Ø	ØD	L	Order no.	
		mm	mm	mm		
DN 10	3/4	20	47	1,340**	790387	
DN 15	1	20	47	1,320**	790391	
DN 20	1 1/4	25	55	1,345**	790392	
DN 25	1 1/2	32	60	1,315**	790393	
DN 32	2	40	74	1,170**	1005525	

^{**} The length L can be adapted (cut) by the customer.

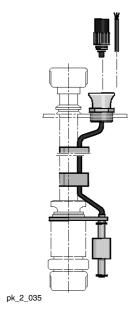
An adapter can be used for tube applications: Intake fitting – hose connection kit \rightarrow 1-57

PVDF Level switch kit compl. two-phase

The level switch kit can be ordered together with the suction fittings DN 10 - DN 32.

For level monitoring in the storage tank, two-phase with pre-alarm signalling and deactivation of the metering pump after a further level decrease of 30 mm.

Max. switching voltage: 100 V Switching current: 0.5 A Switching capacity: 5 W/5 VA Temperature range: - 10 °C to 65 °C


IP rating: IP 67


Switching mode: for level shortage 2 x NC

Material:

Body level switch PVDF, float PE, mounting strap PVDF, cable bracket PE, anti-kink device PE, cable PE.

Connection	Туре	Cable length	Order no.	
		m		
DN10/15	with 3-pin round plug	3	1034879	
DN 20	with 3-pin round plug	3	1034880	
DN 25	with 3-pin round plug	3	1034881	
DN 32	with 3-pin round plug	3	1034882	
DN 10/DN 15	with lead	5	1034883	
DN 20	with lead	5	1034884	
DN 25	with lead	5	1034885	
DN 32	with lead	5	1034886	

P_AC_0252_SW

- A Overall length
- B Immersion depth
- C Diameter of the immersion tube
- D Threaded connector adjustment range
- E Warning level adjustment range
- F Switch-off level adjustment range

PPE universal suction lance for motor-driven metering pumps

Universal suction lance made of PP in 4 sizes for use in canisters, drums or tanks. The suction lance is configured as standard with return, ventilation function and 2-stage level monitoring. The height-adjustable level switch and tank threaded connectors ensure flexible adaptation to the process or tank height. In addition, the suction tube length can easily be shortened by the customer. A PTFE check valve is incorporated and prevents the suction line from running dry.

The suction lance is supplied with all additional parts in cardboard packaging.

Material version: PP with EPDM seals.

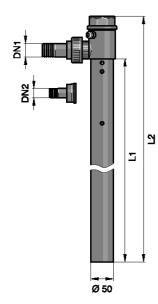
Suction connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, DN 20, DN 25 (not for canisters) plus FKM seal do not form part of the scope of supply.

Return connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, plus an FKM blanking plug and seal do not form part of the scope of supply.

Level: The level switches are protected by tube pieces in drum and tank lances. The lance level output is in the form of an M12 plug. Please order the level signal cable for connection to ProMinent® metering pumps or a PLC or terminal box separately.

General Electrical Accessories → 1-74

Special designs are available on request.


Universal suction lance	A	В	С	Total adjustment range		range	Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For canister 20 I	542	405	41	100	250	200	1039206
For canister 20 -60 I	584	447	41	100	300	200	1038817
For drum 200 I	1,072	935	51	50	700	700	1039397
For container IBC	1,162	1,025	51	50	800	800	1039399

PPE universal suction lance for motor-driven metering pumps, "physiologically safe" design

The universal suction lance is also available as a "Physiologically safe (FDA) in respect of wetted materials" design.

Universal suction lance	Α	В	С	Total adjustment range		range	Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For 20-litre canister	542	405	41	100	250	200	1046668
For 20 – 60-litre canister	584	447	41	100	300	200	1046670
For 200-litre drum	1,072	935	51	50	700	700	1046671
For IBC tank	1,162	1,025	51	50	800	800	1046672

pk_2_100

Suction lance for motor-driven metering pumps*

Suction lance with 2-stage level switch in \emptyset 50 PVC protection tube with check valve for DN 10-DN 25, clack valve in DN 32 (valve is not removable).

For sizes DN 10/15 and DN 20/25, the connection parts in both sizes and a blanking plate for the return form part of the scope of supply. For the DN 32 suction lance a return line is not possible. Drum suction lances are equipped with a drum lid.

2-stage level switch is wired to a terminal in the head.

The level sensor cable must be ordered separately.

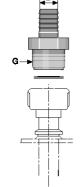
Reed cable with 3-pin round plug, PE \rightarrow 1-74

Special designs (materials, functions, Dytex adhesive etc.) are available on request.

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction lance for 200/600 I drum

Туре	Suction connector DN 1	Return DN 2	Seal material	L1	L2	Order no.
				mm	mm	
PCB	10/15	10/15	FKM	1000	1100	1037748
PCE	10/15	10/15	EPDM	1000	1100	1037749
PCB	20/25	20/25	FKM	1000	1100	1037750
PCE	20/25	20/25	EPDM	1000	1100	1037751
PCB	32	-	FKM	1000	1100	1037752
PCE	32	-	EPDM	1000	1100	1037753

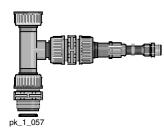

Suction lance for 1000 I tank

Туре	Suction connector DN 1	Return DN 2	Seal material	L1	L2	Order no.
				mm	mm	
PCB	10/15	10/15	FKM	1200	1300	1037722
PCE	10/15	10/15	EPDM	1200	1300	1037723
PCB	20/25	20/25	FKM	1200	1300	1037744
PCE	20/25	20/25	EPDM	1200	1300	1037745
PCB	32	-	FKM	1200	1300	1037746
PCE	32	-	EPDM	1200	1300	1037747

Intake fitting - hose connection kit

Consisting of PVDF threaded socket and a PTFE-formed composite seal.

Suitable for PPE Suction assembly for 1,000 I tank \rightarrow 1-55


pk_2_140

Connection	G	Material	ØD	Order no.	
			mm		
DN 10	3/4	PVDF	16	1029486	
DN 15	1	PVDF	20	1029487	
DN 20	1 1/4	PVDF	25	1029488	
DN 25	1 1/2	PVDF	32	1029489	
DN 32	2	PVDF	40	1029490	

0 0 0

1.8.5

Fittings

Flushing device

Flushing assemblies for flushing and cleaning liquid end, metering line and metering valve as well as for preventing deposits.

PPE flushing device

Connection	G	Order no.
DN 10	3/4	809917
DN 15	1	809919
DN 20	1 1/4	809921
DN 25	1 1/2	809923

Other sizes on request.

Flushing device PCB*

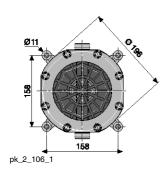
Connection	G	Order no.
DN 10	3/4	809926
DN 15	1	803960
DN 20	1 1/4	803961
DN 25	1 1/2	803962
DN 40	2 1/4	803963

Other sizes and automatic flushing device for fully automatic flushing of the pump head on request.

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

1.8.6

Pulsation Damper


DIN ISO 228-G1 VG8 PD-Inline 0,5: 169 PD-Inline 0,2. 129

PVDF in-line pulsation damper

Function: Hydropneumatic accumulator with baffle

The PVDF accumulator with PTFE diaphragm offers outstanding resistance to chemicals and can therefore be used in connection with a large number of different liquids. The pulsation damper has two liquid connections and can therefore be installed directly in the piping system or be installed diagonally using a blanking plug kit. The baffle in the liquid valve directs the volume flow straight at the diaphragm. This ensures direct contact of the volume flow with the diaphragm. Fluctuations in volume flow are thus optimally balanced out by the enclosed gas volume.

Important: Pulsation dampers should be protected by an overflow valve.

Туре	Volume	Max. pressure	Connection	Order no.	
	I	bar			
PD In-line	0.2	10	G 1 – DN 15	1026252	
PD In-line	0.5	10	G 1 – DN 15	1026736	
PD-Inline	0.2	16	G 1 – DN 15	1033446	
PD-Inline	0.5	16	G 1 – DN 15	1033447	
PD-Inline	0.2	25	G 1 – DN 15	1036154	
PD In-line	0.5	25	G 1 – DN 15	1036155	

The priming pressure is approximately 0.6 x the operating pressure. Maximum medium temperature, 65 $^{\circ}$ C. Connection parts must be ordered separately.

Filling of the reservoir with nitrogen takes place via the VG8 gas filling connector or with compressed air using a standard filling valve (e.g. a car tyre valve).

Attention: If using combustible liquids, nitrogen must be used as a filling gas.

Do not use oxygen under any circumstances!

 $\textbf{Configuration:} \qquad \text{DGRL97/23/EC, other acceptances / countries upon request}$

Fluid group: 1 and 2

Certificates: Manufacturer's test certificate M DIN55350-18

Wetted materials - FDA physiologically safe

Manufacturer: HYDAC Technology

Connection/adapter kits

Consisting of PTFE-formed composite seal, insert/adapter and union nut.

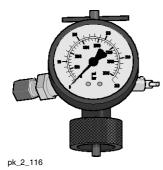
Connection PD In-line	Connection Piping	Material	Order no.
G 1 – DN 15	DN 10	PP	1029424
G 1 – DN 15	DN 10	PVC	1029425
G 1 – DN 15	DN 10	PVDF	1029426
G 1 – DN 15	DN 15	PP	1029443
G 1 – DN 15	DN 15	PVC	1029444
G 1 – DN 15	DN 15	PVDF	1029445
G 1 – DN 15	DN 20	PP	1029427
G 1 – DN 15	DN 20	PVC	1029428
G 1 – DN 15	DN 20	PVDF	1029429
G 1 – DN 15	DN 25	PP	1029430
G 1 – DN 15	DN 25	PVC	1029431
G 1 – DN 15	DN 25	PVDF	1029432

Accessories/Spare Parts

	Material	Order no.
Set of plugs	PVDF/PTFE	1029446
Valve tool for gas valve insert	Steel	1029661
Separating diaphragm	PTFE/NBR	1025235
Gas valve assembly	1.4571/FKM/PTFE/MS	1029513
Gas valve insert	FKM/PTFE/MS	1029514
Gas valve insert	FKM/PTFE/NIRO	1029515
Manometer with connection adapter	-	1031556
Charging hose with connector for compressed air system, 25 bar; 2.5 m	-	1036156
Charging hose with connector for nitrogen bottle or pressure reducer	-	1036157

A G

pk_2_101
Admissible operating temperature: -10 to +80 °C. Response pressure: 2 bar (nitrogen). Other accumulator/diaphragm materials available on request.


Stainless steel pulsation damper

Volume	Max. pressure	Diaphragm material	Connector G	Α	ØD	Order no.
I	bar			mm	mm	
0.16	180	NBR	Rp 1/2	124	74	1008609
0.16	180	Butyl	Rp 1/2	124	74	1008610
0.16	180	FKM	Rp 1/2	124	74	1008611
0.32	160	NBR	Rp 1/2	137	93	1008612
0.32	160	Butyl	Rp 1/2	137	93	1008613
0.32	160	FKM	Rp 1/2	137	93	1008644
0.75	140	NBR	Rp 1/2	168	121	1008645
0.75	140	Butyl	Rp 1/2	168	121	1008646
0.75	140	FKM	Rp 1/2	168	121	1008647
2.00	100	NBR	Rp 3/4	224	167	1008648
2.00	100	Butyl	Rp 3/4	224	167	1008649
2.00	100	FKM	Rp 3/4	224	167	1008650
4.00	50	NBR	Rp 3/4	360	170	1008651
4.00	50	Butyl	Rp 3/4	360	170	1008652
4.00	50	FKM	Rp 3/4	360	170	1008653
0.75	140	NBR	Rp 1	168	121	1027617
0.75	140	Butyl	Rp 1	168	121	1027618
0.75	140	FKM	Rp 1	168	121	1027619
2.00	100	NBR	Rp 1 1/2	224	167	1027620
2.00	100	Butyl	Rp 1 1/2	224	167	1027621
2.00	100	FKM	Rp 1 1/2	224	167	1027622
4.00	50	NBR	Rp 1 1/2	360	170	1027623
4.00	50	Butyl	Rp 1 1/2	360	170	1027624
4.00	50	FKM	Rp 1 1/2	360	170	1027625

Mounting clamp for stainless steel pulsation damper

Volume	Number of Clamps	ØD	Order no.
I		mm	
0.16	1	74	1008664
0.32	1	93	1008665
0.75	1	121	1008666
2.00	1	167	1008667
4.00	2	170	1008668

pk_2_102

Inflation and testing unit for pulsation damper

The inflation and testing unit is used to recharge accumulators with nitrogen and check or alter the existing pre-filling pressure.

It contains:

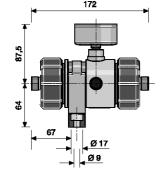
- Checking and filling system with pressure gauge, non-return valve on the inlet, integrated bleed valve, valve stem to open gas inlet valve on accumulator.
- Charging hose, Length 2 m

Adjustment range	Order no.
Up to 25 bar	1008769
Up to 100 bar	1008669
Up to 250 bar	1008670

Pulsation Damper (in-line)

The pulsation damper is used to produce minimal pulsation metering and to reduce flow resistance in long discharge lines.

The gas cushion between the housing and the line is compressed at a pressure stroke of the metering pump, a partial quantity of the medium being simultaneously metered into the metering line. The excess pressure generated in the gas cushion has the effect of allowing the compressed volume to continue to be transported with the following suction stroke and the original, relieved gas volume is restored.


Important notice: The pulsation damper should be used in conjunction with a relief valve.

PP in-line damper

Damper diaphragm is replaceable, seals made of EPDM.

Medium temperature max. 50 $^{\circ}\text{C}$

Pre-pressure is approx. 0.6 x operating pressure.

P_AC_0180_SW

	Volume	Max. pressure	Damper di- Connection aphragm		Order no.
	I	bar			
PPE in-line damper	0.05	10	CSM*	G 3/4 - DN 10	1026769
PPB in-line damper	0.05	10	FKM	G 3/4 - DN 10	1026772
PDS 2.5	2.50	8	Hypalon	G 2 – DN 32	1001344
PDS 2.5	2.50	8	FKM	G 2 – DN 32	1001345

^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

FKM = Fluorine Rubber

The priming pressure is approx. 0.6 x operating pressure.

Max. liquid/chemical temperature 50 $^{\circ}\text{C}.$

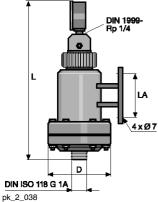
PVC in-line damper

Removable hose, FKM seals.

Max. liquid/chemical temperature 50 $^{\circ}\text{C}.$

The priming pressure is approx. $0.6\ x$ operating pressure.

		BA			C	E
pk_2_04	11					
Type	Dime	ensions				
	Α	В	С	D	Ε	
PDS 2.5	541	525	G2	11	99.5	5


	Volume	Max. pressure	Damper di- Connection aphragm		Order no.
	I	bar			
PCE in-line damper	0.05	10	CSM*	G 3/4 – DN 10	1026775
PCB in-line damper	0.05	10	FKM	G 3/4 – DN 10	1026778
PDS 2.5	2.50	8	Hypalon	G 2 – DN 32	1001342
PDS 2.5	2.50	8	FKM	G 2 – DN 32	1001343

^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

1.8.7

Accumulators

Volume (I)	Max. operat- ing pressure	
0.5/1	10 bar	25 °C
	6 bar	40 °C
2.5/5	6 bar	25 °C
	4 bar	40 °C

Pulsation dampers with separating bubble for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing the flow resistance in long metering lines and in connection with viscous media. The response pressure of the gas cushion should be approx. 60-80 % of the operating pressure.

Important: When using a pulsation damper, the pressure relief valve should be fitted with an adjustable back pressure valve.

4xØ7 PVC accumulators

Accumulator removable, FKM seals.

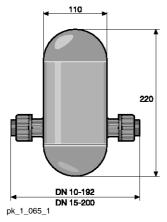
Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 DN 15	361	145	100	791691
0.5	FKM	G 1 DN 15	361	145	100	791695
1.0	Butyl	G 1 1/4 DN 20	411	170	100	791692
1.0	FKM	G 1 1/4 DN 20	411	170	100	791696
2.5*	Butyl	G 1 1/2 DN 25	571	170	190	791693
2.5*	FKM	G 1 1/2 DN 25	571	170	190	791697
5.0*	Butyl	G 2 1/4 DN 40	936	170	230	791694
5.0*	FKM	G 2 1/4 DN 40	936	170	230	791698

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PP accumulators

Accumulator removable, EPDM seals

Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 DN 15	361	145	100	792128
0.5	FKM	G 1 DN 15	361	145	100	792132
1.0	Butyl	G 1 1/4 DN 20	411	170	100	792129
1.0	FKM	G 1 1/4 DN 20	411	170	100	792133
2.5	Butyl	G 1 1/2 DN 25	571	170	190	792130
2.5	FKM	G 1 1/2 DN 25	571	170	190	792134
5.0	Butyl	G 2 1/4 DN 40	936	170	400	792131
5.0	FKM	G 2 1/4 DN 40	936	170	400	792135


1.1.2015

1.8.8

Accumulators Without Diaphragm

Pulsation dampers with no diaphragm separating the gas cushion and the chemical are used to produce minimal pulsation metering and to reduce flow resistance in long pipes and when metering viscous liquids.

Important: When using accumulators or pulsation dampers it is imperative that a relief valve with an adjustable back pressure valve is fitted.

PP in-line pressure accumulator

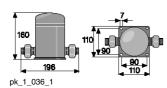
Operating range

20 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume	Permissible displacement	Connection	Order no.
	I			
Size II	1	up to 5 ml	d 16-DN 10	243219
Size II	1	up to 5 ml	d 20-DN 15	243220

PVC in-line pressure accumulator*


Operating range

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume I	Permissible displacement	Connection	Order no.
Size II	1	up to 5 ml	d 16-DN 10	243204
Size II	1	up to 5 ml	d 20-DN 15	243205

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

SS in-line pressure accumulator

Max. operating pressure 10 bar

Volume	Connection	Order no.
I		
Size II 1	G 3/4 – DN 10	914756
Size II 1	R 1 1/2 – DN 15, with insert	914551

S L2 L1

PP pressure accumulator

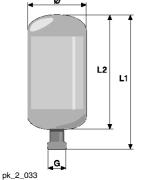
Volume	Connection	Ø	L1	L2	Order no.
I		mm	mm	mm	
2	G 1 1/4 – DN 20, without connector parts	140	290	220	243211
4	G 1 1/2 – DN 25, without connector parts	160	410	320	243212

PVC pressure accumulator

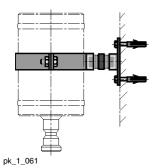
Operating range

20 °C - max. operating pressure 10 bar

40 $^{\circ}\text{C}$ - max. operating pressure 6 bar

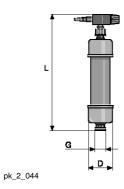

Volume	Connection	Ø	L1	L2	Order no.
I		mm	mm	mm	
2	G 1 1/4 – DN 20, without connector parts	140	290	220	243207
4	G 1 1/2 - DN 25, without connector parts	160	410	320	243208

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


pk_2_042

SS pressure accumulator

Max. operating pressure 10 bar


Volume	Connection	Ø	L1	L2	Order no.
I		mm	mm	mm	
2	G 1 1/4 – DN 20, without connector parts	140	272	222	243214
4	G 1 1/2 – DN 25, without connector parts	160	365	312	243215

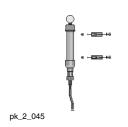
Wall mounting for accumulator (without diaphragm)

Consists of pipe clamp, mounting plate and connecting nipple.

	Ø	Order no.
	mm	
For accumulator volume 2 I	110	818502
For accumulator volume 2 I	140	803645
For accumulator volume 4 I	160	803646

Vacuum cylinder chamber PVC*

With vacuum pump connector and central housing part made of transparent PVC.

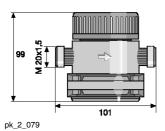

Seals: FKM or EPDM.

Max. operating pressure 2 bar at 40 °C operating temperature.

Volume	Connection	Seal material	L	D	Order no.
I			mm	mm	
0.5	G 1 – DN 15	FKM	380**	78	243591
0.5	G 1 – DN 15	EPDM	380**	78	1025699
1.0	G 1 1/4 – DN 20	FKM	440**	86	243592
1.0	G 1 1/4 – DN 20	EPDM	440**	86	1025701
2.5	G 1 1/2 – DN 25	FKM	520**	133	243593
2.5	G 1 1/2 – DN 25	EPDM	520**	133	1025702
5.0	G 2 1/4 – DN 40	FKM	630**	155	243594
5.0	G 2 1/4 – DN 40	EPDM	630**	155	1025703

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

^{**} Approx. values


Vacuum pump kit/extraction aid*

For pulsation dampers, suction side (vacuum cylinder accumulator).

Material	Seal material	Order no.
PVC	EPDM	790019

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction pressure regulator*

The suction pressure regulator is a spring-loaded diaphragm valve (max. 50 l/h) which opens as a result of the pump suction pressure. This ensures that chemicals cannot flow when the pump is not running, nor can a vacuum be created as a result of tube rupture.

A ball check valve should be fitted to prevent undesirable suction action at the pump outlet (e.g. siphon effect).

An adjustable spring is used to set the maximum required negative pressure for each operating situation up to 400 mbar. For pumps with positive inlet pressure a minimal vacuum of approx. 50 mbar is sufficient. The pump should produce this vacuum in any case, even for an atmospheric pressure inlet.

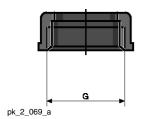
Technical Data

Max. flow rate	50 l/h
Max. feed pressure	4 bar
Max. intake pressure	0.3 bar
Max. temperature	40 °C
Housing material	PVC
Diaphragm material	FKM
Seal material	FKM
Ball material	Glass
Spring material	Hastelloy C

Type		Connection	Order no.
SDR 50	For solenoid-driven pumps	M 20 x 1.5	1005505
SDR 50	For motor-driven pumps up to 50 l/h	G 3/4 - DN 10	1005506

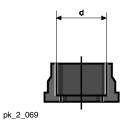
Connection parts to be ordered separately.

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Motor Driven Metering Pumps

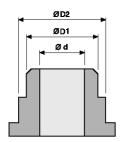
1.8 Hydraulic/Mechanical Accessories

1.8.9


Connector Parts, Seals, Hoses

Union nuts

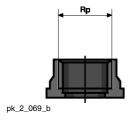
	Material	Connection	Order no.
Union nut	PP	G 5/8 – DN 8	800665
	PP	G 3/4 – DN 10	358613
	PP	G 1 – DN 15	358614
	PP	G 1 1/4 – DN 20	358615
	PP	G 1 1/2 - DN 25	358616
	PP	G 2 - DN 32	358617
	PP	G 2 1/4 - DN 40	358618
	PP	G 2 3/4 - DN 50	358619
	PVC	G 5/8 – DN 8	800565
	PVC	G 3/4 – DN 10	356562
	PVC	G 1 – DN 15	356563
	PVC	G 1 1/4 – DN 20	356564
	PVC	G 1 1/2 - DN 25	356565
	PVC	G 2 - DN 32	740690
	PVC	G 2 1/4 - DN 40	356567
	PVC	G 2 3/4 - DN 50	356568
	PVDF	G 3/4 – DN 10	358813
	PVDF	G 1 - DN 15	358814
	PVDF	G 1 1/4 - DN 20	358815
	PVDF	G 1 1/2 - DN 25	358816
	PVDF	G 2 - DN 32	1003639
	PVDF	G 2 1/4 - DN 40	358818
	PVDF	G 2 3/4 - DN 50	358819
	1.4571	G 3/4 – DN 10	805270
	1.4571	G 1 - DN 15	805271
	1.4571	G 1 1/4 - DN 20	805272
	1.4571	G 1 1/2 - DN 25	805273
	1.4571	G 2 - DN 32	805274
	1.4571	G 2 1/4 - DN 40	805275
	1.4571	G 2 3/4 - DN 50	805276


Inserts

	Material	Connection	Order no.	
Fusion socket	PP	d 12 – DN 8	800666	
	PP	d 16 – DN 10	358603	
	PP	d 20 – DN 15	358604	
	PP	d 25 – DN 20	358605	
	PP	d 32 – DN 25	358606	
	PP	d 40 – DN 32	358607	
	PP	d 50 – DN 40	358608	
	PP	d 63 – DN 50	358609	
	PVDF	d 16 – DN 10	358803	
	PVDF	d 20 – DN 15	358804	
	PVDF	d 25 – DN 20	358805	
	PVDF	d 32 – DN 25	358806	
	PVDF	d 40 – DN 32	1003640	
	PVDF	d 50 – DN 40	358808	
	PVDF	d 63 – DN 50	358809	

	Material	Connection	Order no.
Fusion coupler, grooved*	PP	d 16 – DN 10	1001785
	PP	d 20 – DN 15	1001395
	PP	d 25 – DN 20	1036258
	PP	d 32 – DN 25	1001787
	PP	d 40 – DN 32	1005105
	PP	d 50 – DN 40	1025960
	PP	d 63 – DN 50	1019207
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	1036259
	PVDF	d 32 – DN 25	1001788
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	1025959
	PVDF	d 63 – DN 50	1019208

^{*} To be used together with ProMinent® PTFE formed composite seals.


P_AC_0210_SW

	Material	Ø D1	Ø D2	Connection	Order no.
		mm	mm		
SS fusion coupler, grooved	1.4404	15.0	19.5	d 12 – DN 10	1006011
	1.4404	21.0	25.6	d 16 – DN 15	1006001
	1.4404	26.7	33.6	d 22 – DN 20	1031457
	1.4404	33.4	39.6	d 28 – DN 25	1031458
	1.4404	42.2	49.6	d 36 – DN 32	1031459
·	1.4404	48.3	57.5	d 40 – DN 40	1023643
	1.4404	71.6	60.3	d 54 – DN 50	1031460

	Material	Connection	Order no.	
Adhesive socket	PVC	d 16 – DN 10	356572	
	PVC	d 20 – DN 15	356573	
	PVC	d 25 – DN 20	356574	
	PVC	d 32 – DN 25	356575	
	PVC	d 40 – DN 32	356576	
	PVC	d 50 – DN 40	356577	
	PVC	d 63 – DN 50	356578	

	Material	Connection	Order no.
Adhesive coupler, grooved*	PVC	d 16 – DN 10	1001784
	PVC	d 20 – DN 15	1001394
	PVC	d 25 – DN 20	1036257
	PVC	d 32 – DN 25	1001786
	PVC	d 40 – DN 32	1005104
	PVC	d 50 – DN 40	1025961
	PVC	d 63 – DN 50	1019206

^{*} To be used together with ProMinent® PTFE formed composite seals.

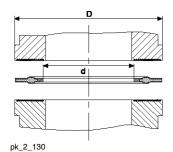
	Material	Connection	Order no.
Threaded pipe socket	1.4404	Rp 3/8 – DN 10	805285
	1.4404	Rp 1/2 – DN 15	805286
	1.4404	Rp 3/4 – DN 20	805287
	1.4404	Rp 1 – DN 25	805288
	1.4404	Rp 1 1/4 – DN 32	805289
	1.4404	Rp 1 1/2 – DN 40	805290
	1.4404	Rp 2 – DN 50	805291

Pressure hose nozzles

pk	2	046

	Material	Connection	Order no.
Pressure hose nozzle	PP	d 16 – DN 10	800657
	PP	d 20 – DN 15	800655
	PP	d 25 – DN 20	800656
	PP	d 32 – DN 25	811418
	PVC	d 16 – DN 10	800554
	PVC	d 20 – DN 15	811407
	PVC	d 25 – DN 20	811408
	PVC	d 32 – DN 25	811409
	PTFE	d 16 – DN 10	811572
	PTFE	d 20 – DN 15	811424
	PTFE	d 25 – DN 20	811425
	PTFE	d 32 – DN 25	811426
	PVDF	d 40 – DN 32	1005106
	1.4571	d 16 – DN 10	810536
	1.4571	d 20 – DN 15	810567
	1.4571	d 25 – DN 20	810568
	1.4571	d 32 – DN 25	810569
	1.4571	d 40 – DN 32	1005360
	Material	Connection	Order no

	Material	Connection	Order no.	
Hose nozzle, grooved	PVDF	d 16 – DN 10	1002288	
	PVDF	d 20 – DN 15	740632	
	PVDF	d 25 – DN 20	1006014	
	PVDF	d 32 – DN 25	1005560	
	PVDF	d 40 – DN 32	1005106	


To be used together with ProMinent® PTFE formed composite seals.

Stainless steel threaded clip

For connecting intake and metering line to pressure hose nozzle.

	Clamping range	Order no.
	mm	
DN 10 clamping ring	16 – 25	359703
DN 15 clamping ring	20 – 32	359705
DN 20 clamping ring	25 – 40	359706
DN 25 clamping ring	32 – 50	359707
DN 32 clamping ring	40 – 60	1002777

PTFE formed composite seals

Formed composite seals to be used on grooved sealing surfaces (e.g. pump valve and grooved inserts from ProMinent).

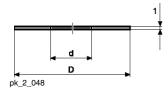
DN	Material	D	d	Order no.
		mm	mm	
DN 10	PTFE	23.8	14.0	1019364
DN 15	PTFE	29.5	18.0	1019365
DN 20	PTFE	38.0	22.6	1019366
DN 25	PTFE	44.0	27.6	1019367
DN 32	PTFE	56.0	34.6	1019353
DN 40	PTFE	62.0	40.6	1019368

d D D pk_2_048

Set of elastomer flat packing seals

Comprising two EPDM and two FKM seals. An elastomer flat seal should be used with non-grooved sealing surfaces. Leaks may occur at the connection if a PTFE shaped composite seal is used.

	D	d	Order no.
	mm	mm	
DN 10	23.5	14.0	1024159
DN 15	29.5	18.0	1024160
DN 20	38.0	22.6	1036254
DN 25	44.0	28.0	1024161
DN 32	56.0	36.0	1024162
DN 40	62.0	41.0	1029508


Flange mountings

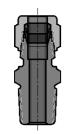
Flange connection in line with DIN 2566 for ProMinent® valve sizes.

Material	G/DN	Pressure rating	b	Ø LK	d2	Order no.
		PN	mm	mm	mm	
PVDF	G 3/4 - DN 10	PN 16	12.4	60	14	1036274
PVDF with seal*	G 3/4 - DN 10	PN 16	12.4	60	14	1036279
PVDF	G 1 - DN 15	PN 16	13.0	65	14	1036275
PVDF with seal*	G 1 - DN 15	PN 16	13.0	65	14	1036280
PVDF	G 1 1/4 - DN 20	PN 16	15.0	75	14	1036276
PVDF	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036277
PVDF with seal*	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036281
PVDF	G 2 - DN 32	PN 16	18.0	100	18	1036278
PVDF with seal*	G 2 - DN 32	PN 16	18.0	100	18	1036282
PVDF	G 2 1/4 - DN 40	PN 16	20.0	100	18	1039037
1.4404	G 3/4 - DN 15	PN 40	12.0	65	14	803946
1.4404	G 1 - DN 15	PN 40	12.0	65	14	803940
1.4404	G 1 1/4 - DN 20	PN 40	15.0	75	14	803941
1.4404	G 1 1/2 - DN 25	PN 40	15.0	85	14	803942
1.4404	G 2 - DN 32	PN 40	18.0	100	18	1036283
1.4404	G 2 1/4 - DN 40	PN 40	20.0	110	18	803943
1.4404	G 2 3/4 - DN 50	PN 40	25.0	125	18	1020453
1.4404	G 2 1/2 - DN 65	PN 40	20.0	145	18	1010700

Flange mountings with a seal should be used for Sigma/ 1, Sigma/ 2 pumps with DN 15 connector and Sigma/ 3 pumps with DN 25 connector.

Other flange versions are available on request.

Flat seals for previous flange mountings


Material	G/DN	D	d	Order no.
		mm	mm	
PTFE	G 3/4 - DN 15	52	12	483938
PTFE	G 1 - DN 15	52	17	483924
PTFE	G 1 1/4 - DN 20	62	22	483925
PTFE	G 1 1/2 - DN 25	72	27	483926
PTFE	G 2 - DN 32	83	33	1007541
PTFE	G 2 1/4 - DN 40	92	40	483928
PTFE	G 2 3/4 - DN 50	108	50	483929
PTFE	G 3 - DN 65	130	60	1020466
FKM	G 3/4 - DN 15	52	12	483939
FKM	G 1 - DN 15	52	17	483942
FKM	G 1 1/4 - DN 20	62	22	483943
FKM	G 1 1/2 - DN 25	72	27	483944
FKM	G 1 1/2 - DN 32	83	33	1007542
FKM	G 2 1/4 - DN 40	92	40	483946
FKM	G 2 3/4 - DN 50	108	50	483947
FKM	G 3 - DN 65	130	60	1020467
	DIN			

Flange mountings as DIN 2629. To order for Meta HK and Makro TZ HK plunger metering pumps.

FKM = Fluorine rubber

Motor Driven Metering Pumps

1.8 Hydraulic/Mechanical Accessories


Straight male adapter stainless steel

Swagelock system, stainless steel SS 316 (1.4401) for connection of pipework to liquid end and valves with internal thread and for SB version.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
12 mm - ISO 7 R 3/8	359520
16 mm - ISO 7 R 3/8	359521

pk_1_028

pk_1_013

Suction line

For metering pumps and accessories. We recommend that only original tubing is used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are ensured.

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
Soft PVC	19 x 15	for DN 10	0.5*	037020
Flexible PVC	22 x 18	for DN 15	0.5*	037022

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

pk_1_060

Suction and discharge line

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
Soft PVC with woven inner layer	24 x 16	for DN 10	16*	037040
Soft PVC with woven inner layer	27 x 19	for DN 15	16*	037041
Soft PVC with woven inner layer	34 x 25	for DN 20	12*	037043
Soft PVC with woven inner layer	40 x 30	for DN 25	10*	1000527
Soft PVC with woven inner layer	52 x 40	for DN 32	7*	1005508
Stainless steel pipe 1.4435	6 x 5	-	175*	015738
Stainless steel pipe 1.4435	6 x 4	-	185*	015739
Stainless steel pipe 1.4435	8 x 7	-	160*	015740
Stainless steel pipe 1.4435	12 x 10	Sold in metres	200*	015743

Caution:

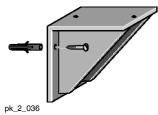
The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

For socket welded and PVC cemented rigid PP and PVDF pipe, pipes and fittings with a pressure rating of PN 16 or PN 10 bar are to be used.

* Permissible operating pressure at 20 °C, chemical resistance and proper connection assumed.

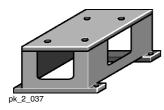
Hose Cutting Kit

Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.


	Order no.
Hose Cutting Kit	1038571

^{*} Permissible operating pressure at 20 °C, chemical resistance and proper connection assumed.

1.8.10


Metering Pump Wall Mounting Bracket

Metering pump wall mounting bracket for Vario, Sigma and Meta

PP wall mounting, holds pump parallel to the wall, includes fixings. Measurements: L x W x H, 230 x 220 x 220 mm

Wall mounting bracketfor Vario, Sigma and Meta1001906

Floor mounting for Sigma, Meta

For mounting metering pump, includes fixings. Material PP.

Measurements: L x W x H 250 x 160 x 150 mm

	Order no.
Floor mounting	809910

1.9 Electrical Accessories

1.9.1

Speed Controllers

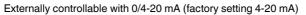
Frequency converter for speed controller

Frequency converters are installed in the IP 55 protective enclosure and are suitable for the motor output ratings listed below.

Integrated control unit with various functions optimally matched to ProMinent metering pumps: Selectable external/internal control, internal/external reset, temperature monitoring and control via PTC sensor, separate motor fan control as well as evaluation of diaphragm rupture monitoring.

Internal control: via potentiometer


External control: 0/4-20 mA corresponding to 0-50 (60) Hz output frequency


Frequency converters can be used in the range of -10 °C to 40 °C.

	P_AC_0185_SW Max. motor output kW	For pump type	Voltage supply	Voltage supply, external fan	Control range	Order no.
	0.37	Sigma/1, Sigma/2, Meta, Hydro/2, MF1a, DR15	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030684
	0.75	Sigma/ 3, Hydro/ 3, MF2a	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030685
	1.50	Makro TZ, MF2a, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030686
	2.20	Makro TZ, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030687
	4.00	MF3a, MF4a	3 ph 380 – 500 V	3 ph 380 V	1:5	1030688

Dimensions and weight

Order no.	В	Н	С	Weight
	mm	mm	mm	kg
1030684	210	240	163	6.3
1030685	210	240	163	6.3
1030686	215	297	192	8.8
1030687	230	340	222	10.7
1030688	230	340	222	10.7

Voltage supply: 1 ph 230 V, 50/60 Hz (0.37-1.1 kW) Voltage supply: 3 ph 400 V, 50/60 Hz (1.5-3 kW)

The following functions are integrated in the terminal box cover:

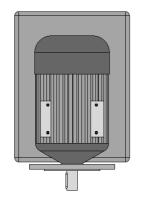
- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode.

Max. motor output kW	For pump	Control range	Flange Ø mm	Order no.
0.18	Sigma/ 1	1:20	120	1020229
0.37	Sigma/ 2	1:20	105	1008568
0.37	Hydro/ 2, Meta	1:20	160	1008569
0.55	Sigma/ 3	1:20	160	1008570
0.75	Hydro/ 3	1:20	160	1008571
1.10	Makro TZ (TZMB)	1:20	160	1008572
1.50	Makro TZ	1:20	160	1008573
2.20	Makro TZ	1:20	200	1008574
3.00	Makro/ 5	1:20	250	1027482

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.


1.9 Electrical Accessories

Operating unit for setting control parameters

	Order no.
With sub-D connector (old)	1020585
With Western connector (new)	1029493

Note:

Version suitable for use in ambient temperatures up to 55°C available on request.

P_AC_0211_SW

Explosion-protected compact drive with integrated frequency converter Protection class II 2G Eexde II C T4

400 V, 50/60 Hz Voltage supply: 3 ph + neutral + earth Mains feed:

Model: IM_{B5}

Inputs: 2 x analogue 0/4...20 mA

4 x digital (includes frequency input 0...100 kHz)

Outputs: 2 x analogue 4...20 mA

4 x digital 0/+20 V, 10 mA

1 x frequency output 0...10 kHz, 0/18...24 V, max. 5 mA

Terminal strip connectors: ON/OFF

> Self-locking RESET

Winding and temperature monitoring by PTC resistor with integral evaluation.

External control circuit: 230 V with internal fuse.

Note:

Delivery on request

Max. motor output	For pump	Control range	Flange Ø
kW			mm
0.55	Hydro/ 2, Sigma/ 3, Orlita MF	1:10	80
0.75	Hydro/ 3, Orlita MF	1:10	80
1.50	Makro TZ, Orlita MF	1:10	200
2.20	Makro TZ, Orlita MF	1:10	200
4.00	Makro/ 5, Orlita MF	1:10	250

Pumps with compact drive are always delivered on a frame.

Motor data sheets can be requested for more information.

Special motors or special motor flanges and other control ranges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

1.9 **Electrical Accessories**

1.9.2

P_AC_024

General Electrical Accessories

Universal signal cable

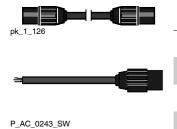
For control of the metering pump via potential-free contact, analogue standard signal and for potential-free ON/ OFF switching - switch-on function.

For Vario, S1Ca, S2Ca and S3Ca with 5-pin round plug made of plastic and 5-wire cable with open end.

	Cable length	Order no.
	m	
Universal cable	2	1001300
Universal cable	5	1001301
Universal cable	10	1001302

Reed cable with 3-pin round plug, PE

For Sigma metering pumps with 3-pin round plugs and a 3-core cable with an open end for level control.


Suitable for use with the Suction lance for motor-driven metering pumps* \rightarrow 1-57

		Cable length	Order no.
43_SW		m	
	Reed cable with 3-pin round plug, PE	2	1030334
		3	1030335
		5	1030336

Level sensor cable for connection of a universal suction lance and a motordriven metering pump

For connection of the level switch of the universal suction lance for Sigma metering pumps or the higherlevel control system (e.g. PLS).

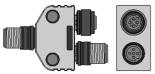
Suitable for PPE universal suction lance for motor-driven metering pumps → 1-56

	Cable length	fig.	Order no.
	m		
Round plug coupling for M12 3-pin round plug	2	pk_1_126	1040962
Round plug coupling for M12 3-pin round plug	5	pk_1_126	1040963
Round plug coupling for M12 open end	1.1	P_AC_0243_SW	1009873
Round plug coupling for M12 open end	5	P_AC_0243_SW	1022537

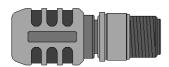
Extension cable, 3-core

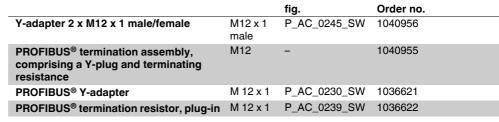
For 2-stage level switches, with round plug and round plug coupling.

	Cable length	fig.	Order no.	
	m			
Extension cable, 3-core	3	pk_1_126	1005559	


1.9 Electrical Accessories

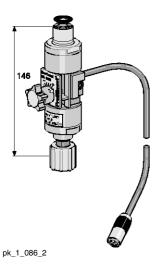
Profibus adaptor, IP 65 protection


From eurofast 5-pin M12 x 1, length approx. 500 mm.


P AC 0245 SW

P_AC_0230_SW_1

P_AC_0239_SW



USB adaptor

To connect a laptop to gamma and Sigma series metering pumps.

The USB adapter can be used to transfer timer programmes created using ProTime software to the pump. You will find the ProTime software on our home page.

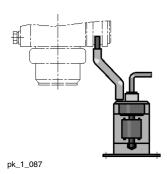
	Order no.
USB Adapter	1021544

Flow Control adjustable flow monitor

Fits PVT and SST Sigma/ 1/2/3 versions. Supplied complete with connection cable for assembly directly onto the liquid end.

Monitors individual strokes in accordance with the float and orifice principle. Using the adjustment screw, the partial dose flowing past the float can be matched to the set lift volume in such a way that any significant shortfall of the target dose will trigger an alarm signal. The Sigma Control (S1Ca/S2Ca/S3Ca) is used to select the permissible number of uncompleted full strokes in the range 1-127, enabling optimum matching to your process demands. Recommended operation for Sigma Control is "external switching operation".

Materials


Flow meter: PVDF
Float: PTFE-coated
Seals: FKM/EPDM

Flow Control	Seal material	For pump	Order no.	
Flow Control DN 10	EPDM	Sigma/ 1	1021168	
Flow Control DN 10	FKM	Sigma/ 1	1021169	
Flow Control DN 15	EPDM	Sigma/ 1/ 2	1021170	
Flow Control DN 15	FKM	Sigma/ 1/ 2	1021171	
Flow Control DN 25	EPDM	Sigma/ 2/ 3	1021164	
Flow Control DN 25	FKM	Sigma/ 2/ 3	1021165	
Flow Control DN 32	EPDM	Sigma/ 3	1021166	
Flow Control DN 32	FKM	Sigma/ 3	1021167	

Motor Driven Metering Pumps

1.1.2015 Product Catalogue 2015 1

1.9 Electrical Accessories

Diaphragm rupture indicator

Triggers alarm and switches off metering pump in the event of diaphragm rupture. Consists of float switch, PVC/PE, acrylic tank, connectors and connecting hose. Potential-free NO contact, max. contact voltage 60 V AC, 300 mA, 18 W.

	For pump	Order no.
Diaphragm rupture indicator	Meta, Makro TZ	803640
Diaphragm rupture indicator	Makro/ 5	1019528

Siren

pk_1_088

HUW 55, 230 V, 50 - 60 Hz,

165 x 60 x 65, 85 phon, indoor.

(e.g. in association with fault indicating relay or relay controller)

	Order no.
HUW 55 Horn	705002

Warning light

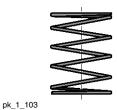
Wall mounted, red, 230 V, 50 - 60 Hz.

(e.g. in association with fault indicating relay, pulse generator or relay controller)

	Order no.
Indicator lamp, red	914780

1.10.1

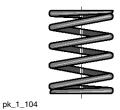
Custom Accessories


FKM metering diaphragm

As standard diaphragm but made of FKM, and without PTFE coating. Designed specifically for crystallising chemicals, e.g. silicate. Max. operating pressure 6 bar.

For pump type	Order no.
Vario 12017, 12026, 12042	811308
Vario 10025, 09039, 07063	811309
Vario 06047, 05075, 04120	811310
Sigma/ 1 (old diaphragm) 12017, 12035, 10050	1010281
Sigma/ 1 (old diaphragm) 10022, 10044, 07065	1010284
Sigma/ 1 (old diaphragm) 07042, 04084, 04120	1010287
Sigma/ 2 (old diaphragm) 16050, 16090, 16130	1018953
Sigma/ 2 (old diaphragm) 07120, 07220, 04350	1018984
Sigma/ 3 (old diaphragm) 120145, 120190, 120270, 120330	1006564
Sigma/ 3 (old diaphragm) 070410, 070580, 040830, 041030	1006566

Additional custom diaphragms for other pump types are available on request.


FKM = Fluorine Rubber

Liquid end valve springs

With approx. 0.05-0.1 bar priming pressure for spring loading of the valve balls in the liquid end. Recommended to improve the valve function and to increase metering accuracy, in particular for viscous media above 50 m Pas.

	Order no.
1.4571 valve spring 0.05 bar for 1/4" connector on Meta/Makro TZ HK	469461
1.4571 valve spring 0.05 bar for 3/8" connector on Makro TZ HK	469462
Hastelloy C valve spring 0.1 bar DN 10	469114
Hastelloy C valve spring 0.1 bar DN 15	469107
Hastelloy C valve spring 0.1 bar DN 20	469451
Hastelloy C valve spring 0.1 bar DN 25	469452

Injection valve springs

With approximately 0.5-1 bar priming pressure for increased metering reproducibility and prevention of suction and siphoning effect.

	Order no.
Hastelloy C valve spring 0.5 bar DN 10	469115
Hastelloy C valve spring 1 bar DN 10	469119
Hastelloy C valve spring 0.5 bar DN 15	469108
Hastelloy C valve spring 1 bar DN 15	469116
Hastelloy C valve spring 0.5 bar DN 20	469409
Hastelloy C valve spring 1 bar DN 20	469135
Hastelloy C valve spring 0.5 bar DN 25	469414
Hastelloy C valve spring 1 bar DN 25	469136
Hastelloy C valve spring 0.5 bar DN 40	469104
Hastelloy C valve spring 1 bar DN 40	469137

Injection valve spring with FEP coating

	Order no.
Hastelloy C/FEP valve spring 0.5 bar for DN 10	818515
Hastelloy C/FEP valve spring 0.5 bar for DN 15	818516
Hastelloy C/PVDF valve spring 0.5 bar for DN 10	818517
Hastelloy C/PVDF valve spring 0.5 bar for DN 25	818518
Hastelloy C/PVDF valve spring 0.5 bar for DN 40	818519

pk_1_102

Custom valve balls

Ball valves and accessories for on site retrofitting of metering pumps when the standard material is unsuitable. Supplied loose only.

	Order no.
PTFE diameter 11.0 for DN 10 valve	404260
PTFE diameter 16.0 for DN 15 valve*	404259
PTFE diameter 20.0 for DN 20 valve	404256
PTFE diameter 25.0 for DN 25 valve	404257
PTFE diameter 38.1 for DN 40 valve	404261
Ceramic diameter 11.1 for DN 10 valve	404277
Ceramic diameter 16.0 for DN 15 valve*	404275
Ceramic diameter 20.0 for DN 20 valve	404273
Ceramic diameter 25.0 for DN 25 valve	404274
Ceramic diameter 38.1 for DN 40 valve	404278

^{*} Not suitable for PVT valve material.

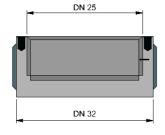
M20 x 1.5 B 3/4 8 40 pk. 2 058

Adapter for DN 10, 3/4" (Vario, Sigma) to M20 x 1.5

Fits 12 x 9 hose connector set

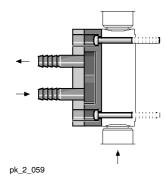
	Material	Order no.
Adapter from DN 10, 3/4" inner thread to M20 x 1.5 outer thread	PP	800815
Adapter from DN 10, 3/4" inner thread to M20 x 1.5 outer thread	PVC	800816
Adapter from DN 10, 3/4" inner thread to M20 x 1.5 outer thread	PVDF	1017406

DN15 adapter, 1" (Sigma) to M20 x 1.5


Fits 12 x 9 tube connector kit.

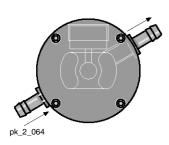
	Material	Order no.
Adapter from DN 15, 1" inner thread to M20 x 1.5 outer thread	PVDF	1028530

Valve adapter DN 32 - DN 25


Suitable for the liquid end of the Sigma/ 3 metering pump FM 1000 up to 600 l/h.

	Material	Order no.
Adapter DN 32 - DN 25	SST	1035729
	PVT	1035732

P_AC_0244_SW


Cooling/heating equipment, diaphragm metering pumps

For stainless steel liquid end. For assembly, including retrofitting, onto the liquid end. 10 mm diameter connectors for hot/cold chemicals with locking screws. Dimensions in mm. Outer diameter A, pitch circle diameter LK.

Temperature -10 ... 80 °C

For pump	ØA	Ø LK	Order no.
	mm	mm	
Sigma/ 1 (old version) FM 50/65	_	-	1025500
Sigma/ 1 (old version) FM 120	-	-	1025501
Sigma/ 2 (old version) FM 130	_	-	1002178
Sigma/ 2 (old version) FM 350	_	_	1002179
Sigma/ 3 (old version) FM 330	_	-	1006455
Sigma/ 3 (old version) FM 1000	_	-	1006456
Hydro/ 2/3 FMH 025/060	-	-	1024743
Hydro/ 3 FMH 150	-	-	1040112
Hydro/ 4 FMH 400	_	-	1047700
Meta, Makro TZ FM 130, FM 260	145	127	803751
Meta, Makro TZ FM 530	180	164	803752
Makro TZ FM 1500/2100	248	219	806005
Makro/ 5 FM 4000	_	-	1020683
Makro TZ FMH 70/20	_	_	1041263
Makro/ 5 FMH 85/50	_	-	1041261
Makro/ 5 FMH 60/50	_	_	1041260
Makro/ 5 FMH 130/50	_	-	1041262

^{*} Adapted to the design with the new multi-layer safety diaphragm.

Cooling/heating equipment, plunger metering pumps

The cooling/heating equipment is installed in the liquid end. 10 mm diameter connectors. Cannot be retrofitted.

For pump	Order no.
Sigma HK - 08 S	1040459
Meta/Sigma HK - 12,5 S	803551
Meta/Sigma HK - 25 S	803552
Meta/Sigma HK - 50 S	803553
Makro TZ FK 30	1036645
Makro TZ FK 50	1036655
Makro TZ FK 85	1024665

Cooling/heating equipment for Makro TZ HK on request.

1 2 3 4 5 6 7 8

pk_1_119

- grey black
- brown
- blue white
- Mains voltage Relay flow control
- Connecting for sensor

Thermal metering monitor

The flow monitor consists of a sensor and monitor electronics. It operates on the principle of heat transference from the water flow and can be used with all solenoid and motor-driven metering pumps at or above a continuous metering quantity of 0.5 l/h.

Monitor electronics

The fault indicating relay is triggered when normally flowing liquid ceases to flow (switching power 250 V/ 4 A). At this point the relay opens for 3-20 sec (adjustable). The switch status is indicated by LED. Continuous flow volume adjustment.

Enclosure rating Enclosure IP 40 Terminal box IP 00

Permissible ambient temperature 0...60 °C

	Electrical connection	Order no.
Evaluation electronics	230 V, 50/60 Hz	792886

Probe C

Single-section ceramic sensor

Outer thread

Operating temperature 5 °C to 60 °C medium temperature, not suitable for alkaline solutions

Lead length Fixed input lead. Cable length 2 m.

Max. lead length 100 m IP 67 **Enclosure rating** Pressure resistance 7 bar Adjustment range 0 - 60 cm/s

	Order no.
Probe C	1022339

Probe S

Single-cell, metal-clad sensor, stainless steel material no. 1.4571

Outer thread G 1/2

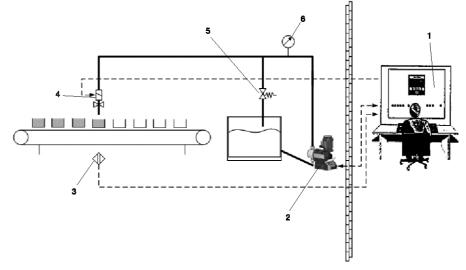
Operating temperature -25 °C to 80 °C medium temperature Lead length Fixed input lead. Cable length 2 m.

Max. lead length **Enclosure rating** IP 67 Pressure resistance 30 bar

Adjustment range 1 cm/s to 5 m/s

	Order no.
Probe S	792888

Required connector parts (T-piece, bypass) should be ordered separately.



1.11 Application Examples

Metering of Highly Viscous Substances

Motor-driven pumps Product:

Metered medium: Viscous filler Sector: **Electronics** Application: Part filling

- Process control system (master)
- Metering pump, Sigma (field unit)
- Proximity switch Solenoid valve
- Overflow valve
- Pressure gauge

pk_2_113

Tasks and requirements

- Metering of a viscous filler in templates
- Metering accuracy ±2 %
- Varying filling volumes

Operating conditions

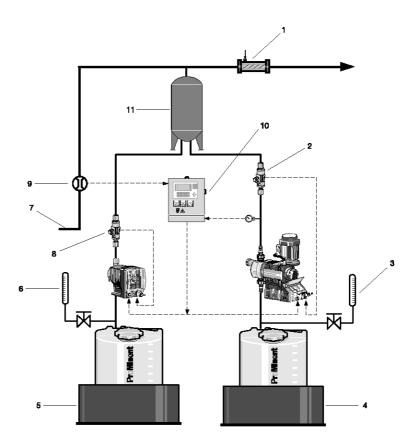
- The templates pass the metering point on a conveyor in "stop and go" operation.
- The pump is started by a proximity switch at the conveyor (external contact control).

Notes on application

- The start always begins with a pressure stroke, i.e. controlled stop of the diaphragm at the end of the
- When varying the filling volume, a stroke length as large as possible should be chosen this improves
- Short and stable suction and metering lines, no pulsation damper thus reduction of the flexible (moved)
- If possible work with feed so that the suction lines are always filled with liquid even during longer idle
- A solenoid valve is required for filling to prevent dripping of the residual quantities.

- Sigma Control metering pump with PROFIBUS® connection
- Overflow valve, solenoid valve

- Monitoring of the metering pump and setting of the metering amount (number of strokes) by PCS in the control centre
- Less electrical installation work required
- Integration into the complete process flow through PROFIBUS®
- Safe and precise metering thanks to overflow and solenoid valves



1.11 Application Examples

1.11.2 **Mixing Two Reagents**

Product: Motor-driven pumps, solenoid pumps Metered medium: Chlorine activator, oxidant (NaOCI) Sector: Process industry, power stations

Application: Biocide handling in cooling water systems

- Static mixer
- Flow Control Feed measuring unit
- NaOCI solution Chlorine activator
- Feed measuring unit
- Flow Control
- Flow rate meas
- Control cabinet
- Reaction chamber

pk 2 114 1

Tasks and requirements

- Biocide treatment of cooling water systems used in combination with chlorination processes.
- Chlorine activator is mixed with NaOCI to produce hyprobromide acid (HOBr) as an active biocide compound. HOBr is particularly effective at pH values from 7.5 to 9.0.
- A level of 0.5 g/m³ of active HOBr over a period of 1 hour is to be secured twice a day for the purpose of disinfecting the cooling water.

Operating conditions

- Biologically polluted water
- Automatic activation of metering pumps

Application information

- The mixing ratio of chlorine activator and NaOCI (12.5 % solution) is 10 I to 26 52 I. The exact composition is to be determined by means of tests (on site).
- Metering pump with timer function activates the second pump and is therefore responsible for batch
- Motor pump is protected against overload by a pressure gauge with pressure switch. The pressure gauge is connected to the control system.
- The control system monitors the installation and switches off the flow meter in response to corresponding signals (fault signalling).

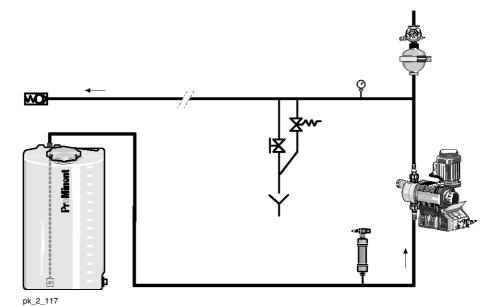
1.11 Application Examples

Solution

- gamma/ L metering pump with timer function (possibly with external timer)
- Sigma/ 1 metering pump, control version
- Feed monitoring, flow control
- Feed measuring facility
- Pressure gauge with pressure switch

Benefits

- Efficient disinfection in water containing alkali and ammoniac
- Inexpensive raw material basis that is also stable and non-corrosive
- High degree of reliability ensured by flow monitoring
- Simple and effective facility for optimising the chemical composition in connection with feed measuring



Motor Driven Metering Pumps

1.11 Application Examples

1.11.3 Safe and Reliable Chemical Metering with Reduced Pulsation

Product: Metering pump, accessories Metered medium: **High-viscosity chemicals** Application: Use of pulsation damper (PD)

Tasks and requirements

- For process-technical reasons, a low-pulsation metering flow is desired.
- Mass accelerating forces during metering, caused by the oscillating movement of the displacement body in connection with the piping geometry need to be reduced.
- Cavitation-free process flow

Operating conditions/environment

- Long suction/discharge lines
- Line cross-section with small dimensions
- Metering of high-viscosity, inert media

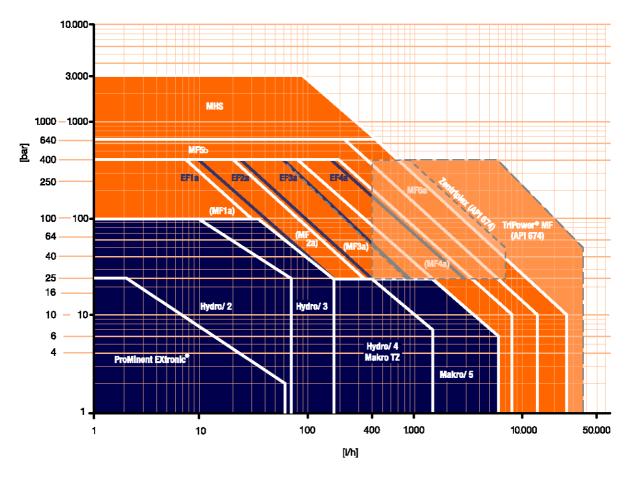
Notes on application

- Pressure surges increase with increasing metering line length and smaller diameter; these may result in impermissible pressure peaks.
- For longer pipes, as well as for higher viscosity media, the need for a PD using a pipe calculation programme is to be evaluated.
- In an oscillating motor-driven metering pump, the maximum flow rate is approx. 3 times greater than the mean, in a solenoid pump approx. 5 times as great. This is to be considered when designing pipings
- PD should be preloaded with compressed air or nitrogen at approx. 60-80 % of the operating pressure to be expected.

Solution

- ProMinent® metering pumps
- Pressure-relief/overflow valves
- **Pulsation dampers**

Benefits


- Safe installation preventing damage to pumps and pipes
- Precise metering by avoiding of cavitation
- Compensation of delivery flow fluctuations

Process Metering Pumps

2.0 Overview of Process Metering Pumps

2.0.1 Selection Guide

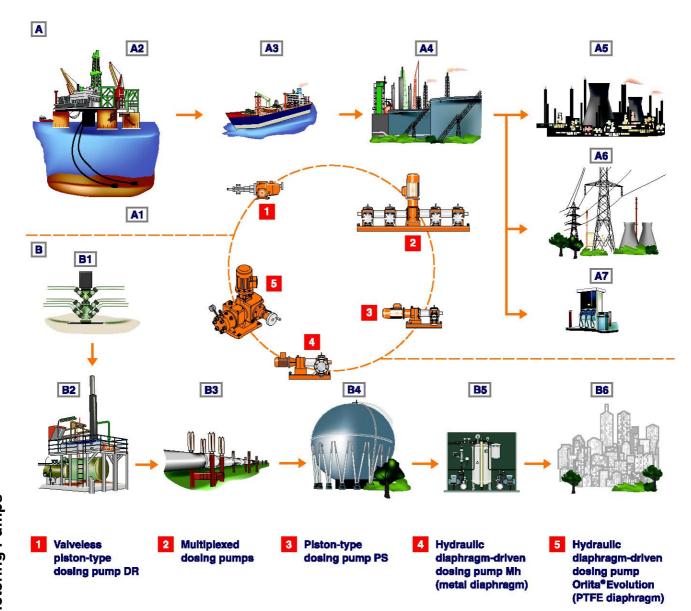
SG_0029_C

Overview of Process Metering Pumps

Туре		EXBb	TZMb	М5Ма	HP2a	НР3а	HP4a	М5На	SBKa/ SCKa	MTKa	TZKa	M5Ka
Stroke length	mm	1.25	0 - 10	0 - 20	15	15	20	0 - 50	0 - 15	0 - 15	0 - 20	0 - 50
Connecting rod force	N	2,000	8,000	10,000	2,000	4,200	5,800	10,000	1,700	2,500	8,000	10,000
Туре		EF1a	EF2a	EF3a	EF4a	S 18	S 35	S 80	S 180	S 600	S 1400	Rb 15
Stroke length	mm	0 - 15	0 - 15	0 - 25	0 - 40	0 - 15	0 - 20	0 - 20	0 - 40	0 - 40	0 - 60	0 - 15
Connecting rod force	N	2,300	5,400	8,000	15,700	1,750	3,500	14,000	18,000	40,000	60,000	1,800

Туре		Rb 150	Zentriplex	Tripower
Stroke length	mm	0 - 32	40	60
Connecting rod force	N	15,000	18,000	80,000

1000 I


2.0 Overview of Process Metering Pumps

2.0.2

Installation Applications

- A Oil Industry
- A1 Well
- A2 Platform
- A3 Transportation (tanker, pipeline)
- A4 Refinery
- A5 Petrochemical
- A6 industry/power plants
- A7 Filling stations

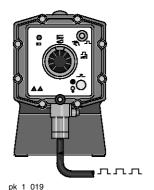
- B Gas Industry
- B1 Wel
- B2 Gas treatment/gas drying
- B3 Transportation (tanker, pipeline)
- B4 Gas storage tank
- B5 Local distribution/odorization
- B6 Industry/power plants

pk_3_07

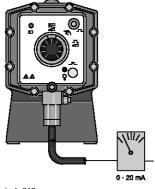
2.1.1

Diaphragm Metering Pump EXtronic®

Precise metering with explosion protection


Capacity range of single pump: 0.19 - 60 l/h, 10 - 1.5 bar

The diaphragm metering pump Extronic® is perfectly suited for the sensitive use of liquid media in facilities with an explosive gas atmosphere as well as for mines at risk of firedamp, as it is approved in compliance with the EC EX Regulation 94/9/EC (ATEX).


pk_1_020 Control type "Internal"

Stroke length adjustment 1:10, stroke rate adjustment 1:25, total adjustment range 1:250.

Control type "External Contact"

Stroke length adjustment 1:10, Stroke frequency control 0 - 100% dependant upon external switch contacts. *)

pk_1_018

Control type "Analogue"

Stroke length adjustment 1:10, Stroke frequency control 0-100 % proportional to analogue signal 0/4-20 mA. *)

*) The electrical cables for mains connection, contact or analogue control are already connected to the pump. Observe all instructions concerning connecting and activating electrical systems.

The ATEX-compliant diaphragm metering pump Extronic® (EXBb) is tested and approved in line with the harmonised EC provisions of EN 50014/50018 for "compression-resistant enclosures" and thus offers the maximum level of protection. The short-stroke solenoid and the complete pump control are integrated in the pump housing so that, together with the explosion-proof power end, there is IP 65 protection against contact and humidity as per DIN 40050 even when the front cover is open.

Your benefits

Optimum adaptation for use in areas at risk from explosion

- ATEX-compliant in line with EExd IIC T6 and EExd I/IIC T6
- Excellent operating and functional reliability by a microprocessor controller, which compensates for fluctuations of mains voltage and automatically switches from 50 to 60 Hz operation
- Broad range of applications with an operating voltage of 500 V, 230 V and 115 V
- Ease of integration into processes thanks to the range of control types (internal, external contact, analogue)
- Also suitable for gaseous media, thanks to self-bleeding head

Technical details

- Stroke length: 1.25 mm, Rod force: 2,000 N
- Stroke length adjustment range: 0 100 % in operation and idle
- Stroke length adjustment: manually by scaled rotary dial
- Metering reproducibility is better than ± 2 % within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- DEVELOPAN® metering diaphragm with PTFE coating with diaphragm rupture control
- Wetted materials: Polypropylene, PVC, PTFE with carbon, clear acrylic, stainless steel, special designs available on request
- Degree of protection: IP 65 (also with open front cover)
- Short stroke solenoid drive and complete pump control integrated in the pump housing
- "Internal", "External contact" and "Analogue" control inputs available, the latter two also available as intrinsically safe and approved to EN 50020
- EXBb G for use in areas at risk from gases and vapours, degree of protection EEx [i,a] d IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- \blacksquare T6 Temperature class permissible for gases and vapours with ignition temperature > 85 $^{\circ}\text{C}$
- EXBb M for use in mines at risk from firedamp, degree of protection EEx [i,a] d I/IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IC Explosion group I for mines at risk from firedamp
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- T6 Temperature class permissible for gases and vapours with ignition temperature > 85 °C

Field of application

- Oil, gas and petrochemicals
- Mining
- For use in areas at risk of gases and vapours
- Use in mines at risk from firedamp

Process Metering Pumps

Diaphragm Metering Pump EXtronic® 2.1

Technical Data

Type EXBb	Deliv	ery rate a	t max. back pressure	Delivery rate at medium back pressure			Number of strokes	oØ x iØ	Suction lift	Shipping weight PP,NP,TT-SS
	bar	l/h	ml/stroke	bar	l/h	ml/stroke	Strokes/min	mm	mWC	kg
EXBb										
1000	10.0	0.19	0.03	5.0	0.27	0.04	120	6 x 4	1.5	12
2501	25.0	1.14	0.15	20.0	1.10	0.17	120	6 x 4	5.0	_
1601	16.0	1.00	0.15	8.0	1.30	0.18	120	6 x 4	5.0	12
1201	12.0	1.70	0.23	6.0	2.00	0.28	120	6 x 4	5.0	12
0803	8.0	3.70	0.51	4.0	3.90	0.54	120	6 x 4	3.0	12
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	8 x 5	5.0	12
0308	3.0	8.60	1.20	1.5	10.30	1.43	120	8 x 5	5.0	12
2502	25.0	2.00	0.28	20.0	2.20	0.31	120	8 x 5	5.0	13
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	8 x 5	5.0	13
0613	6.0	13.10	1.82	3.0	14.90	2.07	120	8 x 5	5.5	13
0417	3.5	17.40	2.42	2.0	17.90	2.49	120	12 x 9	4.5	13
2505	25.0	4.20	0.64	20.0	4.80	0.73	110	8 x 5	5.0	16
1310	13.0	10.50	1.59	6.0	11.90	1.80	110	8 x 5	5.0	16
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	12 x 9	5.0	16
0430	3.5	27.00	4.09	2.0	29.50	4.47	110	DN 10	5.0	16
0260	1.5	60.00	9.09	-	-	-	110	DN 15	1.5	16
EXtronic® m	etering	pumps foi	r high viscosi	ty media	a					
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	DN 10	1.8	-
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	DN 10	2.0	-
1310	10.0	10.50	1.59	5.0	11.90	1.80	110	DN 15	2.8	-
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	DN 15	2.0	-
EXtronic® metering pumps with self-bleeding liquid end										
1601	16.0	0.66	0.09	-	-	-	120	6 x 4	1.8	-
1201	12.0	1.00	0.14	-	_	-	120	6 x 4	2.0	-
0803	8.0	2.40	0.33	-	-	-	120	6 x 4	2.8	_
1002	10.0	1.80	0.25	-	-	-	120	6 x 4	2.0	_

Shipping weight for EXBb M version... additional 14 kg

Materials in contact with the medium

	Liquid end	Suction/discharge connector	Seals	Balls (connection 6-12 mm)	Balls (connection DN 10 and DN 15)
PP1	Polypropylene	Polypropylene	EPDM	Ceramic	Borosilicate glass
PP4*	Polypropylene	Polypropylene	EPDM	-	Ceramic
NP1	Plexiglass	PVC	FKM A	Ceramic	Borosilicate glass
NP3	Plexiglass	PVC	FKM B	Ceramic	-
NS3**	Plexiglass	PVC	FKM B	Ceramic	-
PS3**	PVC	PVC	FKM B	Ceramic	-
TT1	PTFE with carbon	PTFE with carbon	PTFE	Ceramic	Ceramic
SS	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4404	PTFE	Ceramic	Stainless steel mat. no. 1.4404

PP4 with valve springs made of Hastelloy C

The data given here represents guaranteed minimum values, achieved with medium water at room temperature.

NS3 and PS3 with valve springs made of Hastelloy C, valve insert made of PVDF FKM = fluorine rubber

2.1.2 Identity Code Ordering System for EXBb

EXBb	Enclos	sure rat	ina										
	G		X-proof										
	М	Fire and explosion protection, permitted liquid end material: stainless steel and PTFE											
		Capac	ity										
			bar	l/h									
		1000	10	0.19									
		2501	25	1.14									
		1601	16	1.00									
		1201	12	1.70									
		0803	8	3.70									
		1002	10	2.30									
		0308	3	8.60	,								
		2502	25	2.00	(avaiiai	ole in S	s and Si	B only)					
		1006	10	6.00									
		0613	6	13.10									
		0417	4	17.40	(a.a.l., a.	ملطمانم	in CC a	~4 CD/					
		2505	25	4.20		vailable			and CD\				
		1310 0814	13	10.50 14.00	(only a	valiable	in NP, F	774, 55	and SB)				
		0430	8 4	27.00									
		0260	2	60.00									
		0200			atavial								
			PP1	l end ma	opylene	with ED	DM O-ri	ina					
			PP4						uids with EPDM O-ring and Hastelloy C valve springs (Types 1002, 1006, 1310 and 0814				
			NP1		with FK	M A O-r	ing*						
			NP3	-	with FK		-						
			NS3	Acrylic	with FK	M B O-r	ing*, se	If bleedi	ng (Types 1601, 1201, 0803 and 1002 only)				
			PS3	PVC w	ith FKM	B O-rin	g*, self l	oleeding	(Types 1601, 1201, 0803 and 1002 only)				
			TT1	PTFE \	with carb	on, PTF	E seal						
			SS1	Stainle	ss steel,	, no. 1.4	404, wit	h PTFE	seal				
			SS2						nread, PTFE seal				
			SB1						nal thread, ISO 7 Rp 1/2 on type 0260, PTFE seal (recommended for flammable materials)				
			SSM						tor Type 2501 only				
			SBM				n ruptur	e maica	tor Type 2501 only				
				vaive :	springs No spri								
				1		-	orinas. 1	.4571, 0	.1 bar				
						cal con			···				
					Α		50/60 H						
					В	115 V,	50/60 H	lz					
					E		50/60 H						
								m, oper	n end				
						Contro		Latualia					
						0		al conta	rate adjustment via potentiometer				
						2		ai corita jue 0-20					
						3		jue 4-20					
						4	_		ct, intrinsically safe [i,a]				
						5			mA, intrinsically safe [i,a]				
									mA, intrinsically safe [i,a]				
						6 7	Manua	ıl with ze	ro volts ON/OFF				
						8	Manua	ıl with ze	ro volts ON/OFF, intrinsically safe [i,a]				
							Contro	ol Versi					
							0		otentiometer(control type 0, 7 and 8 only)				
					1 With manual auxiliary key for maximum stroke rate(control type 1-6 only)								
							2		anual auxiliary frequency changer key for maximum stroke rate(control type 1-6 only)				
									ved/Language				
								0	BVS - Europe, German, 100 V - 500 V				
								1	BVS - Europe, English, 100 V - 500 V FM - USA, English, 115 V				
								3	CSA - Canada, English, 115 V, 230 V				

^{*} FKM = Fluorine rubber

Design of connectors

With PP, NP, NS, PS and TT	6, 8 and 12 mm	Hose nozzle with clamping ring
With stainless steel SS1/SSM	6, 8 and 12 mm	Swagelok system threaded connector
With stainless steel SS2	6, 8 and 12 mm	Internal thread 1/4" NPT
With stainless steel SS1/SBM	6, 8 and 12 mm	Internal thread ISO 7 Rp 1/4

With PP and NP	DN 10 and DN 15	Hose nozzle d 16 - DN 10 and d 20 - DN 15
With TT	DN 10 and DN 15	Welding sleeve d 16 - DN 10 and d 20 - DN 15 (PVDF)
With stainless steel SS1	DN 10 and DN 15	Insert with internal thread R 3/80 and R 1/2"
With stainless steel SB1	DN 10 and DN 15	Internal thread ISO 7 Rp 1/4 and 1/2

Repeatability of metering ±2 % when performed in line with the information in the operating instructions.

For type 1601 with self-bleeding dosing head ± 5 %. Permissible ambient temperature: -20 °C to +45 °C.

Electrical connection: 500 V ±6 %, 50/60 Hz

230 V ±10 %, 50/60 Hz 115 V ±10 %, 50/60 Hz

Degree of protection: IP 65, insulation class F

Average power consumption at max. stroke rate (W)/peak current during metering stroke (A) at 230 V, 50/60 Hz

EXBb	Type 1000, 2501, 1601, 1201, 0803, 1002, 0308	13 W/0.8 A	at 120 strokes/min.
EXBb	Type 2502, 1006, 0613, 0417	35 W/1.8 A	at 120 strokes/min.
EXBb	Type 2505, 1310, 1014, 0430, 0260	45 W/2.2 A	at 110 strokes/min.

Scope of delivery: Metering pump with mains cable (5 m) and connector parts for hose/pipe connection as per the table.

2.1.3 Spare Parts

Spare parts kits ProMinent EXtronic®

Supplied for PP and NP versions:

metering diaphragm
 suction valve compl.
 discharge valve compl.

1 discharge valve compl.

2 valve balls1 seal set1 connector set

Supplied for TT-PTFE versions:

1 metering diaphragm

suction valve compl.
 discharge valve compl.

2 valve balls

2 ball seat discs

1 seal set

1 connector set

Supplied for NS3 and PS3 versions:

1 metering diaphragm

suction valve compl.

1 connector parts set

1 discharge valve compl.

1 bleed valve set1 connector set

Supplied for SS stainless steel versions:

1 metering diaphragm

4 valve balls

4 ball seat discs

1 seal set

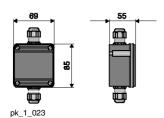
1 connector set


Pump type	Materials in contact with the medium	Order no.
EXBb 1000	PP1	740357
	NP3	740354
	ТТ	910776
	SS/SK	910777
EXBb 2501	SBM	1020281
	SSM	1020282
EXBb 1601	PP1	740361
	NP3	740358
	NS3/PS3	792033
	тт	910778
	SS/SK	910779
EXBb 1201	PP1	740380
	NP3	740362
	NS3/PS3	792034
	TT	910780
	SS/SK	910781
EXBb 0803	PP1	740384
	NP3	740381
	NS3/PS3	792035
	тт	910782
	SS	910783
EXBb 1002/2502	PP1	740388
	NP3	740385
	NS3/PS3	792036
	ТТ	910784
	SS	910785
	HV/PP 4 (Type 1002)	910743
EXBb 0308/1006/2505	PP1	740497
	NP1	740498
	ТТ	910957
	SS	910959
	HV/PP4 (Type 1006)	910939
EXBb 0613/1310	PP1	740504
	NP1	740505
	TT	910969
	SS	910971
	HV/PP4 (Type 1310)	910941
EXBb 0417/0814	PP1	740501
	NP1	740502
	TT	910977
	SS	910979
	HV/PP4 (Type 0814)	910943
EXBb 0430-DN 10	PP1	740507
	NP1	740508
	TT	910993
	SS	910995

Replacement parts set as DN 10 with one-way ball valves.

Process Metering Pumps

2.1 Diaphragm Metering Pump EXtronic®

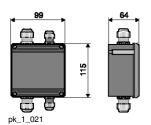

PTFE metering diaphragms

ProMinent® DEVELOPAN® EPDM metering diaphragms with woven inner layer, integrally vulcanised steel core and PTFE Teflon coating on the side in contact with the feed chemical.

For pump type	Description	Order no.
1000	31.0 x 6.0	811452
2501	35.0 x 11.5	1000246
1601	48.0 x 9.5	811453
1201	48.0 x 12.5	811454
0803	48.0 x 18.5	811455
1002, 2502	60.0 x 17.0	811456
0308, 2505, 1006	60.0 x 28.0	811457
1310, 0613	76.0 x 37.0	811458
0814, 0417	76.0 x 45.0	811459
0430, 0230	127.5 x 63.0	811460
0260	127.5 x 91.0	811461

2.1.4

Ex-Proof Ancillary Equipment

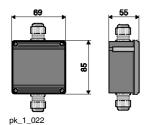


Plastic terminal box: Type I

IP 66, EEx e II T 6, max. 380 V for mains connection, e.g. of ProMinent EXtronic® in areas at risk of explosion.

Order no.

1 input, 1 output for power supply cable. 2 terminals + PE and 2 M 20-12 1000071 screw glands



Plastic terminal box: Type II

IP 6, EEx e II T 6, max. 380 V. As type I, but with additional connector for control cable (e.g. for contact water meter or DULCOMETER® controller).

Order no. 1000072

2 inputs (mains and controller cable), 2 outputs 2 terminals + PE, 1 partition, 2 terminals and 2 M 20-12 screw glands and 2 M 16-0.8 screw glands

Plastic terminal box: EExi Type I

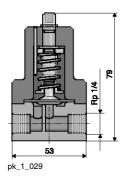
IP 66, EEx ia II T 6 for intrinsically safe control cable

	Order no.
1 input, 1 output for control cable, 2 terminals and 2 M 16-0.8, blue screw glands	1000073

Rp 1/2 SW 32 pk_1_30 / pk_1_031

Stainless steel foot valve 1.4404 "SB"

With filter and ball check valve, designed for use with flammable materials. Materials: 1.4404/1.4401/PTFE/


	Order no.	
Connector ISO 7 Rp 1/4 SB version for ProMinent EXtronic®	809301	
Connector ISO 7 Rp 1/2 SB version for ProMinent EXtronic®	924561	

Rp 1/2 Rp 1/2 SW 32 Rp 1/4 pk_1_032_2 / pk_1_027

Stainless steel 1.4404 "SB" metering valve

Spring-loaded ball check valve designed for use with flammable materials. Materials: 1.4404/1.4401/ Hastelloy C/PTFE/ceramic

	Order no.
Connector ISO 7 Rp 1/4 - R 1/2, priming pressure approx. 0.5 bar	809302
Connector ISO 7 Rp 1/2 - R 1/2, priming pressure approx. 0.5 bar	924560

Adjustable "SB" back pressure valve

	Order no.
Operating range approx. 1-10 bar, closed version, designed for use with flammable materials.	924555

To generate a constant back pressure for accurate metering with a free outlet. Can also be used as an overflow valve.

PTFE metering pipe

Carbon-filled, surface resistance $< 10^7 \Omega$

Material	Length	Connection size o Ø x i Ø	Permissible pressure	Order no.
	m	mm	bar	
Carbon-filled PTFE	By the metre	6 x 4	12*	1024831
Carbon-filled PTFE	By the metre	8 x 5	16*	1024830
Carbon-filled PTFE	By the metre	12 x 9	9*	1024832

Permissible operating pressure at 20 °C in accordance with EN ISO 7751, 1/4 of the rupture pressure, assuming chemical resistance and correct connection.

Additional ancillary equipment, i.e. foot valves, metering valves and back pressure valves in the usual material combinations, identical to gamma ancillary equipment and/or for connector DN 15 Vario ancillary equipment.

(Hydraulic/Mechanical Accessories see p. → 1-47)

Process Metering Pumps

Diaphragm Metering Pump EXtronic®

pk_1_028

Stainless steel straight threaded connectors

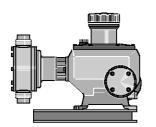
Swagelok system in stainless steel SS 316 (1.4401) for connection of pipework to liquid ends and valves with internal thread and for SB version.

Normal threaded seal compounds required.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
16 mm - ISO 7 R 1/2	359529

2.2 Diaphragm Metering Pump Makro TZ

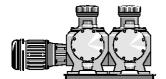
2.2.1


Diaphragm Metering Pump Makro TZ

Capacity range of single pump: 260 - 2,100 l/h, 12 - 4 bar

Greater safety in continuous operation through mechanically deflected multi-layer safety diaphragm

The modular construction of the diaphragm metering pump Makro TZ with adjustable eccentric drive mechanism and mechanically deflected multi-layer safety diaphragm makes it wonderfully adaptable to the capacity requirements of the respective application.


The diaphragm metering pump Makro TZ (TZMb) has an adjustable eccentric drive mechanism and, together with the Makro TZ plunger metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Excellent process safety and reliability:

- Patented multi-layer safety diaphragm with integral diaphragm rupture warning system
- Metering reproducibility is better than ± 2 % within the 30 100 % stroke length range under defined conditions and with correct installation

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump
- 5 different gear ratios are available
- Customised designs are available on request

pk_2_013 Makro TZ externally mounted nump

pk 2 012 Makro TZ TZMb

pk 2 014 Makro TZ double head pump

Technical details

- Stroke length: 0-10 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by scaled rotary dial in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2 % within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with electrical diaphragm rupture warning system / warning via a contact)
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

2.2 Diaphragm Metering Pump Makro TZ

Technical Data

Type TZMb	With 1500 rpm motor at 50 Hz With 1800 rpm motor at 60							or at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight PP,NP,TT-SS
	Delivery rate at max. back pressure		Max. stroke rate	Delivery rate at max. back pressure							
	bar	l/h	ml/stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	G-DN	kg
120260	12	260	60	72	174	312	82	86	4.0	1 1/2–25	46/54
120340	12	340	60	96	174	408	108	115	4.0	1 1/2–25	46/54
120430	12	430	60	120	174	516	136	144	4.0	1 1/2–25	46/54
120510	12	510	60	144	174	622	164	173	4.0	1 1/2–25	46/54
120650	12	640	60	180	174	-	-	-	4.0	1 1/2–25	46/54
070430	7	430	99	72	100	516	136	86	3.5	2–32	50/64
070570	7	570	99	96	100	684	181	115	3.5	2–32	50/64
070720	7	720	99	120	100	864	228	144	3.5	2–32	50/64
070860	7	860	99	144	100	1,032	273	173	3.5	2–32	50/64
071070	7	1,070	99	180	100	_	-	-	3.5	2–32	50/64
040840	4	840	194	72	58	1,008	266	86	3.0	2 1/4–40	56/80
041100	4	1,100	194	96	58	1,320	349	115	3.0	2 1/4–40	56/80
041400	4	1,400	194	120	58	1,680	444	144	3.0	2 1/4–40	56/80
041670	4	1,670	194	144	58	2,004	529	173	3.0	2 1/4–40	56/80
042100	4	2,100	194	180	58	-	-	-	3.0	2 1/4–40	56/80

Stroke length 10 mm

Plastic material design: max. 10 bar back pressure

The permissible priming pressure on the suction side is approximately 50% of the max. permitted back pressure

Materials in contact with the medium

			DN 25 l	oall valves	DN 32/DN 40 plate valves **			
	Liquid end	Suction/ discharge connector	Seals	Valve balls	Valve seats	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PVDF	PTFE	Ceramic	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4401	PTFE	PTFE	Stainless steel 1.4404/Hast. C	PTFE

Multi-layer safety diaphragms with PTFE coating.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.2 Diaphragm Metering Pump Makro TZ

2.2.2

Identity Code Ordering System for TZMb

Makro TZMb mechanically deflected diaphragm metering pump

TZMb	Drive t	type													
	Н	Main driv													
	Α														
	D	Double n	nain di	rive											
	В		ıdd-on	dd-on drive											
		Type*													
		120260			070430			040840							
		120340			070570			041100							
		120430			070720			041400							
		120510			070860			041670							
		120650			071070			042100							
				d end r PVC	naterial	**									
			PC PP		pylene										
			SS		ss steel										
			TT		- 35 3teei ⊦ 25% ca	rhon									
					g materi										
				Т	PTFE	u									
					Displac	emen	t hody								
					1			fety diapl	ragm v	vith rupt	ure indi	cator			
							d end v								
						0	No val	ve spring	s						
						1	With v	alve sprin	gs						
							Hydra	ulic con							
							0	Standar							
							1	PVC un							
							2	PP unio							
							3	PVDF u SS unio							
							4			na inser	l .				
								Version 0		roMiner	t® logo				
								2		oMinent					
								A				, with fra	ame sin	nnlex	
								В				, with fra			
								С				, with fra			
								M	Modif	ed	_		•		
									Electi	rical po	wer su	pply			
									S			V 50/60			
									R					230/400 V	
									V (0)				with inte	gr. frequency converter	
									Z	Speed			/F F.		
									L P	-		V 50 Hz		· ·	
									V (2)			V 60 Hz	•	gr. frequency converter (Exd)	
									4			56 C fla		gr. rrequericy converter (Exa)	
									7		,	120/80	0		
									8			160/90	-		
									0			rnally m	•	drive	
											ure rat				
										0		Standar	d) ISO c	lass F	
										1	Exe ve	rsion AT	TEX-T3		
										2	Exd ve	rsion A7	ΓEX-T4		
										Α	ATEX	power e	nd		
												senso			
											0		ke sens		
											1			nsor (Namur)	
												Stroke 0		adjustment length adjustment, manual	
												1		stroke actuator	
												2		stroke actuator	
												3		0-20 mA stroke controller	
												4		4-20 mA stroke controller	
												5		0-20 mA stroke controller	
												6		4-20 mA stroke controller (servo motors for Ex	
												Ĭ		on request)	
													Applic		
													0	Standard	

 $^{^{\}star}$ Digits 1 + 2=back pressure [bar]; digits 3 - 6=capacity [l/h]

^{**} Material version PCT/PPT/TTT max. 10 bar

Diaphragm Metering Pump Makro TZ

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5 %	50/60 Hz	1.1 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.75 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.2.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

- Metering diaphragm (multi-layer safety diaphragm)
- Suction valve complete
- Discharge valve complete
- 2 Valve balls (DN 32/DN 40 with plate and spring)
- Complete sealing set (O-rings or flat seals, valve seats, valve seat bushings)

Makro TZ (TZMb) spare parts kits

Identity code: 120260, 120340, 120430, 120510, 120650

Liquid end	Materials in contact with the medium	Order no.
FM 650 - DN 25	PCT, PPT, TTT	1025164
	SST	1022896
	SST (without valve cpl.)	1022895

Identity code: 070430, 070570, 070720, 070860, 071070

Liquid end	Materials in contact with the medium	Order no.
FM 1100 - DN 32	PCT, PPT, TTT	1025167
	SST	1022917
	SST (without valve cpl.)	1022916

2.2 Diaphragm Metering Pump Makro TZ

Identity code: 040840, 041100, 041400, 041670, 042100

Liquid end	Materials in contact with the medi	um Order no.
FM 2100 - DN 40	PCT, PPT, TTT	1025169
	SST	1022930
	SST (without valve cpl.)	1022929

Multi-layer Metering Diaphragm for TZMb

ProMinent multi-layer safety diaphragm with diaphragm rupture warning system and PTFE Teflon coating on the wetted side.

Pump type	Order no.
Identity code: 120260, 120340, 120430, 120510, 120650; Makro TZ FM 650	1022887
Identity code: 070430, 070570, 070720, 070860, 071070; Makro TZ FM 1100	1022900
Identity code: 040840, 041100, 041400, 041670, 042100; Makro TZ FM 2100	1022921

Makro TZ spare parts kits for TZMa

Identity code: 120190, 120254, 120317, 120381

Liquid end	Materials in contact with the medium	Order no.
Liquid end FM 530 - DN 25	PP	910452
	Р	910455
	Т	910458
	S (without valve cpl.)	910475
	S	910461

Identity code: 060397, 060529, 060661, 060793

Liquid end	Materials in contact with the medium	Order no.
Liquid end FM 530 - DN 25	PP	910453
	Р	910456
	Т	910459
	S (without valve cpl.)	910476
	S	910462

Identity code: $030750,\,031000,\,031250,\,031500,\,031875,\,031050$, $031395,\,031740,\,032100,\,032500$

Liquid end	Materials in contact with the medium	Order no.
Liquid end FM 1500/2100	PP	1001573
	P	1001574
	Т	1001575
	S (without valve cpl.)	1001577
	S	1001576

2.2 Diaphragm Metering Pump Makro TZ

PTFE metering diaphragms for TZMa

ProMinent® DEVELOPAN® metering diaphragms with a generously-sized steel core vulcanised into fibre reinforced EPDM, with a PTFE Teflon coating on the process-wetted side.

Pump type	Order no.
Identity code: 100190, 120190, 100254, 100317, 120317, 100381, 120381; Makro TZ FM 260	811471
Identity code: 060397, 060529, 060661, 060793; Makro TZ FM 530	811472
Identity code: 030750, 031000, 031250, 031500, 031050, 031395, 031740, 032100, 032500; Makro TZ FM 1500/FM 2100	811473

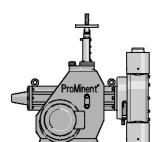
Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.3 Diaphragm Metering Pump Makro/ 5

2.3.1

Diaphragm Metering Pump Makro/ 5


It is not possible to do more with a mechanically deflected diaphragm Capacity range of single pump: 1,540 – 4,000 l/h, 4 bar

The diaphragm metering pump Makro/ 5 is used to meter reactants and catalysts in the chemical

The diaphragm metering pump Makro/ 5 (M5Ma) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,000 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

industry. Thanks to its modular construction, it can adapt outstandingly to the actual requirements of each

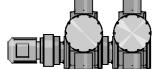
pk_2_099 Makro/ 5 M5Ma

pk_2_093

Your benefits

application.

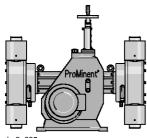
Process reliability:


Metering reproducibility is better than ± 2 % within the 30-100 % stroke length range under defined conditions and with correct installation.

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical details


- Stroke length: 0-20 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2 % within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

pk_2_098 Makro/ 5 externally mounted pump

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_095 Makro/ 5 double head pump

Diaphragm Metering Pump Makro/5

Technical Data

Type M5Ma	With 1500 rpm i Delivery rate at max. back pressure			notor at 50 Hz Max. stroke rate	Del	ivery rat	800 rpm m e at max. pressure	notor at 60 Hz Max. stroke rate	Suction lift	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/stroke	Strokes/min	psi	l/h	gph (US)	Strokes/min	mWC	G-DN	kg
041540	4	1,540	427	60	58	1,822	481	71	3.0	2 3/4–50	320
041900	4	1,900	427	75	58	2,254	595	89	3.0	2 3/4-50	320
042600	4	2,600	427	103	58	3,104	820	123	3.0	2 3/4-50	320
043400	4	3,400	427	133	58	4,064	1,074	159	3.0	2 3/4-50	320
044000	4	4,000	427	156	58	-	-	_	3.0	2 3/4–50	320

Stainless steel version: Shipping weight 340 kg

The permissible admission pressure on the intake side is approx. 50 % of the maximum permissible back pressure.

Materials in contact with the medium

DN 50 plate valves

	Liquid end	Suction/discharge valve	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVC	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4571/1.4404	Stainless steel mat. no. 1.4571/1.4404	PTFE	Stainless steel mat. no. 1.4404/ Hast. C	PTFE

DEVELOPAN® metering diaphragm with PTFE coating.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	3 kW	
		250-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.3 Diaphragm Metering Pump Makro/ 5

2.3.2

Identity Code Ordering System M5Ma

M5Ma motor-driven mechanically deflected diaphragm metering pump

М5Ма	Drive	type												
	Н	Main dri	ve											
	D	Double	main dri	ve										
	Α	Add-on	drive											
	В	Double a	add-on o	drive										
		Туре												
		041540												
		041900												
		042600												
		043400												
		044000												
				end ma	aterial									
			PC	PVC										
			PP	, , ,	pylene									
			SS TT		ss steel - 25 % c									
			1 1											
				T	g mate i PTFE	riai								
				'			بالممطاء							
					טוspia T	Cement I Pump		am with	PTFE co	nating				
					l	-	end ve	_		zaig				
						1			ings Ha	st. C; 0.	bar			
						1			nection					
							0		ard conn					
							1	PVC u	nion nut	and inse	ert			
							2	PP uni	on nut a	nd inser	t			
							3	PVDF	union ทเ	it and in	sert			
							4	SS uni	on nut a	nd inser	t			
								Version						
								0		roMinen				
								1		t ProMir				
								A			0 /		ıme, simp	
								В					ıme, dupl	
								C D					me, triple	
								M	Modifie		ı∘ iogo,	withira	ıme, quad	urupiex
								IVI				m ls r		
									S	cal pow			Hz (WB	9)
									R				•	30/400 V (R 1:5)
									z				•	00 V, 50/60 Hz
									L				(Exe, Ex	
									Р			Hz (Exe		
									5				0 gearbo	x
									6				2 gearbo	
									0	No mot	or, no g	jearbox	-	
										Enclos				
										0			rd) ISO cl	ass F
										1		rsion A7		
										2		rsion A		
										Α		power e		
												senso		
											0		oke sens	
											ı			nsor (Namur)
												Stroke 0		adjustment length adjustment, manual
												3		nengin adjustment, mandal 0-20 mA stroke controller
												4		I-20 mA stroke controller
												5		0-20 mA stroke controller
												6		drive 115 V 4-20 mA
												ľ		lesigns, such as explosion-proof, on request
													Applica	
													0	Standard
													-	

2000

2.3

2.3 Diaphragm Metering Pump Makro/ 5

2.3.3

Spare Parts

Spare parts kit Makro/ 5 HM

The replacement part kit in general includes wear parts for the liquid ends.

- 1 Metering diaphragm
- 1 Suction valve compl.
- 1 Discharge valve compl.
- 2 Valve plate and Hast. C spring
- 1 Seal kit complete (envelope rings, valve seat/valve seat bushing)

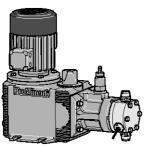
Liquid end	Order no.
FM 4000 PCT	1008172
FM 4000 PPT	1008171
FM 4000 TTT	1008173
FM 4000 SST (without valves cpl.)	1008174

PTFE metering diaphragm

 ${\tt DEVELOPAN}^{\small @}\ diaphragm\ made\ of\ EPDM\ with\ woven\ fabric\ inlay,\ large-area,\ vulcanised\ aluminium\ core\ and\ PTFE-Teflon\ layer\ on\ the\ side\ in\ contact\ with\ the\ medium.$

	Order no.
Metering diaphragm for Makro/ 5 FM 4000	1009023

2.4.1


Hydraulic Diaphragm Metering Pumps Hydro

Flexible metering with excellent process reliability in the medium pressure range? Not a problem for the hydraulic diaphragm metering pumps Hydro/ 2

Capacity range of single pump: 3 - 72 l/h, 100 - 25 bar

As an extremely robust hydraulic diaphragm metering pump, the Hydro/2 meets the most exacting safety requirements. Its modular construction, with either one or two dosing heads, 4 gear ratios, 2 dosing head sizes and 3 dosing head materials, offers a very high degree of flexibility in terms of areas of application.

pk 2 074 Hydro

pk 2 073

Hydro double head pump

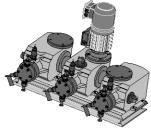
The Hydro/ 2 hydraulic diaphragm metering pump (HP2a) together with the Hydro/ 3 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1 % within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:


- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available

Technical details

- Stroke volume adjustment range: 0 100 %
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 1 % in the 20 to 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electric diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25 % carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P HY 0040 SW1 Hydro externally mounted pump

P_PZ_0001_SW1 Hydro triplex pump

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Technical Data

Type HP2a	With	1500 r	pm moto	or at 50 Hz	Wit	th 1800 rpm	n motor at 60 Hz	Suction lift	Perm. pre-	Connection on suction/	Shipping weight	Plunger Ø
			/ rate at ressure	Max. stroke rate		ery rate at max. back pressure	Max. stroke rate		pressure suction side	pressure side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg	mm
100003*	100	3	0.8	60	1,450	3.6/1.0	72	3.0	5	Rp 1/4	31	16
100006*	100	6	8.0	125	1,450	7.0/1.8	150	3.0	5	Rp 1/4	31	16
100007*	100	7	0.8	150	1,450	8.0/2.1	180	3.0	5	Rp 1/4	31	16
100009*	100	9	0.8	187	1,450	11.0/2.9	224	3.0	5	Rp 1/4	31	16
100010*	100	10	0.8	212	-		-	3.0	5	Rp 1/4	31	16
064007	64	7	2.0	60	928	8.4/2.2	72	3.0	5	G 3/4-10	31	18
064015	64	15	2.0	125	928	18.0/4.8	150	3.0	5	G 3/4-10	31	18
064018	64	18	2.0	150	928	21.0/5.5	180	3.0	5	G 3/4-10	31	18
064022	64	22	2.0	187	928	26.0/6.9	224	3.0	5	G 3/4-10	31	18
064025	64	25	2.0	212	_		-	3.0	5	G 3/4-10	31	18
025019	25	19	5.3	60	362	23.0/6.1	72	3.0	5	G 3/4-10**	31	26
025040	25	40	5.3	125	362	48.0/12.7	150	3.0	5	G 3/4-10**	31	26
025048	25	48	5.3	150	362	58.0/15.3	180	3.0	5	G 3/4-10**	31	26
025060	25	60	5.3	187	362	72.0/19.0	224	3.0	5	G 3/4-10**	31	26
025068	25	68	5.3	212	-		-	3.0	5	G 3/4-10**	31	26

Material version PVDF max. 25 bar.

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10 %	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Material design SST/HCT with double ball valve, valve connector on the suction-pressure
** HV design with G1 - DN 15 connector side as standard with internal thread Rp 1/4 and external thread G 3/4 - DN 10

2.4.2

Identity Code Ordering System HP2a

Hydro/ 2 (HP2a)

B With stroke control motor 420 mA 230 \ C With stroke control motor 020 mA 115 \ D With stroke control motor 420 mA 115 \ Hydraulic oil 0 Standard 1 Food grade					yu	. 0, _	(пг2а	,						
D Main drive, double-head version of mide														
E Main drive, double-head version for add-on drive Adds-on drive B Double-head version add-on drive Triplex comprising 3 power ends and 3 identical heads Sype* Type* T														
F Main drive, double-head version for add-on drive A Add-on drive Double-head version add-on drive Triplex comprising 3 power ends and 3 identical heads Type*			-,											
A Add-on-drive Tipplex comprising 3 power ends and 3 identical heads Tipplex comprising 3 power ends and 3 identical heads Tipplex comprising 3 power ends and 3 identical heads Tipplex comprising 3 power ends and 3 identical heads 100009 100 0 3 064007 64 7 025019 25 19 100009 100 6 064015 64 15 025040 25 40 100009 100 7 064018 64 18 025048 25 48 100009 100 9 064022 64 22 025060 25 60 100010 100 100 100 00 9 064025 64 25 025060 25 60 100010 100 100 100 100 100 100 100 100														
B Double-head version add-on drive Triplex comprising 3 power ends and 3 identical heads Typer			,											
Tiplex comprising 3 power ends and 3 identical heads Types														
Types														
1000003 100 3	ļ													
100003 100 3		Type*			har I/h har I/h									
100000 100 6		100002												
100007 100 7														
100009 100 9														
100010 100														
Liquid end material														
SS Stainless steel		100010			naterial		001020	•				020000		
PV														
HCC Hastelloy C TT TER + 25 % carbon Seating material* T PTEF + 25 % carbon Seating material* T PTEF Displacement body* Standard multi-layer diaphragm with rupture signalling facility Liquid end version			PV	PVDF	(only fo	r 02501	9 - 02506	8, 064	007 - 06	4025)				
PTEE 25 % carbon Sealing material* PTEE			HC					,		,				
Tisplacement body* 0			TT	PTFE -	+ 25 % c	carbon								
Displacement body* 0 Standard multi-layer diaphragm with rupture signalling facility Liquid end version 1 With valve springs (standard) 1 With valve springs 1 D Double ball valve (only for SST and HCT) 1 H HV version (only for 025019-025060) 1 Hydraulic connection 0 Istandard threaded connector E With DIN ISO flange Version 0 with APSI flange Version 1 Electrical power supply Electrical power supply S 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 2				Sealin	g mate	rial*								
Standard multi-layer diaphragm with rupture signalling facility Liquid end version 0 No valve springs (standard) 1 With valve springs D Double ball valve (only for SST and HCT) H HV version (only for 025019-025060) Hydraulic connection E With DNI SIO flange F With STOKe positioning motor, 115 V(60 flange) With stroke control motor 020 m A 230 flanged With stroke control motor 020 m A 230 flanged F With Stoke Positioning Motor 020 m A 230 flanged F With Stoke Positioning Motor 020 m A 2				Т	PTFE									
Liquid end version 0 No valve springs (standard) 1 With valve springs 0 Double ball valve (only for SST and HCT) H HV version (only for 025019-025060) Hydraulic connection 0 Standard threaded connector E With DIN ISO llange Version 0 With AnSI flange Version 0 With ProMinent® logo 1 With AnSI flange Version 0 Modified Electrical power supply Electrical power supply S 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, (xe, Exd), 0.37 kW V (0) Variable speed motor with integrated frequency converter 2 1 ph, 230/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) Variable speed motor with integr. frequency converter (Exd) No motor, with flange 90/80 No motor, with flange 90/80 No motor, with flange 90/80 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Evde motor version ATEX-T3 2 Evde motor version ATEX-T4 A TEX power end Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 115 V/60 A With stroke control motor 020 mA 230 C With stroke control motor 020 mA 230 C With stroke control motor 020 mA 230 C With stroke control motor 020 mA 230 Hydraudic oil 0 Standard 1 Food grade No produce No														
1					0			,	iaphragı	n with ru	ıpture si	gnalling f	acility	
1														
D Double ball valve (only for SST and HCT) H Version (only for 025019-025060) Hydraulic connection 0 Standard threaded connector E With DIN ISO flange F With DIN ISO flange Version 0 with ProMinent® logo 1 without ProMinent® logo M Modified Electrical power supply S 3 ph. 230/400 V. 50/60 Hz. 0.37 kW T 3 ph. 230/400 V. 50/60 Hz. 0.37 kW V (V) V (V) Variable speed motor with integrated frequency converter Z 1 ph. Variable speed motor with integrated frequency converter Z 1 ph. Variable speed motor with integrated frequency converter D No motor, with flange B 5, size 71 A No motor, with flange B 5, size 71 A No motor, with flange B 5, size 71 A No motor, with flange B 5, size 71 A No motor, with flange B 5, size 71 A No motor, with flange B 5, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with flange B 7, size 71 A No motor, with single permonency 7, size 71 A No motor, with single permonency 7, size 71 A No motor, with single permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permonency 7, size 71 A No motor, with single Permone									• •	dard)				
H Hydraulic connection									0	, for 00	Longili	CT)		
Hydraulic connection O Standard threaded connector												O1)		
Standard threaded connector						П			•		25000)			
E With DIN ISO flange With ANSI flange Version							-				nnecto	r		
F With ANSI flange Version With ProMinent® logo 1 withbout ProMinent® logo M Modified Electrical power supply S 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, Variable speed motor, 230 V/400 V, 0.37 kW V (0) Variable speed motor with integrated frequency converter 1 ph, Variable speed control set, 230 V, 50/60 Hz L 3 ph, 230/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) Variable speed motor with integrated frequency converter (Exd) No motor, with flange S 5, size 71 Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T3 2 Exde motor version ATEX-T4 ATEX power end Stroke sensor (standard) 1 Stroke sensor (standard) 1 Stroke sensor (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 230 V/50/6 2 With stroke control motor 020 mA 230 V D With stroke control motor 020 mA 230 V Hydraulic oil 0 Standard 1 Food grade Hydraulic oil 1 Hydraulic oil							-				Jilicolo			
Version										_				
0										. J.				
M Modified Electrical power supply S 3 ph, 230/400 V, 50/60 Hz, 0,37 kW T 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, Variable speed motor with integrated frequency converter 1 ph, Variable speed motor with integrated frequency converter 1 ph, Variable speed control set, 230 V, 50/60 Hz L 3 ph, 230/400 V, 50 Hz (Exe, Exd), 0.37 kW V (2) Variable speed motor with integr. frequency converter (Exd) No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 Exde motor version ATEX-T4 A ATEX power end Stroke sensor (for explosion-proof applications) Stroke sensor (for explosion-proof applications) Stroke sensor (for explosion-proof applications) With stroke positioning motor, 230 V/50/60 2 With stroke positioning motor, 230 V/50/60 2 With stroke control motor 020 mA 230 V With stroke control motor 420 mA 230 V Unit stroke control motor 420 mA 115 V Unit stroke control motor 4										oMinent	® logo			
Belectrical power supply S 3 ph, 230/400 V, 50/60 Hz, with PTC 7 3 ph, 230/400 V, 50/60 Hz, with PTC 8 3 ph, Variable speed motor, 230 V/400 V, 0.37 kW V (0) Variable speed motor with integrated frequency converter 2 1 ph, Variable speed control set, 230 V, 50/60 Hz L 3 ph, 230/400 V, 50 Hz (Exe, Exd), 0.37 kW V (2) 3 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) Variable speed motor with integr. frequency converter (Exd) 1 No motor, with flange 200/80 3 No motor, with flange 200/80 3 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A TEX power end Stroke sensor (for explosion-proof applications) Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 Manual (standard) 2 With stroke control motor 020 mA 230 V With stroke control motor 020 mA 230 V With stroke control motor 420 mA 230 V With stroke control motor 420 mA 230 V Hydraulic oil 0 Standard 1 Food grade 1								1	withou	t ProMin	ent® log	go		
S 3 ph, 230/400 V, 50/60 Hz, 0,37 kW T 3 ph, 230/400 V, 50/60 Hz, with PTC R 3 ph, Variable speed motor, 230 V/400 V, 0.37 kW V (0) Variable speed motor with integrated frequency converter 1 ph, Variable speed control set, 230 V, 50/60 Hz L 3 ph, 230/400 V, 50 Hz (Exe, Exd), 0.37 kW 3 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) Variable speed motor with integr. frequency converter (Exd) No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating Exe motor version ATEX-T3 Exde motor version ATEX-T4 A ATEX power end Stroke sensor (standard) Stroke sensor (standard) Stroke sensor (for explosion-proof applications) Stroke length adjustment No motor, with flange Stroke length adjustment With stroke positioning motor, 230 V/50/6 With stroke control motor 020 mA 230 V With stroke control motor 020 mA 230 V C With stroke control motor 020 mA 230 V D With stroke control motor 020 mA 115 V Hydraulic oil O Standard T Food grade Foo								M	Modifie	ed				
T 3 ph, 230/400 V, 50/60 Hz, with PTC 3 ph, Variable speed motor with integrated frequency converter 1 ph, Variable speed control set, 230 V, 50/60 Hz 2 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW 4 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW 5 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW 6 v(2) Variable speed motor with integr. frequency converter (Exd) 1 no motor, with flange 200/80 1 no motor, with flange B 5, size 71 2 no motor, with flange NEMA 56 C 3 no liP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 4 A ATEX power end 3 stroke sensor 5 no los stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) 5 stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 Ph A With stroke control motor 020 mA 230 V With stroke control motor 020 mA 230 V With stroke control motor 020 mA 230 V With stroke control motor 020 mA 115 V Hydraulic oil 0 Standard 1 With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade									Electr					
R														
V (0) Z I ph, variable speed control set, 230 V, 50/60 Hz 3 ph, 230/400 V, 50 Hz (Exe, Exd), 0.37 kW 3 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) I No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor (20 mA 230 N B With stroke control motor 020 mA 230 N C With stroke control motor 420 mA 230 N C With stroke control motor 420 mA 115 N Hydraulic oil 0 Standard 1 Food grade														
1 ph, Variable speed control set, 230 V, 50/60 Hz 3 ph, 230/400 V, 60 Hz (Exe, Exd), 0.37 kW 3 ph, 285/400 V, 60 Hz (Exe, Exd), 0.37 kW V (2) 1														
L 3 ph, 230/400 V, 50 Hz (Exe, Exd), 0.37 kW 7 V(2) Variable speed motor with integr. frequency converter (Exd) No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A ATEX power end Stroke sensor 0 No stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 H A With stroke control motor 420 mA 230 V B With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade									` '					•
P 3 ph, 265/400 V, 60 Hz (Exe, Exd), 0.37 kW V(2) Variable speed motor with integr. frequency converter (Exd) No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0														
V (2) 1 No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A TEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 420 mA 230 V C With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade														· · · · · · · · · · · · · · · · · · ·
1 No motor, with flange 200/80 No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 115 V/60 H A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade														**
No motor, with flange B 5, size 71 No motor, with flange NEMA 56 C Add on drive Enclosure rating O IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A ATEX power end Stroke sensor O No stroke sensor (for explosion-proof applications) Stroke length adjustment O Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 P A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 215 V With stroke control motor 420 mA 115 V Hydraulic oil O Standard 1 Food grade									. ,					3 - 4 7 (/
Add on drive Enclosure rating O IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A ATEX power end Stroke sensor O No stroke sensor (standard) 1 Stroke length adjustment O Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 N B With stroke control motor 420 mA 230 N C With stroke control motor 020 mA 115 N Hydraulic oil O Standard Food grade												-		71
Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A TEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 P 2 With stroke positioning motor, 115 V/60 P A With stroke control motor 020 mA 230 N B With stroke control motor 420 mA 230 N C With stroke control motor 020 mA 115 N D With stroke control motor 420 mA 115 N Hydraulic oil 0 Standard 1 Food grade									4	No mo	tor, with	flange N	EMA 5	6 C
IP 55 (standard) Exe motor version ATEX-T3 Exde motor version ATEX-T4 ATEX power end		1			1				0	Add or	drive	-		
1 Exe motor version ATEX-T3 2 Exde motor version ATEX-T4 A TEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade														
2 Exde motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade										_				-V T0
A ATEX power end Stroke sensor 0 No stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade														
Stroke sensor No stroke sensor (standard)														EX-14
0 No stroke sensor (standard) 1 Stroke sensor (for explosion-proof applications) Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade		1			1					А				
Stroke sensor (for explosion-proof applications) Stroke length adjustment O Manual (standard) 1 With stroke positioning motor, 230 V/50/60 2 With stroke positioning motor, 115 V/60 H A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil O Standard 1 Food grade														cor (standard)
Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade														
0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 N B With stroke control motor 420 mA 215 N D With stroke control motor 020 mA 115 N Hydraulic oil 0 Standard 1 Food grade		1			1						[
1 With stroke positioning motor, 230 V/50/6 2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 V B With stroke control motor 420 mA 230 V C With stroke control motor 020 mA 115 V D With stroke control motor 420 mA 115 V Hydraulic oil 0 Standard 1 Food grade		1			1									
2 With stroke positioning motor, 115 V/60 F A With stroke control motor 020 mA 230 N B With stroke control motor 420 mA 230 N C With stroke control motor 020 mA 115 N D With stroke control motor 420 mA 115 N Hydraulic oil 0 Standard 1 Food grade														,
A With stroke control motor 020 mA 230 \ B With stroke control motor 420 mA 230 \ C With stroke control motor 020 mA 115 \ D With stroke control motor 420 mA 115 \ Hydraulic oil 0 Standard 1 Food grade												1 -		
B With stroke control motor 420 mA 230 \ C With stroke control motor 020 mA 115 \ D With stroke control motor 420 mA 115 \ Hydraulic oil 0 Standard 1 Food grade														stroke control motor 020 mA 230 V/50/60 Hz
D With stroke control motor 420 mA 115 \ Hydraulic oil \ 0 Standard \ 1 Food grade														stroke control motor 420 mA 230 V/50/60 Hz
D With stroke control motor 420 mA 115 \ Hydraulic oil \ 0 Standard \ 1 Food grade		1			1									stroke control motor 020 mA 115 V/60 Hz
Hydraulic oil 0 Standard 1 Food grade		1			1									stroke control motor 420 mA 115 V/60 Hz
0 Standard 1 Food grade														
													0	
		1			1									Food grade
2 Low temperature to -25 °C		1			1									·
3 Low temperature Zone 2													3	Low temperature Zone 2

* PVT max. 25 bar

2.4.3 Spare Parts Kits

The spare parts kits generally include liquid end consumables.

Supplied as standard for SST/HCT stainless steel material version

- 1 metering diaphragm
- 2 valve balls
- 1 seal set

Supplied as standard for PVT material version

- 1 metering diaphragm
- 1 suction connector set
- 1 discharge connector set
- 2 valve balls
- 1 seal set

Spare parts kits for Hydro/ 2

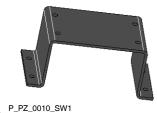
Applies to identity code: Type 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007

Liquid end	Materials in contact with the medium	Order no.
FMH 25 - DN 10	PVT	1005548
	SST	1005549
	SST (for double ball valves)	1029260
	HCT	1009571
	SST (with valve set)	1005550

Applies to identity code: Type 025068, 025060, 025048, 025040, 025019

Liquid end	Materials in contact with the medium	Order no.
FMH 60 - DN 10	PVT	1005552
	SST	1005553
	SST (for double ball valves)	1005555
	HCT	1009573
	SST (with valve set)	1005554

Hydro/ 2 PTFE metering diaphragms / 1.4404


Liquid end		Order no.
FMH 25	Applies to identity code (SST): 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007	1005545
FMH 60	Applies to identity code (SST): 026068, 025060, 025048, 025040, 025019	1005546

Hydro/ 2 Pump diaphragms PTFE/Hastelloy C coated

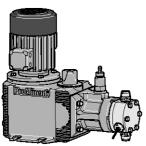
Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

Base for Hydro hydraulic diaphragm metering pumps

	Order no.
Base for Hydro/ 2, dimensions: 300 x 160 x 128 mm (LxWxH)	1005660

Hydraulik-Membrandosierpumpe Hydro/ 3

2.5.1

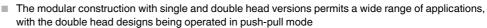

Hydraulik-Membrandosierpumpe Hydro/ 3

Flexible metering with excellent process reliability in the medium pressure range? Not a problem for the hydraulic diaphragm metering pumps Hydro/ 3

Capacity range of single pump: 10 - 180 l/h, 100 - 25 bar

The Hydro/ 3 is an extremely robust hydraulic diaphragm metering pump. It meets the most exacting safety requirements. Its modular construction offers extremely good flexibility in terms of application, for example in the oil and gas industry.

pk 2 074 Hydro


The Hydro/ 3 hydraulic diaphragm metering pump (HP3a) together with the Hydro/ 2 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

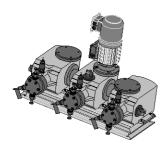
- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1 % within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump
- 5 different gear ratios are available
- Customised designs are available on request

pk 2 073 Hydro double head pump

Technical details


- Stroke length: 15 mm, Rod force: 4,200 N
- Stroke volume adjustment range: 0 100 %
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control
- Metering reproducibility is better than ± 1 % in the 20 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25 % carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P HY 0040 SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

2.5 Hydraulik-Membrandosierpumpe Hydro/ 3

Technical Data

Type HP3a		With	1500 rpn	n motor at 50 Hz	Wi	th 1800 rpn	n motor at 60 Hz	Suction lift	Perm. pre-	Connection suction/	Shipping weight	Plunger Ø
	D	ma	y rate at ax. back ressure	Max. stroke rate		ery rate at max. back pressure	Max. stroke rate		pressure suction side	discharge side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg	mm
100010*	100	10	2.8	60	1,450	12/3.2	72	3.0	5	Rp 3/8–10	41	22
100021*	100	21	2.8	125	1,450	25/6.6	150	3.0	5	Rp 3/8-10	41	22
100025*	100	25	2.8	150	1,450	30/7.9	180	3.0	5	Rp 3/8-10	41	22
100031*	100	31	2.8	187	1,450	37/9.8	224	3.0	5	Rp 3/8-10	41	22
100035*	100	35	2.8	212	1,450		-	3.0	5	Rp 3/8-10	41	22
064019	64	19	5.3	60	928	23/6.1	72	3.0	5	G 3/4-10**	41	26
064040	64	40	5.3	125	928	48/12.7	150	3.0	5	G 3/4-10**	41	26
064048	64	48	5.3	150	928	58/15.3	180	3.0	5	G 3/4-10**	41	26
064060	64	60	5.3	187	928	72/19.0	224	3.0	5	G 3/4-10**	41	26
064068	64	68	5.3	212	928		-	3.0	5	G 3/4-10**	41	26
025048	25	48	13.4	60	362	58/15.3	72	3.0	5	G 1–15***	41	38
025100	25	100	13.4	125	362	120/31.7	150	3.0	5	G 1–15***	41	38
025120	25	120	13.4	150	362	144/38.0	180	3.0	5	G 1–15***	41	38
025150	25	150	13.4	187	362	180/47.6	224	3.0	5	G 1–15***	41	38
025170	25	170	13.4	212	362		-	3.0	5	G 1–15***	41	38

Material version PVDF max. 25 bar.

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0,75 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.75 kW	With PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz
V0	1 ph, IP 55	230 V ±10 %	50/60 Hz	0.75 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExelIT3	254-277 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.75 kW	With PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	0.75 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Material version SST/HCT with double ball valve, valve connection on suction/discharge side designed as standard with internal thread Rp 3/8 and external, thread G 3/4-DN 10

^{***}HV version with 1 1/4" DN 20 connection

^{*} HV version with G 1 - DN 15 connection

2.5 Hydraulik-Membrandosierpumpe Hydro/ 3

2.5.2

Identity Code Ordering System HP3a

Hydro/ 3 (HP3a)

Drive	type														
Н	Main dri	ve													
D			double-head version												
E		,		d-on drive le-head version for add-on drive											
F	Main dri	ve, do	uble-hea												
Α	Add-on														
В	Double-head version add-on drive														
Т	Triplex of	ompri	sing 3 po	ower en	ds and	3 identica	l heads	3							
	Type*														
		bar	l/h				bar	l/h				bar	I/h		
	100010	100	10			064019		19			025048		48		
	100021	100	21			064040		40			025100		100		
	100025	100	25			064048		48			025120		120		
	100031	100	31			064060		60			025150		150		
	100035		35			064068	64	68			025170	25	170		
		Liqu SS	id end n	nateria l ss steel											
		PV				only for 02	5049	025170	064010	0640	69)				
		HC	Hastell		io bai, c	0111y 101 02	3040 -	023170	, 004018	- 0040	00)				
		TT		: + 25 % carbon											
				g mate											
			T	PTFE											
					cemen	t body*									
	1		1	0		ard multi-	ayer d	iaphragr	n with ru	pture si	gnalling f	acility			
						d end ver									
	1		1		0	No valv			dard)						
					1	With va		•							
					D H			ive (for	100010-	100035	, 064019	-06406	60, only for SST and HCT)		
					-	HV-Ver									
						Hydrau 0			n aded co	nnector					
						E		DIN ISO		inicoloi					
						F		ANSI flai	· · ·						
							Versi								
									oMinent	® logo					
							1 wit	withou	t ProMin	ent® log	go				
								Modifie	ed						
									ical pov						
								S			V, 50/60 I				
								T			V, 50/60 I				
								R V (0)			•		0 V/400 V, 0.75 kW grated frequency converter		
								Z (0)					et, 230 V, 50/60 Hz		
								L					xd), 0.75 kW		
								P			,	,	xd), 0.75 kW		
								V (2)			,	,	gr. frequency converter (Exd)		
								1	No mo	tor, with	flange 20	08/00	. , , ,		
								3	No motor, with flange B 14, size 80, Ø 160						
								4			flange N	ЕМА С	56		
	1		1					0 Add on drive							
	1								Enclos	ure rat					
									0	,	standard)		-V T2		
									1		otor versi otor versi				
									A		power en		-A-14		
											sensor	<u> </u>			
										0		e sens	sor (standard)		
	1		1							1			(for explosion-proof applications)		
	1		1										adjustment		
											0	Manua	al (Standard)		
											1		stroke positioning motor, 230 V/50/60 Hz		
											2		stroke positioning motor, 115 V/60 Hz		
											A		stroke control motor 0-20 mA 230 V/50/60 Hz		
	1										В		stroke control motor 4-20 mA 230 V/50/60 Hz		
	1		1								С		stroke control motor 0-20 mA 115 V/60 Hz		
											D		stroke control motor 4-20 mA 115 V/60 Hz		
													aulic oil		
	1	l	1	1								0 1	Standard		
							1	1	1	Ī	1	1	Food grade		
												2	Low temperature to -25 °C		

* PVT max. 25 bar

2.5 Hydraulik-Membrandosierpumpe Hydro/ 3

2.5.3 Spare Parts Kits

The spare parts kits generally include liquid end consumables.

Supplied as standard for SST/HCT stainless steel material version

- 1 metering diaphragm
- 2 valve balls
- 1 seal set

Supplied as standard for PVT material version

- 1 metering diaphragm
- 1 suction connector set
- 1 discharge connector set
- 2 valve balls
- 1 seal set

Spare parts kits for Hydro/ 3

Applies to identity code: Type 100035, 100031, 100025, 100021, 100010, 064068, 064060, 064048, 064040, 064019

Liquid end	Materials in contact with the medium	Order no.
FMH 60 - DN 10	PVT	1005552
	SST	1005553
	SST (for double ball valves)	1005555
	HCT	1009573
	SST (with valve set)	1005554

Applies to identity code: Type 025170, 025150, 025120, 025100, 025048

Liquid end	Materials in contact with the medium	Order no.
FMH 150 - DN 15	PVT	1005556
	SST	1005557
	HCT	1009575
	SST (with valve set)	1005558

Hydro/ 3 pump diaphragm PTFE/1.4404

Liquid end		Order no.
FMH 60	Identity code (SST) 064025, 064022, 064018, 064015, 064007, 100010, 100009, 100007, 100006, 100003	1005546
FMH 150	Applies to Identity code (SST): 025170, 025150, 025120, 025100, 025048	1005547

Hydro/ 3 pump diaphragm PTFE/Hastelloy C coated

Liquid end		Order no.
FMH 60	Applies to identity code (PVT/HCT):	1006482
	100035, 100031, 100025, 100021, 100010,	
	064068, 064060, 064048, 064040, 064019	
FMH 150	Applies to identity code (PVT/HCT):	1006483
	025170, 025150, 025120, 025100, 025048	

Base for Hydro hydraulic diaphragm metering pumps

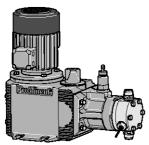
	Order no.
Base for Hydro/ 3, dimensions: 324 x 180 x 128 mm (LxWxH)	1005661

28 Product Catalogue 2015 1.1.2015

2.6 Hydraulik-Membrandosierpumpe Hydro/ 4

2.6.1

Hydraulik-Membrandosierpumpe Hydro/ 4


Flexible metering with excellent process reliability in the medium pressure range? Not a problem for the hydraulic diaphragm metering pumps Hydro/4

Capacity range of single pump: 130 - 1,450 l/h, 25 - 7 bar

The Hydro/ 4 is an extremely robust hydraulic diaphragm metering pump, which meets the most exacting safety requirements – it is equipped as standard with a pressure relief valve and PTFE multi-layer diaphragm with diaphragm rupture warning system. Its modular construction offers extremely good flexibility in terms of applications.

The Hydro/ 4 hydraulic diaphragm metering pump (HP4a) together with the Hydro/ 2 and Hydro/ 3 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

pk_2_074 Hydro

Your benefits

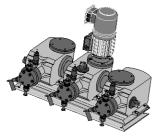
Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1 % in the 20-100% stroke volume range under defined conditions and with proper installation.

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

pk_2_073 Hydro double head pump


Technical details

- Stroke length: 20 mm, Rod force: 5,800 N
- Stroke volume adjustment range: 0 100 %
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive).
- Metering reproducibility is better than ± 1 % in the 20 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25 % carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1 Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Hydraulik-Membrandosierpumpe Hydro/ 4 2.6

Technical Data

Type HP4a	With	1500 rpn	n motor at 50 Hz	W	ith 1800 rpn	n motor at 60 Hz	Suction lift	Perm. pre- pressure	Connection suction/	Shipping weight	Plunger Ø
	at ma	ery rate x. back ressure	Max. stroke rate		ery rate at max. back pressure	Max. stroke rate		suction side	discharge side		
	bar	l/h	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg	mm
250130	25	130	71	363	155/41	86	3	1	G 1 1/2-25	69	52
250190	25	190	103	363	230/61	124	3	1	G 1 1/2-25	69	52
250250	25	250	136	363	300/79	164	3	1	G 1 1/2-25	69	52
250350	25	350	188	363	420/111	225	3	1	G 1 1/2–25	69	52
250400	25	400	214	-		_	3	1	G 1 1/2-25	69	52
160210	16	210	71	232	250/66	86	3	1	G 1 1/2-25	76	63
160300	16	300	103	232	360/95	124	3	1	G 1 1/2-25	76	63
160400	16	400	136	232	480/127	164	3	1	G 1 1/2-25	76	63
160550	16	550	188	232	660/174	225	3	1	G 1 1/2-25	76	63
160625	16	625	214	-		-	3	1	G 1 1/2–25	76	63
100330	10	330	71	145	400/106	86	3	1	G 2–32	87	80
100480	10	480	103	145	580/153	124	3	1	G 2–32	87	80
100635	10	635	136	145	760/201	164	3	1	G 2–32	87	80
100880	10	880	188	145	1,050/277	225	3	1	G 2–32	87	80
101000	10	1,000	214	-		_	3	1	G 2–32	87	80
070465	7	465	71	102	560/148	86	3	1	G 2 1/4-40	96	94
070670	7	670	103	102	805/213	124	3	1	G 2 1/4-40	96	94
070890	7	890	136	102	1,070/283	164	3	1	G 2 1/4-40	96	94
071230	7	1,230	188	102	1,450/383	225	3	1	G 2 1/4-40	96	94
071400	7	1,400	214	-		-	3	1	G 2 1/4–40	96	94

Materials in contact with the medium

			DN 25	ball valves		DN 32/DN 40 plate valves			
Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats	
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE	Stainless steel 1.4404	PTFE	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE	
HCT	Hast. C	Hast. C	PTFE	Hast. C	PTFE	PTFE	Hast. C / E-CTFE	PTFE	
TTT*	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE	

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	
		250-280 V/440-480 V	60 Hz		
Т	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
		265-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed control range 1:20, with external fan 1 ph
					230 V; 50/60 Hz
V0	3 ph, IP 55	400 V	50/60 Hz	1.5 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	1.1 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	254-277 V/440-480 V	60 Hz	1.1 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	1.1 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.6 Hydraulik-Membrandosierpumpe Hydro/ 4

2.6.2

Identity Code Ordering System HP4a

Hydro/ 4 (HP4a)

HP4a	Drive t	type														
	Н	Main dri	ve													
	D	Main drive, double-head version														
	E	Main drive for add-on drive														
	F	Main dri	ve, doι	ıble-hea	ad versio	n for add	-on dr	ive								
1	Α	Add-on														
	В	Double-														
	Т		compris	sing 3 po	ower end	ds and 3 i	dentic	al heads	;							
		Type*														
			bar	l/h			bar	l/h			bar	l/h			bar	l/h
		250130		130		160210		210		100330		330		070465		465
		250190		190		160300		300		100480		480		070670		670
		250250 250350		250 350		160400		400 550		100635 100880		635 880		070890 071230		890
		250400		400		160550 160625		625		101000		1,000		071400		1,230 1,400
		230400		d end m	otorial	100023	10	023		101000	10	1,000		071400	,	1,400
			SS		ss steel											
			PV	PVDF	00 0100.											
			HC	Hastell	ov C											
			TT		+ 25 % c	arbon										
					g mater											
				T	PTFE											
					Displa	cement l	ody									
					0	Standard	d multi	layer dia	phragm	with rupt	ure sig	nalling f	facility			
						Liquid e	nd ve	rsion								
						0		alve spri		ndard)						
						1		valve sp								
							, .	aulic co								
							0			ded conn	ection					
							E		IN ISO f							
							F		NSI flan	ge						
								Versio		oMinent®	llama					
								0		: ProMine	•					
								3		oMinent [©]		•	ctrical o	/ornrocci	ura die	nlav
								М	Modifie		iogo,	WILLI CIC	cuicai ov	reipiessi	ui e uis	piay
								101		cal powe	er elini	nlv				
									S				Hz, 1.1	kW		
									Т				Hz, with			
									R	3 ph, vai	riable s	speed me	otor, 230)/400 V,	1.5 kW	1
									V (0)	Variable	speed	l motor v	with integ	rated fre	equenc	y converter
									Z	1 ph, vai	riable s	speed co	ontrol set	i, 230 V,	50/60	Hz
									L	3 ph, 23	۱ 0/400	V 50 Hz	(Exe, Ex	d), 1.1 k	W	
									Р				(Exe, Ex			
									V (2)				·	ır. freque	ency co	onverter (Exd)
									1	No moto		•				
									3			_	3 5, size !		_	
									4			flange N	NEMA TO	143/14 ز	5	
									0	Add on d		•				
										Enclosu		, .	·4)			
										1		(standar	sion ATE	Y-T3		
													sion ATE			
												power e				
										1		e senso				
											0		oke senso	or (stand	lard)	
											1	Stroke	sensor (f	for explo	sion-p	roof applications)
												Stroke	e length :	adjustm	ent	
												0		(Standa		
												K		(outdoo		
					1							1				motor, 230 V/50/60 Hz
																motor, 115 V/60 Hz
	1								A With stroke control motor 0-20 mA 230 V/50/60 Hz							
			i		1				B With stroke control motor 4-20 mA 230 V/50/60 Hz							
1						i	1	1	C With stroke control motor 0-20 mA 115 V/60 Hz						tor 0-20 mA 115 V/60 Hz	
										D With stroke control motor 4-20 mA 115 V/60 Hz						
												_			troi mo	tor 4-20 mA 115 V/60 Hz
												_	Hydrau	ılic oil		tor 4-20 mA 115 V/60 Hz
												_	Hydrau 0	ılic oil Standar	d	tor 4-20 mA 115 V/60 Hz
												_	Hydrau 0 1	ilic oil Standar Food gra	d ade	
												_	Hydrau 0	ilic oil Standar Food gra	d ade	re to -25 °C

* PVT max. 25 bar

Hydraulik-Membrandosierpumpe Hydro/ 4 2.6

2.6.3 **Spare Parts Kits**

The spare parts kits generally include liquid end consumables.

Supplied as standard for SST/HCT stainless steel material version

- metering diaphragm
- valve balls
- seal set

Supplied as standard for PVT material version

- metering diaphragm
- suction connector set
- discharge connector set
- valve balls
- seal set

Spare parts kits for Hydro/ 4

Identity code 250130, 250190, 250250, 250350, 250400

Liquid end	Materials in contact with the medium	Order no.
FMH 400 - DN 25	PVT	1043763
	PVT with valve	1023057
	SST	1040812
	SST with valve	1040813
	HCT	1040860

Identity code 160210, 160300, 160400, 160550, 160625

Liquid end	Materials in contact with the medium	Order no.
FMH 625 - DN 25	PVT	1043775
	PVT with valve	1040863
	SST	1040824
	SST with valve	1040825
	HCT	1040861

Identity code 100330, 100480, 100635, 100880, 101000

Liquid end	Materials in contact with the medium	Order no.
FMH 1000 - DN 32	PVT	1043776
	PVT with valve	1040866
	SST	1040826
	SST with valve	1040827
	HCT	1040864

Identity code 0704650, 070670, 070890, 071230, 071400

Liquid end	Materials in contact with the medium	Order no.
FMH 1400 - DN 40	PVT	1043777
	PVT with valve	1040869
	SST	1040828
	SST with valve	1040829
	HCT	1040867

Hydro/ 4 metering diaphragm PTFE/1.4404

Liquid end		Order no.
FMH 400	Identity code (SST) 250130, 250190, 250250, 250350, 250400	1040808
FMH 625	Identity code (SST) 160210, 160300, 160400, 160550, 160625	1040809

2.6 Hydraulik-Membrandosierpumpe Hydro/ 4

Liquid end		Order no.
FMH 1000	Identity code (SST) 100330, 100480, 100635, 100880, 101000	1040810
FMH 1400	Identity code (SST) 0704650, 070670, 070890, 071230, 071400	1040811

Hydro/ 4 metering diaphragm PTFE/Hastelloy C coated

Liquid end		Order no.
FMH 400	Identity code (HCT) 250130, 250190, 250250, 250350, 250400	1040874
FMH 625	Identity code (HCT) 160210, 160300, 160400, 160550, 160625	1040875
FMH 1000	Identity code (HCT) 100330, 100480, 100635, 100880, 101000	1040876
FMH 1400	Identity code (HCT) 0704650, 070670, 070890, 071230, 071400	1040877

Base for Hydro hydraulic diaphragm metering pumps

P_PZ_0010_SW1

Order no. Base for Hydro/ 4, dimensions: 344 x 250 x 120 mm (LxWxH) 1051421

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

2.7.1

Hydraulic Diaphragm Metering Pump Makro/5

Excellent feed rates in the low pressure range

Capacity range of single pump: 450 - 6,108 l/h, 25 - 6 bar

J

The robust hydraulic diaphragm metering pump Makro/ 5 guarantees outstanding process reliability. Its modular construction offers extremely good flexibility and a large range of power end versions are available.

The Makro/ 5 hydraulic diaphragm metering pump (M5Ha) together with the Makro/ 5 diaphragm and plunger metering pumps form an integrated product range with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320-4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Makro/ 5 product range is designed to comply with API 675 among others.

Your benefits

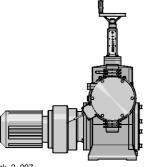
Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1 % within the 10-100 % stroke length range under defined conditions and with correct installation.

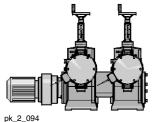
Excellent flexibility:

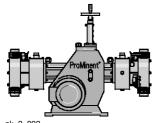
- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

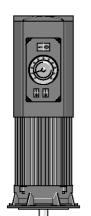
Technical details


- Stroke length: 0 50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

Field of application


- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips


pk_2_096 Makro/ 5 M5Ha


pk_2_097 Makro/ 5 M5Ha

Makro/ 5 externally mounted pump

pκ_2_092 Makro/ 5 double head pump

pk_2_103 Variable speed motor with integrated frequency converter

Control of Makro/5 hydraulic diaphragm metering pumps

Makro/ 5 stroke length controller

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Actuating period approx. 100 sec for 100 % stroke length, including 2 limit switches for min./max. position, IP 54 degree of protection. Electrical connection 230 V (±10 %), 50/60 Hz, 40 W mechanical stroke length display fitted on the Makro/ 5 power end.

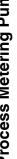
Special voltage/higher degrees of protection/explosion protection on request.

Standard signal current input 0/4-20 mA, corresponds to stroke length 0 - -100 %; internal switch for manual /automatic operation, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. motor power 0.37/0.75/1.1 kW.

Externally controllable with 0/4-20 mA or 0-10 V corresponding to 0-50 (60) Hz output frequency.


Frequency converter for speed controller See page → 1-72

Stroke sensor with Namur signal

Mounting on the crank drive mechanism of the Makro/ 5 gearbox. For precise measurement of each metering stroke, comprising electronic cams and inductive proximity switches, switching signal according to Namur. In combination with electronic pre-selection meters suitable for batch metering or proportional metering in conjunction with proportional control.

Retrospective fitting only possible in the factory.

Approved for Ex safety operation with degree of protection EEx ia II C T6.

Technical Data

Type M5Ha	٧	Vith 1500	rpm moto	or at 50 Hz	Wit	h 1800 r	pm moto	r at 60 Hz	Suction lift	Connection suction/ discharge side	Shipping weight	Plunger Ø
	Deli	very rate back p	at max. ressure	Max. stroke rate	Deliv	ery rate back p	at max. pressure	Max. stroke rate				
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	G-DN	kg	mm
250450	25	450	125.0	60	362	537	142	72	3.0	G 2–32	320	60
250562	25	562	125.0	75	362	671	177	89	3.0	G 2–32	320	60
250772	25	772	125.0	103	362	922	244	123	3.0	G 2-32	320	60
250997	25	997	125.0	133	362	1,191	315	159	3.0	G 2–32	320	60
251170	25	1,170	125.0	156	-	_	-	-	_	G 2-32	320	60
160616	16	616	171.2	60	232	736	194	72	3.0	G 2 1/4-40	320	70
160770	16	770	171.2	75	232	920	243	89	3.0	G 2 1/4-40	320	70
161058	16	1,058	171.2	103	232	1,264	334	123	3.0	G 2 1/4-40	320	70
161366	16	1,366	171.2	133	232	1,633	431	159	3.0	G 2 1/4-40	320	70
161602	16	1,602	171.2	156	-	-	-	-	3.0	G 2 1/4-40	320	70
120716	12	716	199.0	60	174	855	226	72	3.0	G 2 1/4-40	320	75
120895	12	895	199.0	75	174	1,069	282	89	3.0	G 2 1/4-40	320	75
121229	12	1,229	199.0	103	174	1,469	388	123	3.0	G 2 1/4-40	320	75
121588	12	1,588	199.0	133	174	1,898	501	159	3.0	G 2 1/4-40	320	75
121862	12	1,862	199.0	156	_	-	-	-	3.0	G 2 1/4-40	320	75
120919	12	919	255.3	60	174	1,098	290	72	3.0	G 2 1/4-40	320	85
121148	12	1,148	255.3	75	174	1,372	362	89	3.0	G 2 1/4-40	320	85
121577	12	1,577	255.3	103	174	1,885	498	123	3.0	G 2 1/4-40	320	85
122037	12	2,037	255.3	133	174	2,435	643	159	3.0	G 2 1/4-40	320	85
122389	12	2,389	255.3	156	_	2,856	754	-	3.0	G 2 1/4-40	320	85
101345	10	1,345	374.0	60	145	1,607	425	72	3.0	G 2 3/4-50	330	100
101680	10	1,680	374.0	75	145	2,008	530	89	3.0	G 2 3/4-50	330	100
102310	10	2,310	374.0	103	145	2,761	729	123	3.0	G 2 3/4-50	330	100
102980	10	2,980	374.0	133	145	3,562	941	159	3.0	G 2 3/4-50	330	100
103500	10	3,500	374.0	156	-	-	-	-	3.0	G 2 3/4-50	330	100
062305	6	2,305	641.0	60	87	2,755	728	72	3.0	Flange-65*	330	130
062880	6	2,880	641.0	75	87	3,443	910	89	3.0	Flange-65*	330	130
063960	6	3,960	641.0	103	87	4,734	1,251	123	3.0	Flange-65*	330	130
065110	6	5,110	641.0	133	87	6,108	1,614	159	3.0	Flange-65*	330	130
066000	6	6,000	641.0	156	-	-	-	-	3.0	Flange-65*	330	130

Material Version PPT/PCT/TTT max. 10 bar

Materials in contact with the medium

			DN 32/DN	150/DN65 plate v	DN 40 plate valves				
	Dosing head	Suction/pressure valve	Seals	Valve plates/ valve springs	Valve seats		Seals	Valve plates	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Hast C.	PTFE	PPE	EPDM	Hast. C	PTFE
PCT	PVC	PVC	PTFE	Hast C.	PTFE	PCA	Viton [®]	Hast. C	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Hast C.	PTFE	TTT	PTFE	Hast. C	PTFE
SST	Stainless steel material no. 1.4571/1.4404	Stainless steel material no. 1.4571/1.4404	PTFE	Hast C.	PTFE	SST	PTFE	Hast. C	PTFE

Patented multi-layer diaphragm, vacuum-packed Special designs available on request Viton® is a registered trademark of DuPont Dow Elastomers

^{*} SST version with G 2 1/2" thread

2.7.2

Identity Code Ordering System for M5Ha

Motor-driven metering pump M5Ha

Ha Drive	e type														
Н	Main dri	ve													
Α	Add-on		end												
D	Double i	main drive													
В			power ei	nd											
	Type*														
	250450		160616		120716		120919		101345		062305				
	250562		160770		120895		121148		101680		062880				
	250772		161058		121229		121577		102310		063960				
	250997		161366		121588		122037		102980		065110				
	251170		161602		121862		122389		103500		066000				
			d end ma	aterial											
		PC	PVC												
		PP SS	Polyprop Stainles												
		TT	PTFE +												
		' '													
			Sealing T	PTFE											
			•		acemen	hody	,								
				Т			phragm,	PTFF c	oating v	vith run	ture indic	ator			
					Liquid 6		-		ouii.ig, i						
					Liquid 1		valve spr	inas							
							aulic cor	_	n						
						0	Standar	d conn	ection						
						1			and inse						
						2			nsert PP						
						3	-		t and ins	ert					
						4			nd insert						
							Version								
							0				, no fram				
							1 A				ogo, no fr , with frar		nlov		
							B C D								
									ProMinent® logo, with frame, duplex ProMinent® logo, with frame, triplex						
											, with frar , with frar				
							М	Modif		logo	, with ha	no, que	an aprox		
									rical pov	ver suu	nnly				
								S	3 ph. 23	0/400	V 50/60 H	Iz (WB	S)		
								R				•	230/400 V		
								V (0)	Motor w	ith inte	gr. frequ	ency co	onverter		
								L			V 50 Hz (
								Р			V 60 Hz (
													onverter (Exd)		
								5			gearbox				
								6			, with gearbox IEC 112				
								0	No moto						
									Enclos			4/ 100	alana E		
									0		(Standar				
									1		ersion All ersion All				
									A		power e		•		
									^		e senso				
										0	No strol		sor		
										1			nsor (Namur)		
											l l		adjustment		
											0		e length adjustment, manual		
											3		/ 0-20 mA stroke controller		
1											4		/ 4-20 mA stroke controller		
1											5		/ 0-20 mA stroke controller		
1											6		/ 4-20 mA stroke controller		
												_	ication		
												0	Standard		
												3	Low temperature to -25 °C		

^{*} Material version PC/PP/TT max. 10 bar

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10 %	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10 %	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.7.3 Spare Parts

Spare parts kits for Makro/ 5 HMH

The spare parts kits generally contain the consumable components for the liquid ends.

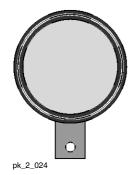
- 1 metering diaphragm
- 1 suction valve set
- 1 discharge valve set
- 1 seal set (O-rings, packing rings, valve seat, valve seat housings)

Identity code: 250450, 250562, 250772, 250997, 251170

Liquid end	Materials in contact with the medium	Order no.
Liquid end FMH 60-50	S (with 2 additional valve assemblies)	1008170
	S (no valve set)	1008169

Identity code: 160616, 160770, 161058, 161366, 161602, 120716, 120895, 121229, 121588, 121862, 120919, 121148, 121577, 122037, 122389

Liquid end	Materials in contact with the medium	Order no.
Liquid end FMH 70/75/85-50	PPT	911904
	PCT	911902
	TTT	911906
	SST	911910
	SST (no valve set)	911909


Identity code: 101345, 101680, 102310, 102980, 103500

Liquid end	Materials in contact with the medium	Order no.
Liquid end FMH 100-50	PP	1008246
	Р	1008247
	Т	1008248
	S (with valve set)	1008250
	S (no valve set)	1008249

Identity code: 062305, 062880, 063960, 065110, 066000

Liquid end	Materials in contact with the medium	Order no.
Liquid end FMH 130-50	PP	1008251
	P	1008252
	Т	1008253
	S (with valve set)	1008265
	S (no valve set)	1008264

Makro/ 5 HMH metering diaphragms

1.1.2015

Liquid end	Order no.
FMH 60/70/75/85-50	1007298
FMH 100/130-50	1007852

Process

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.1

P ORL 050 SW1

Orlita® MFS 18/12

P OBL 051 SW1 Orlita® MFS 35/30

P_ORL_052_SW1

Orlita® MFS 80/40

P ORL 053 SW1

Orlita® MFS 180/60

P ORL 054 SW1

P_ORL_055_SW1

Orlita® MFS 1400/46

Orlita® MFS 600b/81

Hydraulic Diaphragm Metering Pumps Orlita® MF

Reliable capacity even at high pressure

Capacity range of single pump: 0 - 13,000 l/h, 700 - 6 bar

The hydraulic diaphragm metering pump ORLITA® MF offers reliable capacities even under high pressure and has a modular construction, therefore has versatile uses. Thanks to its modular design, this pump is tailored to meet your requirements even at very high pump capacities.

ORLITA® MF hydraulic diaphragm metering pumps (MFS 18 to MFS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 13,000 l/h at 700 - 6 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

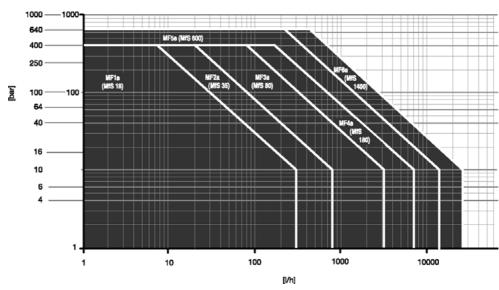
- PTFE double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation despite high pressures
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

Excellent flexibility:

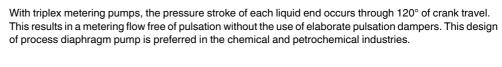
- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 10 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Temperature range 40 °C to + 150 °C
- Customised designs are available on request

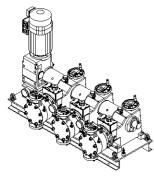
Technical details

- MfS 18 (MF1a) Stroke length: 0-15 mm, Rod force: 1,750 N
- MfS 35 (MF2a) Stroke length: 0-20 mm, Rod force: 3,500 N
- MfS 80 (MF3a) Stroke length: 0-20 mm, Rod force: 14,000 N
- MfS 180 (MF4a) Stroke length: 0-40 mm, Rod force: 18,000 N
- MfS 600 (MF5a) Stroke length: 0-40 mm, Rod force: 40,000 N
- MfS 1400 (MF6a) Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100 % in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 150 °C
- Suction lift up to 8 m
- Design in compliance with API 675 among others

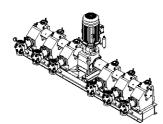

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)




Hydraulic Diaphragm Metering Pumps Orlita® MF

Pressure [bar] depending on the metering volume [l/h] at 50 Hz


Triplex metering pumps

P ORL 056 SW1 Orlita® MF3S 180/90-90-90 triplex pump

Multiplexed metering pumps

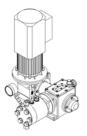


P_ORL_057_SW1 Orlita® MF3S 1400/50 multiple pump

The Orlita® MF range's modular construction permits a variable combination of drives, motors and liquid ends e.g. quadruple MF metering pumps with central drive.

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

P_ORL_058_SW1
Orlita® MFS 18 with 1-phase control drive


P_ORL_059_SW1 Orlita® MFS 35 with 1-phase control drive 115/230 V vertical

P_ORL_060_SW1
Orlita® MFS 180 with 3-phase control drive

P_ORL_061_SW1
Orlita® MFS 35/12-12-12 with control drives

P_ORL_062_SW1
Orlita® MFS 18/7 with Varicon

Actuation of ORLITA® MF, MH, PS, DR

Control drive consisting of an actuator with servo motor and integral servo controller for stroke length adjustment via a standard signal. Standard signal current input 0/4 - 20 mA, corresponds to stroke length 0 - 100 %, switch for manual/automatic operation; key switch for stroke adjustment in manual mode, mechanical status display of actual stroke length value output 0/4 - 20 mA for remote display. Control drives can also be designed with bus systems, like HART, PROFIBUS, Fieldbus Foundation ...

Variable speed motors with integrated frequency converter (identity code specification V)

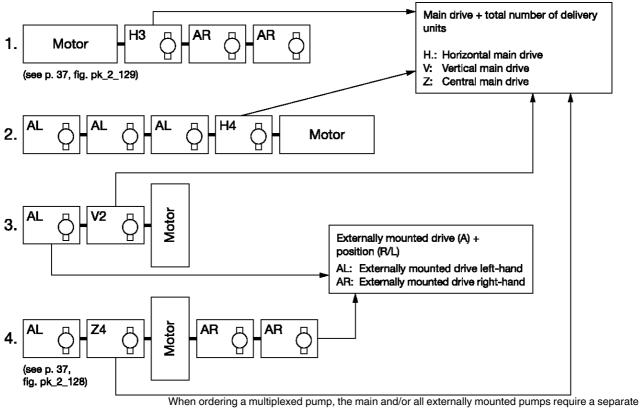
Power supply 1 ph 230 V, 50/60 Hz (up to 3 kW). Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

The following functions are integrated in the terminal box cover: (see Chapter 2.17.2)

- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode

Speed controllers with frequency inverter (identity code specification Z)

Frequency converter accommodated in IP 55 protective housing with integral control unit and main switch, suitable for max. 0.37/0.75 kW motor capacity (see Chap. 2.17.2).


Externally controllable with 0/4-20 mA or 0-10 V corresponding to 0-50 (60) Hz output frequency.

Integrated controller with versatile functions, such as switching between external/internal control: frequency input using arrow keys with internal control, multilingual fault message display etc. and motor temperature monitoring (thermistor protection).

The speed controller assembly consists of a frequency converter and a variable speed motor.

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Type of drive

Identity code.

For example a triplex pumpe (1.):	MF_aH3
	ME AND

MF_aAR.....

Materials in contact with the medium

	Liquid end	Suction/discharge valve housing	Valve seals	Valve	Valve seat	Range
S1 (DIN)	1.4404	None	1.4571	Ceramic	1.4404	DN 3
S1 (ANSI)	A 316 L	N/A	A 316 Ti	Ceramic	A 316 L	
S1 (DIN)	1.4404	1.4404	1.4571	1.4462	1.4462	≥ DN6
S1 (ANSI)	A 316 L	A 316 L	A 316 Ti	Duplex SS	Duplex SS	
S2 (DIN)	1.4462	1.4462	1.4571	1.4462	1.4462	≥ DN6
S2 (ANSI)	Duplex SS	Duplex SS	A 316 Ti	Duplex SS	Duplex SS	
S3 (DIN)	1.4539	1.4539	2.4610	1.4539	1.4539	≥ DN6
S3 (ANSI)	A904L	A904L	Hastelloy C-4	A904L	A904L	

Motor Data

Α	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
B (adjustable 1:5)	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
Н	60 Hz	3 ph. 220/380 V	3 ph. 400 V	
K (adjustable 1:5)	60 Hz	3 ph. 220/380 V	3 ph. 400 V	

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.2

Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 18 Single Pump 50 Hz

Plunger Ø	Stroke volume	The state of the s				-	Max. pressure	Ef	Standard type of valve			
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
7	0.58	1.5	2.0	2.5	3.1	3.8	5.0	7.1	400	0.50	0.70	DK DN 3
8	0.75	2.0	2.6	3.2	4.1	5.0	6.5	9.3	348	0.55	0.72	DK DN 3
10	1.18	3.2	4.1	5.1	6.4	7.8	10.2	14.6	222	0.67	0.79	Ke DN 6
11	1.43	3.8	4.9	6.2	7.7	9.5	12.4	17.7	184	0.67	0.79	Ke DN 6
12	1.70	4.6	5.9	7.3	9.2	11.3	14.7	21.0	154	0.84	0.88	Ke DN 6
14	2.31	6.2	8.0	10.0	12.5	15.4	20.0	28.7	113	0.85	0.88	Ke DN 6
16	3.02	8.2	10.5	13.1	16.4	20.1	26.2	37.4	87	0.86	0.88	Ke DN 6
18	3.82	10.3	13.2	16.6	20.7	25.5	33.2	47.4	68	0.87	0.88	Ke DN 6
20	4.71	12.8	16.4	20.5	25.6	31.5	41.0	58.5	55	0.88	0.89	Ke DN 6
22	5.70	15.5	19.8	24.8	31.0	38.1	49.6	70.8	46	0.88	0.89	Ke DN 10/6
25	7.36	20.0	25.6	32.0	40.0	49.2	64.0	91.5	35	0.89	0.89	Ke DN 10
27	8.59	23.3	29.8	37.3	46.7	57.4	74.7	106.7	30	0.89	0.89	Ke DN 10
29	9.91	26.9	34.4	43.1	53.8	66.3	86.2	123.1	26	0.89	0.89	Ke DN 10
30	10.60	28.8	36.9	46.1	57.6	70.9	92.2	131.7	24	0.89	0.89	Ke DN 10
36	15.27	41.5	53.1	66.4	83.0	102.1	132.8	189.7	17	0.89	0.89	Ke DN 16
40	18.85	51.2	65.6	82.0	102.4	126.1	163.9	234.2	13	0.89	0.89	Ke DN 16
44	22.81	62.0	79.3	99.2	124.0	152.6	198.4	283.4	11	0.89	0.90	Ke DN 16
50	29.45	80.0	102.4	128.1	160.1	197.1	256.2	366.0	8	0.89	0.90	Ke DN 16

Technical Data MfS 18 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump ca	pacity Q _{ti}	_n in I/h pe	I/h I/h I/h 2.4 3.0 3.8 4.6 3.1 3.9 4.9 6.1 4.9 6.2 7.7 9.5 6.0 7.5 9.4 11.5 7.1 8.9 11.2 13.7 9.7 12.1 15.2 18.7 2.7 15.9 19.9 24.5 6.1 20.1 25.1 31.0 9.9 24.8 31.1 38.2 24.0 30.1 37.6 46.3 31.1 38.8 48.6 59.8 36.2 45.3 56.6 69.7 41.8 52.3 65.3 80.4 44.7 55.9 69.9 86.1 34.4 80.6 100.7 124.0				Max. Efficiency at pressure			Standard type of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.58	1.5	1.9	2.4	3.0	3.8	4.6	6.1	400	0.50	0.70	DK DN 3
8	0.75	1.9	2.4	3.1	3.9	4.9	6.1	7.9	348	0.55	0.72	DK DN 3
10	1.18	3.1	3.8	4.9	6.2	7.7	9.5	12.4	222	0.67	0.79	Ke DN 6
11	1.43	3.7	4.7	6.0	7.5	9.4	11.5	15.0	184	0.67	0.79	Ke DN 6
12	1.70	4.4	5.6	7.1	8.9	11.2	13.7	17.9	154	0.84	0.88	Ke DN 6
14	2.31	6.1	7.6	9.7	12.1	15.2	18.7	24.3	113	0.85	0.88	Ke DN 6
16	3.02	7.9	9.9	12.7	15.9	19.9	24.5	31.8	87	0.86	0.88	Ke DN 6
18	3.82	10.0	12.6	16.1	20.1	25.1	31.0	40.3	68	0.87	0.88	Ke DN 6
20	4.71	12.4	15.5	19.9	24.8	31.1	38.2	49.7	55	0.88	0.89	Ke DN 6
22	5.70	15.0	18.8	24.0	30.1	37.6	46.3	60.2	46	0.88	0.89	Ke DN 10/6
25	7.36	19.4	24.3	31.1	38.8	48.6	59.8	77.7	35	0.89	0.89	Ke DN 10
27	8.59	22.6	28.3	36.2	45.3	56.6	69.7	90.6	30	0.89	0.89	Ke DN 10
29	9.91	26.1	32.7	41.8	52.3	65.3	80.4	104.6	26	0.89	0.89	Ke DN 10
30	10.60	27.9	34.9	44.7	55.9	69.9	86.1	111.9	24	0.89	0.89	Ke DN 10
36	15.27	40.3	50.3	64.4	80.6	100.7	124.0	161.2	17	0.89	0.89	Ke DN 16
40	18.85	49.7	62.2	79.6	99.5	124.4	153.1	199.0	13	0.89	0.89	Ke DN 16
44	22.81	60.2	75.2	96.3	120.1	150.5	185.2	240.8	11	0.89	0.90	Ke DN 16
50	29.45	77.7	97.1	124.4	155.5	194.3	239.2	311.0	8	0.89	0.90	Ke DN 16

DK Double ball valve, Ke Conical valve

Abridged presentation of our complete product range. Other types on request Important note:

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS18 (MF1a) hydraulic diaphragm metering pump

Drive t	vpe															
V1		rive vert	ical*													
Z1		rive cen														
AL	Drive n	nodule le	eft-hand													
AR	Drive n	nodule r	ight-han	d												
M	Modifie		J													
	Plunge	er diam	eter													
	007	7 mm		011	11 mm		016	16 mm		022	22 mm	1	029	29 mm	040	40 mm
	800	8 mm		012	12 mm		018	18 mm		025	25 mm	ı	030	30 mm	044	44 mm
	010	10 mm		014	14 mm		020	20 mm		027	27 mm	ı	036	36 mm	050	50 mm
		Stroke	rate 50	(60) Hz	z											
		2		okes/mi		4	58 (70) Strokes	/min	6	91 (110	0) Stroke	es/min	8	145 (1	76) Strokes/min
		3	45 (55)	strokes	/min	5	73 (88) Strokes	/min	7	112 (13	35) Strol	kes/min	9	207 (-)	Strokes/min
			Liquid	end ma	iterial (includii	ng valv	e materi	als)							
			S1	Stainles	ss steel	(see tab	ole, she	et 2)	,							
				Tempe	rature	of pum	ped me	dium								
				0	-10 °C	to 80 °C			2	-40 °C	to 60 °C	0		4	10 °C	to 150 °C
				1	-25 °C	to 60 °C			3	10 °C	to 115 °	С				
					Displa	cer for	nat									
1	1				0	PTFE multi-lay										
					1	PTFE r	nulti-lay	er diaph	ragm w	th press	sure gau	ıge				
1	1						end ve									
						0	Standa						2			ole valve
						1		ard with s					3	Standa	rd doub	ole valve with spring
							Hydra	ulic con			n side					
							G		DIN/IS	-			Α	Flange		
							N	Thread	NPT/A	NSI			D	Flange	DIN/IS	0
								Hydrai			n discha	arge sid	le			
	1					1		G		DIN/IS			Α	Flange		
								N	Threac	NPT/A	NSI		D	Flange	DIN/IS	0
1	1					1	Ī		Versio							
									0	No fea						
									1		end hea	•				
									2		end poli					
									3		ıl paint fi					
1											connec					
1						1	Ī			Α		ard volta	_			
										В			-	z adjusta	able	
										Н	Standa	ard volta	ge 60 H	Z		
										K	Standa	ard volta	ge 60 H	z adjusta	able	
										0	Externa	ally mou	nted pu	mp		
										1	Withou	it motor	with IEC	flange		
										2	Withou	it motor	with NE	MA flanç	je	
											Electri	ical pro	tection	system	/ explo	sion protection
											0	IP 55			С	IP 55 EExde
											1	IP 56			D	IP 56 EExn
											Α	IP 55 E	Exn		E	IP 56 EExe
	1										В	IP 55 E	Exe		F	IP 56 EExde
												Electri	ical opti	ions		
1	1					1	Ī					0	No opt			
	1					1						1	Stroke	sensor		
													Stroke	elength	adjust	ment
													0	Manua		
	1					1							1	0/4-20	mA with	nout Ex
													2	0/4-20	mA Ex 2	Zone 2
													3	0/4-20	mA Ex 2	Zone 1
	1					1							4	0/4-20	mA with	nout EX offshore
													5	0/4-20	mA Ex 2	Zone 2 offshore
													6	0/4-20	mA Ex 2	Zone 1 offshore
														Enviro	nmenta	al conditions
														0		to 40 °C
														1		to 40 °C
														2	0 °C to	55 °C
	1					1									Appro	
															Appro	ICE
															1	API 675
															2	VDMA
		ı	1	[1			3	ATEX
															4 5	ATEX / API 675 VDMA / ATEX

*For other pump configurations see Type of drive page → 2-43

^{**} Modified version (M) is possible for each ID character of the identity code.

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.3

Orlita® MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 35 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pun	np capaci	ity Q _{th} in		ump head ode chai	Max. Efficiency at pressure			Standard type of valve		
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.6	3.3	4.1	5.1	6.7	9.5	400	0.50	0.70	DK DN 3
8	1.01	2.7	3.5	4.3	5.4	6.7	8.7	12.4	400	0.50	0.70	DK DN 3
10	1.57	4.2	5.4	6.8	8.5	10.5	13.6	19.5	400	0.50	0.70	Ke DN 6
11	1.90	5.1	6.6	8.2	10.3	12.7	16.5	23.6	368	0.79	0.85	Ke DN 6
12	2.26	6.1	7.8	9.8	12.3	15.1	19.6	28.1	309	0.79	0.85	Ke DN 6
14	3.08	8.3	10.7	13.3	16.7	20.6	26.7	38.2	227	0.81	0.85	Ke DN 6
16	4.02	10.9	13.9	17.4	21.8	26.9	34.9	49.9	174	0.83	0.86	Ke DN 6
18	5.09	13.8	17.7	22.1	27.6	34.0	44.2	63.2	137	0.84	0.87	Ke DN 6
20	6.28	17.0	21.8	27.3	34.1	42.0	54.6	78.0	111	0.86	0.88	Ke DN 6
22	7.60	20.6	26.4	33.0	41.3	50.8	66.1	94.4	92	0.86	0.88	Ke DN 10/6
25	9.82	26.6	34.1	42.7	53.3	65.7	85.4	122.0	71	0.87	0.88	Ke DN 10
27	11.45	31.1	39.8	49.8	62.2	76.6	99.6	142.3	61	0.87	0.88	Ke DN 10
30	14.14	38.4	49.2	61.5	76.8	94.6	122.9	175.7	49	0.88	0.89	Ke DN 10
36	20.36	55.3	70.8	88.5	110.6	136.2	177.1	253.0	34	0.88	0.89	Ke DN 16
40	25.13	68.3	87.4	109.3	136.6	168.2	218.6	312.3	27	0.89	0.89	Ke DN 16
44	30.41	82.6	105.8	132.2	165.3	203.5	264.5	377.9	23	0.89	0.89	Ke DN 16
50	39.27	106.7	136.6	170.8	213.5	262.8	341.6	488.0	17	0.89	0.89	Ke DN 16
60	56.55	153.7	196.7	245.9	307.4	378.4	491.9	702.8	12	0.89	0.90	Ke DN 16/25
65	66.37	180.4	230.9	288.6	360.8	444.1	577.3	824.8	10	0.89	0.90	Ke DN 16/25
80	100.53	273.3	349.8	437.3	546.6	672.7	874.6	1,249.4	6	0.89	0.90	Ke DN 25

Technical Data MfS 35 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	y Q _{th} in I/		ımp head ode char	Max. Efficiency at pressure			Standard type of valve		
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.5	3.2	4.0	5.0	6.2	8.1	400	0.50	0.70	DK DN 3
8	1.01	2.6	3.3	4.2	5.3	6.6	8.1	10.6	400	0.50	0.70	DK DN 3
10	1.57	4.1	5.1	6.6	8.2	10.3	12.7	16.5	400	0.50	0.70	Ke DN 6
11	1.90	5.0	6.2	8.0	10.0	12.5	15.4	20.0	368	0.79	0.85	Ke DN 6
12	2.26	5.9	7.4	9.5	11.9	14.9	18.3	23.8	309	0.79	0.85	Ke DN 6
14	3.08	8.1	10.1	13.0	16.2	20.3	25.0	32.5	227	0.81	0.85	Ke DN 6
16	4.02	10.6	13.2	16.9	21.2	26.5	32.6	42.4	174	0.83	0.86	Ke DN 6
18	5.09	13.4	16.7	21.5	26.8	33.5	41.3	53.7	137	0.84	0.87	Ke DN 6
20	6.28	16.5	20.7	26.5	33.1	41.4	51.0	66.3	111	0.86	0.88	Ke DN 6
22	7.60	20.0	25.0	32.1	40.1	50.1	61.7	80.2	92	0.86	0.88	Ke DN 10/6
25	9.82	25.9	32.4	41.4	51.8	64.8	79.7	103.6	71	0.87	0.88	Ke DN 10
27	11.45	30.2	37.7	48.3	60.4	75.5	93.0	120.9	61	0.87	0.88	Ke DN 10
30	14.14	37.3	46.6	59.7	74.6	93.3	114.8	149.2	49	0.88	0.89	Ke DN 10
36	20.36	53.7	67.1	85.9	107.4	134.3	165.3	214.9	34	0.88	0.89	Ke DN 16
40	25.13	66.3	82.9	106.1	132.7	165.8	204.1	265.4	27	0.89	0.89	Ke DN 16
44	30.41	80.2	100.3	128.4	160.5	200.7	247.0	321.1	23	0.89	0.89	Ke DN 16
50	39.27	103.6	129.5	165.8	207.3	259.1	318.9	414.6	17	0.89	0.89	Ke DN 16
60	56.55	149.2	186.6	238.8	298.5	373.2	459.3	597.1	12	0.89	0.90	Ke DN 16/25
65	66.37	175.2	219.0	280.3	350.4	438.0	539.1	700.8	10	0.89	0.90	Ke DN 16/25
80	100.53	265.4	331.7	424.6	530.8	663.5	816.6	1,061.6	6	0.89	0.90	Ke DN 25

DK Double ball valve, Ke Conical valve

Important note: ■ Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS35 (MF2a) hydraulic diaphragm metering pump

Drive t	уре															
V1	Main d	rive vert							AR			ight-han	nd			
Z1		rive cen							M	Modifie	ed **					
AL	Drive module left-hand															
1		er diame	eter	040	10		000	00		000	00		050	50		
	007	7 mm		012	12 mm		020	20 mm		030	30 mm		050	50 mm		
	008 010	8 mm 10 mm		014	14 mm 16 mm		022	22 mm 25 mm		036 040	36 mm 40 mm		060	60 mm 65 mm		
	010	10 mm		016 018	18 mm		025 027	25 mm		040	40 mm		065 080	80 mm		
	011) (60) H			027	27 111111		044	44 111111		060	00 111111		
		2		okes/mi		4	58 (70)	Strokes	/min	6	91 (11	0) Stroke	es/min	8	145 (17	76) Strokes/min
		3		strokes		5	, ,	Strokes		7	•		kes/min			Strokes/min
			` '	end ma			, ,				,	, ,			- ()	
			S1		ss steel				,							
				Tempe	rature o											
				0		to 80 °C		2		to 60 °C		4	10 °C	to 150 °	С	
				1		to 60 °C		3	10 °C	to 115 °	C					
					Displa 0	cer for		er diaph	roam							
					1				_	ith nress	sure gau	ıne				
							end ve		ragiii w	iii prooc	Jui o guo	igo				
						0	Standa					2	Standa	ard + dou	ıble valv	/e
1						1		rd with s	spring			3				e with spring
							Hydra	ulic con			n side					
							G	Thread				Α	Flange			
							N	Thread				D .		DIN/ISO)	
								Hydra ı G		inectioi I DIN/IS		arge sic	de A	Flores	ANICI	
1								N		I NPT/A			D	Flange	DIN/IS0)
1									Versio					, lariye	2114/100	
									0	No fea	tures					
									1	Liquid	end hea	ting				
									2		end poli					
1									3	Special paint finish						
											conne		~ - FO ! !	_		
										A B		Standard voltage 50 Hz Standard voltage 50 Hz adjustable				
											B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz adjustable					
										0			inted pu	-		
										1						
										2	Withou	ıt motor	with NE	MA flanç	ge	
													tection	system	/ explo	sion protection
											0	IP 55			D	IP 56 EExn
											1	IP 56			E F	IP 56 EExe
											A	IP 55 EExn IP 55 EExe			F K	IP 56 EExde
											В	IP 55 E			r\	IP 65 EExde
													ical opti	ione		
1													No opt			
1												1		sensor		
1													Stroke	elength		ment
1													0	Manua		_
1													1		mA with	
													2		mA Ex 2	
													3 4		mA Ex 2	Zone 1 out EX offshore
													5			Zone 2 offshore
													6			Zone 1 offshore
													ľ			al conditions
														0		to 40 °C
														1	-40 °C	to 40 °C
														2	0 °C to	55 °C
															Appro	
1 '															0	CE
															1	API 675
					Ī										2	VDMA
															0	ATEV
															3 4	ATEX / API 675
															3 4 5	ATEX ATEX / API 675 VDMA / ATEX

*For further pump configurations see Type of drive page \rightarrow 2-43

^{**} Modified design (M) is available with every identity code feature

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.4

Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 80 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump o	apacity (Q _{th} in I/h		p head a	Max. pressure	Ef	ficiency at	Standard type of valve		
		104 [4]	122 [5]	134 [6]	155 [7]	160 [8]	182 [9]	193 [F]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
16	4.02	25	29	32	37	38	43	46	400	0.75	0.83	Ke DN 6
20	6.28	39	46	50	58	60	68	72	400	0.75	0.83	Ke DN 6
22	7.60	47	55	61	70	73	82	87	360	0.79	0.80	Ke DN 10/6
25	9.82	61	71	79	91	94	107	113	285	0.79	0.85	Ke DN 10
27	11.45	71	83	92	106	109	125	132	244	0.81	0.85	Ke DN 10
29	13.21	82	96	106	122	126	144	152	211	0.82	0.85	Ke DN 10
30	14.14	88	103	113	131	135	154	163	198	0.83	0.86	Ke DN 10
36	20.36	126	149	164	189	195	222	235	137	0.85	0.87	Ke DN 16
40	25.13	156	184	202	233	241	274	290	111	0.86	0.88	Ke DN 16
44	30.41	189	222	245	282	292	331	351	98	0.86	0.88	Ke DN 16
46	33.24	207	243	268	309	319	362	384	84	0.86	0.88	Ke DN 16
50	39.27	244	287	316	365	377	428	453	71	0.87	0.88	Ke DN 16
60	56.55	352	414	455	526	543	617	653	50	0.88	0.89	Ke DN 16/25
65	66.37	413	486	535	617	637	724	766	40	0.88	0.89	Ke DN 16/25
80	100.53	626	736	810	935	965	1,097	1,161	25	0.89	0.89	Ke DN 25
100	157.08	979	1,150	1,266	1,461	1,508	1,714	1,814	17	0.89	0.89	Ke DN 32

Technical Data MfS 80 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump o	apacity (Q _{th} in I/h		p head a le charac	Max. pressure	Ef	ficiency at	Standard type of valve		
		119 [3]	126 [4]	148 [5]	163 [6]	188 [7]	194 [8]	221 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
16	4.02	28	30	35	39	45	46	53	400	0.75	0.83	Ke DN 6
20	6.28	44	47	55	61	70	73	83	400	0.75	0.83	Ke DN 6
22	7.60	54	57	67	74	85	88	100	360	0.79	0.80	Ke DN 10/6
25	9.82	70	74	87	96	110	114	130	285	0.79	0.85	Ke DN 10
27	11.45	81	86	101	112	129	133	151	244	0.81	0.85	Ke DN 10
29	13.21	94	100	117	129	149	153	175	211	0.82	0.85	Ke DN 10
30	14.14	101	107	125	138	159	164	187	198	0.83	0.86	Ke DN 10
36	20.36	145	154	180	199	229	237	269	137	0.85	0.87	Ke DN 16
40	25.13	179	190	223	245	283	292	333	111	0.86	0.88	Ke DN 16
44	30.41	217	230	270	297	343	354	402	98	0.86	0.88	Ke DN 16
46	33.24	237	251	295	325	375	387	440	84	0.86	0.88	Ke DN 16
50	39.27	280	297	349	384	443	457	520	71	0.87	0.88	Ke DN 16
60	56.55	404	428	502	553	638	659	749	50	0.88	0.89	Ke DN 16/25
65	66.37	474	502	589	649	749	773	879	40	0.88	0.89	Ke DN 16/25
80	100.53	718	761	893	983	1,134	1,171	1,332	25	0.89	0.89	Ke DN 25
100	157.08	1,123	1,189	1,396	1,537	1,774	1,830	2,081	17	0.89	0.89	Ke DN 32

Ke Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Process Metering Pumps

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 80 (MF3a) hydraulic diaphragm metering pump

Drive t	type						,	- ,,		- 23.		J		J 13.	-		
H1		rive hori	zontal*							AL		nodule le					
V1		rive vert								AR		nodule ri	ight-han	d			
Z1	Main d	rive cen	tral*							M	Modifie	ed **					
		er diame															
	016	16 mm		025	25 mm		030	30 mm		044	44 mm		060	60 mm	1	100 10	00 mm
	020	20 mm		027	27 mm		036	36 mm		046	46 mm		065	65 mm			
	022	22 mm		029	29 mm		040	40 mm		050	50 mm	1	080	80 mm			
				0 (60) H		_	100 (1		, ,	_							, .
		3	. ,	Strokes		5		48) Strol				88) Strol				l) strokes	
		4	,	26) strok				63) Strol		8	160 (19	94) Strol	kes/min	F	193 (-) S	trokes/mi	n
				end ma					ials)								
			S1		ss steel	,		,									
					erature				40.00	+- CO 06	_	_	10.00	·- 450.00	,		
				0		to 80 °0		2		to 60 °0 to 115 °		4	10 .0	to 150 °C	,		
								J	10 01	0115	C						
					0	cer form		er diaph	raam								
					1				-	th nrace	sure gau	ine					
					ļ ·		end ve		ragiii wi	iii pi coc	ourc gau	ige					
						0	Standa										
						1		rd with s	sprina								
						2		ırd + doı		e							
						3		ırd + dou			spring						
			1			1	Hydra	ulic con	nection	suctio	n side						
							G	Thread	DIN/IS0)				Α	Flange A	NSI	
			1			1	N		NPT/AI					D	Flange D	DIN/ISO	
											n discha	arge sid	le				
								G	Thread					A	Flange A		
								N	Thread		NSI			D	Flange D	DIN/ISO	
									Versio								
									0	No fea		tim m					
									2		end hea	•					
									3		end poli: Il paint fi						
								1	٦	•	connec						
										A		ard volta	ge 50 H:	7			
										В			_	- z adjusta	hle		
										Н		ard volta	_	•	2.0		
										K			_	z adjusta	ble		
										0		ally mou					
										1	without	t motor v	vith IEC	flange			
										2	without	t motor v	with NEN	/IA flange	•		
											Electri	ical prof	tection	system /	explosi	on prote	ction
											0	IP 55		-	D I	P 56 EEx	n
											1	IP 56				P 56 EEx	е
											Α	IP 55 E				P 56 EEx	
											В	IP 55 E			K I	P 65 EEx	de
								1			С	IP 55 E					
													cal opti				
												0	No opt				
												1	Stroke				
															adjustm	ent	
													0	Manual	mA witho	ut Ev	
								1					2		nA Ex Zo		
								1					3		nA Ex Wi	one 1 thout EX	offebore
													5			thout EX one 2 offsl	
													6			one 2 offsi one 1 offsl	
													0				
															nmental -20 °C to	conditio	ns
								1						0	-20 °C to		
			1			1		1						2	0 °C to 5		
															Approva		
1																ais CE	
																JE API 675	
		1	ĺ	Ì				1								VDMA	
							ı	1	l		İ	Ì	1	1			
														1	3 1	TEY	
															-	ATEX ATEX / AF	PI 675
															4	ATEX ATEX / AF VDMA / A'	

*For further pump configurations see Type of drive page → 2-43

^{**} Modified design (M) is available with every identity code feature

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.5 Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 180 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	/ Q _{th} in I/I		np head a de chara			Max. pressure	Ef	ficiency at	Standard type of valve
		92 [4]	107 [5]	117 [6]	134 [7]	152 [8]	171 [9]	200 [F]				
mm	ml/ stroke	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
25	19.63	107	126	138	157	178	201	235	366	0.77	0.83	Ke DN 16
30	28.27	155	181	199	226	257	290	339	254	0.81	0.85	Ke DN 16
36	40.72	223	262	286	326	370	417	489	176	0.83	0.86	Ke DN 16
40	50.27	276	323	353	403	457	515	604	143	0.85	0.87	Ke DN 25
44	60.82	334	391	428	488	553	623	730	118	0.85	0.87	Ke DN 25
50	78.54	431	505	552	630	714	805	943	91	0.86	0.88	Ke DN 25
55	95.03	521	611	668	762	864	974	1,141	75	0.87	0.88	Ke DN 32
60	113.10	621	727	796	907	1,029	1,160	1,359	63	0.87	0.89	Ke DN 32
65	132.73	729	854	934	1,065	1,207	1,361	1,594	54	0.88	0.89	Ke DN 32
70	153.94	845	990	1,083	1,235	1,400	1,579	1,849	46	0.88	0.89	Ke DN 40
75	176.71	970	1,137	1,243	1,418	1,608	1,812	2,123	40	0.88	0.89	Ke DN 40
80	201.06	1,104	1,293	1,415	1,613	1,829	2,062	2,416	35	0.88	0.89	Ke DN 40
85	226.98	1,246	1,460	1,597	1,821	2,065	2,328	2,727	31	0.88	0.89	Ke DN 40
90	254.47	1,397	1,637	1,791	2,042	2,315	2,610	3,057	28	0.89	0.89	Ke DN 40
95	283.53	1,557	1,824	1,995	2,275	2,590	2,908	3,407	25	0.89	0.89	Pt DN 50
100	314.16	1,725	2,021	2,211	2,521	2,858	3,223	3,775	22	0.89	0.89	Pt DN 50
115	415.48	2,281	2,673	2,924	3,334	3,781	4,262	4,992	17	0.89	0.89	Pt DN 65
125	490.87	2,696	3,158	3,455	3,939	4,467	5,036	-	14	0.89	0.90	Pt DN 65
135	572.56	3,144	3,684	4,030	4,595	5,210	5,874	6,880	12	0.89	0.90	Pt DN 65
142	633.47	3,479	4,076	4,458	5,084	5,764	6,499	7,612	11	0.89	0.90	Pt DN 65

Technical Data MfS 180 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/h		np head a			Max. pressure	Ef	ficiency at	Standard type of
		98 [3]	111 [4]	130 [5]		162 [7]	184 [8]	208 [8]	•			valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
25	19.63	116	130	153	167	216	244	244	352	0.77	0.83	Ke DN 16
30	28.27	167	188	220	241	275	312	352	254	0.81	0.85	Ke DN 16
36	40.72	240	271	318	347	396	449	507	176	0.83	0.86	Ke DN 16
40	50.27	297	335	392	429	489	555	625	143	0.85	0.87	Ke DN 25
44	60.82	359	405	475	519	592	671	757	118	0.85	0.87	Ke DN 25
50	78.54	464	523	613	671	765	867	978	91	0.86	0.88	Ke DN 25
55	95.03	561	633	742	811	925	1,049	1,183	75	0.87	0.88	Ke DN 32
60	113.10	668	753	883	966	1,101	1,249	1,408	63	0.87	0.89	Ke DN 32
65	132.73	784	884	1,036	1,134	1,293	1,466	1,652	54	0.88	0.89	Ke DN 32
70	153.94	909	1,026	1,202	1,315	1,499	1,700	1,916	46	0.88	0.89	Ke DN 40
75	176.71	1,044	1,178	1,380	1,509	1,721	1,951	2,200	40	0.88	0.89	Ke DN 40
80	201.06	1,188	1,340	1,570	1,717	1,958	2,220	2,503	35	0.88	0.89	Ke DN 40
85	226.98	1,341	1,513	1,772	1,939	2,211	2,507	2,826	31	0.88	0.89	Ke DN 40
90	254.47	1,503	1,696	1,987	2,174	2,478	2,810	3,168	28	0.89	0.89	Ke DN 40
95	283.53	1,675	1,890	2,214	2,422	2,762	3,131	3,530	25	0.89	0.89	Pt DN 50
100	314.16	1,856	2,094	2,453	2,684	3,060	3,470	3,912	22	0.89	0.89	Pt DN 50
115	415.48	2,455	2,769	3,245	3,549	4,047	4,589	5,173	17	0.89	0.89	Pt DN 65
125	490.87	2,900	3,272	3,834	4,193	4,781	5,422	-	14	0.89	0.90	Pt DN 65
135	572.56	3,383	3,817	4,472	4,891	5,577	6,324	_	11	0.89	0.90	Pt DN 65
142	633.47	3,743	4,223	4,947	5,412	6,171	6,997	-	11	0.89	0.90	Pt DN 65

DK Double ball valve,

Important note: Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS 180 (MF4a) hydraulic diaphragm metering pump

a II	Drive	tvpe													
	H1		Irive hori	zontal*			Z1	Main d	rive cen	tral *			AR	Drive module right-hand	
١	V1		Irive vert				AL	Drive r	nodule le	eft-hand			M	Modified **	
		Pluna	er diam	eter											
		025	25 mm		044	44 mm	1	065	65 mm		085	85 mm		115 115 mm	
		030	30 mm		050	50 mm		070	70 mm		090	90 mm		125 125 mm	
		036	36 mm		055	55 mm		075	75 mm		095	95 mm		135 135 mm	
		040	40 mm		060	60 mm		080	80 mm		100	100 mr	_	142 142 mm	
		040					1	080	80 111111		100	100 1111	n	142 142 11111	
					0 (60) H					_			, .		
			3	. ,	Strokes/					7		62) Strol			
			4	92 (11	1) stroke	es/min				8	152 (1	84) Strol	kes/min		
			5	107 (1	30) Stro	kes/min				9		08) strok			
			6	117 (1	42) Stro	kes/min				F	200 (-)	Strokes	/min		
				Liquic	d end ma	aterial (includi	ng valv	e materi	ials)					
				S1				ble, she		,					
					Temne	erature	of num	ped me	dium						
					0		to 80 °		2	-40 °C	to 60 °	0	4	10 °C to 150 °C	
					1		to 60 °		3		to 115 °		•	10 0 10 100 0	
					1'				J	10 0	10 113	C			
							cer for								
						0		-	er diaph	-					
						1				ragm w	itn pres	sure gau	ge		
					1			l end ve							
					1		0	Standa					2	Standard + double valve	
		1	1		1		1	Standa	ard with s	spring			3	Standard + double valve with	spring
					1			Hydra	ulic con	nection	suctio	n side			
		1	1		1			G		DIN/IS			Α	Flange ANSI	
								N	Thread	NPT/A	NSI		D	Flange DIN/ISO	
									Hydrai	ılic con	nectio	n discha	arae sid	•	
									G	-	DIN/IS		A	Flange ANSI	
									N		NPT/A		D	Flange DIN/ISO	
									14			1401		i lange bitt/150	
										Versio	n l No fea	.		O Limited and ma	liahad
										0				2 Liquid end po	
										1		end hea		3 Special paint	rinisn
												connec			
											Α		rd volta		
											В	Standa	rd volta	e 50Hz adjustable	
											Н	Standa	rd volta	e 60Hz	
											K	Standa	rd volta	e 60Hz adjustable	
											0			nted pump	
											1		-	ith IEC flange	
											2			ith NEMA flange	
											_				
														ection system / explosion p	
												0	IP 55	D IP 56	
												1	IP 56	E IP 56	
												Α	IP 55 E		EExde
												В	IP 55 E	Exe K IP 65	EExde
					1							С	IP 55 E	Exde	
		1	1		1		1	1					Electri	al options	
					1								0	No options	
					1								1	Stroke sensor	
		1	1		1		1	1						Stroke length adjustment	
					1									0 Manual	
			1						1	1					
					1	1	1	1						1 0/4-20 mA without Ex	
								1	1	1				2 0/4-20 mA Ex Zone 2	
											1				
														3 0/4-20 mA Ex Zone 1	
															EX offshore
														3 0/4-20 mA Ex Zone 1	
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without	offshore
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1	offshore offshore
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 55 °C	offshore offshore litions
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE	offshore offshore litions C
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE 1 API 63	offshore offshore litions C
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE 1 API 67 2 VDMA	offshore offshore itions C
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE 1 API 67 2 VDMA 3 ATEX	offshore offshore itions C
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE 1 API 6: 2 VDM/ 3 ATEX 4 ATEX	offshore offshore iitions C C 75
														3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without 5 0/4-20 mA Ex Zone 2 6 0/4-20 mA Ex Zone 1 Environmental cond 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals 0 CE 1 API 6: 2 VDM/ 3 ATEX 4 ATEX	offshore offshore itions C

^{*}For further pump configurations see Type of drive page \rightarrow 2-43

^{**} Modified design (M) is available with every identity code feature

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.6

Hydraulic Diaphragm Metering Pumps Orlita® MFS 600 (MF5b)

Technical Data MfS 600 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/I		np head a de chara		-	Max. pressure	Ef	ficiency at	Standard type of
		90 [4]	99 [5]	117 [6]	134 [7]	156 [8]	173 [9]	204 [F]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
36	40.72	219	242	285	327	381	422	497	392	0.76	0.83	Ke DN 16
38	45.36	244	269	318	364	424	470	554	352	0.77	0.83	Ke DN 16
40	50.27	270	299	352	404	470	521	614	318	0.78	0.84	Ke DN 16
44	60.82	327	361	427	488	569	630	743	263	0.80	0.85	Ke DN 25
46	66.48	357	395	466	534	622	689	812	240	0.81	0.85	Ke DN 25
50	78.54	422	467	551	631	735	814	959	221	0.83	0.86	Ke DN 25
55	95.03	511	565	667	764	889	985	1,161	168	0.84	0.87	Ke DN 25
60	113.10	608	673	794	909	1,059	1,172	1,381	141	0.85	0.87	Ke DN 25
65	132.73	714	789	932	1,067	1,243	1,376	1,621	120	0.85	0.87	Ke DN 32
70	153.94	828	916	1,080	1,237	1,441	1,596	1,880	100	0.90	0.88	Ke DN 32
75	176.71	950	1,051	1,240	1,420	1,654	1,832	2,159	90	0.86	0.88	Ke DN 32
80	201.06	1,081	1,196	1,411	1,616	1,882	2,084	2,456	79	0.87	0.88	Ke DN 40
85	226.98	1,221	1,350	1,593	1,825	2,125	2,353	2,773	70	0.87	0.88	Ke DN 40
90	254.47	1,369	1,514	1,786	2,046	2,383	2,638	3,109	62	0.87	0.88	Ke DN 40
95	283.53	1,525	1,687	1,990	2,279	2,655	2,940	3,464	56	0.87	0.88	Ke DN 50
100	314.16	1,690	1,869	2,205	2,526	2,942	3,257	3,838	50	0.88	0.89	Ke DN 50
115	415.48	2,235	2,472	2,917	3,340	3,890	4,308	5,076	38	0.88	0.89	Ke DN 65
125	490.87	2,641	2,921	3,446	3,946	4,596	5,090	5,998	32	0.89	0.89	Ke DN 65
135	572.56	3,080	3,407	4,020	4,603	5,361	5,937	6,996	26	0.89	0.89	Ke DN 65
142	633.47	3,408	3,769	4,448	5,093	5,932	6,568	7,740	20	0.89	0.89	Ke DN 65

Technical Data MfS 600 Single Pump 60 Hz

Plunger	Stroke	Pum	capacity	y Q _{th} in I/		np head a			Max.	Ef	ficiency at	Standard
Ø	volume							ic 3 – 9]:	pressure			type of
		96 [3]	109 [4]	120 [5]	142 [6]	163 [7]	189 [8]	210 [9]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
<u> </u>	stroke									pressure	pressure	
36	40.72	235	265	294	347	397	462	512	392	0.76	0.83	Ke DN 16
38	45.36	262	296	327	386	442	515	570	352	0.77	0.83	Ke DN 16
40	50.27	291	328	363	428	490	571	632	318	0.78	0.84	Ke DN 16
44	60.82	352	397	439	518	593	691	765	263	0.80	0.85	Ke DN 25
46	66.48	384	434	480	566	648	755	836	240	0.81	0.85	Ke DN 25
50	78.54	454	512	567	669	765	892	988	200	0.83	0.86	Ke DN 25
55	95.03	550	620	686	809	926	1,080	1,196	168	0.84	0.87	Ke DN 25
60	113.10	654	738	816	963	1,102	1,285	1,423	141	0.85	0.87	Ke DN 25
65	132.73	768	866	958	1,131	1,294	1,508	1,670	120	0.85	0.87	Ke DN 40
70	153.94	891	1,005	1,111	1,312	1,501	1,749	1,937	100	0.90	0.88	Ke DN 32
75	176.71	1,023	1,154	1,276	1,506	1,723	2,008	2,224	90	0.86	0.88	Ke DN 32
80	201.06	1,164	1,313	1,452	1,713	1,960	2,285	2,530	79	0.87	0.88	Ke DN 40
85	226.98	1,314	1,482	1,639	1,934	2,213	2,580	2,856	70	0.87	0.88	Ke DN 40
90	254.47	1,473	1,661	1,838	2,168	2,481	2,892	3,202	62	0.87	0.88	Ke DN 40
95	283.53	1,641	1,851	2,047	2,416	2,767	3,222	3,568	56	0.87	0.88	Ke DN 50
100	314.16	1,818	2,051	2,269	2,677	3,063	3,571	3,954	50	0.88	0.89	Ke DN 50
115	415.48	2,405	2,713	3,000	3,541	4,051	4,722	5,229	38	0.88	0.89	Ke DN 65
125	490.87	2,841	3,205	3,545	4,183	4,786	5,579	-	32	0.89	0.89	Ke DN 65
135	572.56	3,314	3,739	4,135	4,879	5,587	6,508	7,206	26	0.89	0.89	Ke DN 65
142	633.47	3,667	4,136	4,575	5,399	6,182	7,200	7,973	20	0.89	0.89	Ke DN 65

DK Double ball valve, Ke Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Process Metering Pumps

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS 600 (MF5b) hydraulic diaphragm metering pump

MF5b	Drive t	уре															
	H1		rive hori	zontal *						AL	Drive n	nodule le	eft-hand				
	V1	Main d	rive vert	ical *						AR	Drive n	nodule ri	ight-han	d			
	Z1	Main dı	rive cen	tral *						M	Modifie	ed **					
		Plunge	er diam	eter													
		036	36 mm		046	46 mm		065	65 mm		085	85 mm		115	115 mr	n	
		038	38 mm		050	50 mm		070	70 mm		090	90 mm		125	125 mr	n	
		040	40 mm		055	55 mm		075	75 mm		095	95 mm		135	135 mr	n	
		044	44 mm		060	60 mm		080	80 mm		100	100 mr	n	142	142 mr	n	
			Stroke	rate 50	(60) H	z											
			3	- (96) 5	Strokes/r	min	5	99 (120	0) Stroke	es/min	7	134 (16	63) Strok	ces/min	9	173 (2	10) strokes/min
			4	90 (10	9) stroke	es/min	6	117 (14	12) Strol	kes/min	8	156 (18	39) Strok	ces/min	F	204 (-)	Strokes/min
					end ma					ials)							
				S1			(see tab										
							of pum		dium	_							
					0		to 80 °C			2		to 60 °C			4	10 °C	to 150 °C
					1		to 60 °C			3	10 °C	to 115 °	U				
						-	cer for		ما ما ام ما								
						0		nulti-lay		ragm wi	th proof	uro gou	~~				
						'		end ve		iagiii wi	iii press	sure yau	ge				
							Liquia 0	Standa						2	Standa	rd + do	uble valve
							1		rd with s	enrina				3			uble valve with spring
		1		1		1	1			nection	enetic	n eide					rairo mai opinig
		1		1		1		G		DIN/IS		JIUC		Α	Flange	ANSI	
								N		NPT/AI				D	•	DIN/IS0	0
									Hvdra	ulic con	nection	n discha	arge sid	е			
									G		DIN/IS		g	Α	Flange	ANSI	
									N	Thread	NPT/A	NSI		D	Flange	DIN/IS0	0
										Versio	n						
										0	No fea	tures					
										1	Liquid	end hea	ting				
										2	Liquid	end poli	shed				
										3	-	I paint fi					
												connec					
											A		rd volta	-			
											В		rd volta	-		ıble	
											H K		rd volta	_		blo	
											0		ırd voltaç ally mou	-	-	ibie	
											1		motor v		•		
											2		motor v		-	Ι Δ	
											_						sion protection
												0	IP 55	ection	D	IP 56 E	
												1	IP 56		E	IP 56 E	
												A	IP 55 E	Exn	F	IP 56 E	
												В	IP 55 E	Exe	K	IP 65 E	Exde
												С	IP 55 E	Exde			
													Electri	cal opti	ions		
													0	No opti	ions		
													1	Stroke	sensor		
														Stroke	length		ment
														0	Manua		
		1										1		1		mA with	
														2		mA Ex 2	
														3		mA Ex 2	
														4			without EX offshore
														5			Zone 2 offshore
		1		1		1		1		1		1		6		—	Zone 1 offshore
																	al conditions
															0		to 40 °C
		1		1		1		1		1		1			1		to 40 °C
															2	0 °C to	
		1										1				Appro	
																0	CE ADL675
																1	API 675
		1		1		1		1		1		1			1	2	VDMA
																3 4	ATEX / ADI 675
																5	ATEX / API 675 VDMA / ATEX
																5	A DIMIY \ VI EV
					*Eor fu	I irthor n	l Jump c	l onfigur	l ations s	I Soo Tyr	l oo of dr	ivo pao	l ie → 2-4	13			

*For further pump configurations see Type of drive page → 2-43

^{**} Modified design (M) is available with every identity code feature

Hydraulic Diaphragm Metering Pumps Orlita® MF

2.8.7

Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 1400 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacit	y Q _{th} in I/	h per pur co	np head a			Max. pressure	Ef	ficiency at	Standard type of
		80 [4]	93 [5]	106 [6]	125 [7]	143 [8]	169 [9]	191 [F]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
30	42.41	202	235	270	318	364	431	486	630	0.67	0.78	Ke DN 16
40	75.40	360	419	480	565	647	766	864	435	0.75	0.83	Ke DN 25
42	83.13	397	462	529	623	713	844	952	435	0.76	0.83	Ke DN 25
44	91.23	435	507	581	684	783	927	1,045	394	0.76	0.83	Ke DN 25
46	99.71	476	554	635	748	856	1,013	1,142	361	0.77	0.83	Ke DN 25
50	117.81	562	654	750	884	1,011	1,197	1,350	305	0.79	0.84	Ke DN 25
53	132.37	632	735	843	993	1,136	1,345	1,517	271	0.79	0.84	Ke DN 32
55	142.55	681	792	907	1,070	1,224	1,448	1,633	250	0.81	0.85	Ke DN 25
57	153.11	731	851	975	1,149	1,314	1,556	1,754	235	0.81	0.85	Ke DN 32
60	169.65	810	943	1,080	1,273	1,456	1,724	1,944	212	0.82	0.86	Ke DN 25
65	199.10	951	1,106	1,268	1,494	1,709	2,023	2,282	180	0.83	0.87	Ke DN 32
70	230.91	1,103	1,283	1,470	1,733	1,983	2,346	2,646	155	0.84	0.87	Ke DN 40
75	265.07	1,266	1,473	1,688	1,989	2,276	2,694	3,038	135	0.85	0.87	Ke DN 40
80	301.59	1,440	1,676	1,920	2,263	2,590	3,065	3,456	119	0.85	0.87	Ke DN 40
90	381.70	1,823	2,121	2,431	2,865	3,278	3,879	4,375	94	0.90	0.90	Ke DN 50
100	471.24	2,251	2,619	3,001	3,537	4,047	4,789	5,401	76	0.87	0.88	Ke DN 65
120	678.58	3,242	3,772	4,321	5,093	5,827	6,896	7,778	53	0.88	0.89	Ke DN 65
140	923.63	4,412	5,134	5,882	6,933	7,932	9,387	10,587	38	0.88	0.89	Ke DN 80
160	1,206.37	5,763	6,706	7,683	9,055	10,360	12,261	13,827	29	0.89	0.89	Ke DN 80

Technical Data MfS 1400 Single Pump 60 Hz

Plunger		Pump ca	ipacity Q	th in i/n pe	er pump n	iead at H/	mın ideni	ity code	wax.		riciency at	Standard
Ø	volume					chara	acteristic	[3 to 9]:	pressure			type of
		88 [3]	97 [4]	112 [5]	129 [6]	152 [7]	174 [8]	206 [9]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
30	42.41	223	245	286	327	386	442	523	630	0.67	0.78	Ke DN 16
40	75.40	396	437	508	582	686	785	930	435	0.75	0.83	Ke DN 25
42	83.13	437	482	560	642	757	866	1,025	435	0.76	0.83	Ke DN 25
44	91.23	480	529	615	705	831	951	1,125	394	0.76	0.83	Ke DN 25
46	99.71	524	578	672	770	908	1,039	1,230	361	0.77	0.83	Ke DN 25
50	117.81	619	683	794	910	1,073	1,228	1,453	305	0.79	0.84	Ke DN 25
53	132.37	696	767	893	1,023	1,206	1,379	1,632	271	0.79	0.84	Ke DN 32
55	142.55	750	826	961	1,102	1,298	1,486	1,758	250	0.81	0.85	Ke DN 25
57	153.11	805	887	1,033	1,183	1,394	1,596	1,888	235	0.81	0.85	Ke DN 32
60	169.65	892	983	1,144	1,311	1,545	1,768	2,092	212	0.82	0.86	Ke DN 25
65	199.10	1,047	1,154	1,343	1,539	1,814	2,075	2,456	180	0.83	0.87	Ke DN 32
70	230.91	1,214	1,339	1,558	1,785	2,103	2,407	2,848	155	0.84	0.87	Ke DN 40
75	265.07	1,394	1,537	1,788	2,049	2,415	2,763	3,270	135	0.85	0.87	Ke DN 40
80	301.59	1,586	1,748	2,035	2,331	2,747	3,143	3,720	119	0.85	0.87	Ke DN 40
90	381.70	2,008	2,213	2,575	2,950	3,477	3,979	4,200	94	0.90	0.90	Ke DN 50
100	471.24	2,479	2,732	3,179	3,642	4,293	4,912	4,708	76	0.87	0.88	Ke DN 65
120	678.58	3,570	3,935	4,578	5,245	6,182	7,073	8,371	53	0.88	0.89	Ke DN 65
140	923.21	4,859	5,356	6,232	7,140	8,415	9,628	_	38	0.88	0.89	Ke DN 80
160	1,206.37	6,347	6,995	8,140	9,325	10,991	12,575	-	29	0.89	0.89	Ke DN 80

DK Double ball valve Ke Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.8 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 1400 (MF6a) hydraulic diaphragm metering pump

Biland Standard	
V1	nd
Plunger diameter	
030	
040	
042	
044	
Stroke rate 50 (60) Hz 3	
3	
4 80 (97) strokes/min 6 106 (129) Strokes/min 8 143 (174) Strokes/min F 191 (-) Liquid end material (including valve materials) S1 Stainless steel (see table, sheet 2) Temperature of pumped medium 0 -10°C to 80°C 2 -40°C to 60°C 4 10°C to 150°C 1 -25°C to 60°C 3 10°C to 115°C Displacer format 0 PTFE multi-layer diaphragm 1 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard 2 Standard + double val 1 Standard with spring 3 Standard + double val 1 Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread DIN/ISO A Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump	06) strokes/min
Liquid end material (including valve materials) Stainless steel (see table, sheet 2) Temperature of pumped medium 0	
S1 Stainless steel (see table, sheet 2) Temperature of pumped medium 0	
Temperature of pumped medium 0	
0	
1	
Displacer format 0 PTFE multi-layer diaphragm 1 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard 2 Standard + double val 1 Standard with spring 3 Standard + double val Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz C Externally mounted pump C Uthrout motor with IEC flange	
PTFE multi-layer diaphragm PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard 2 Standard + double val 1 Standard with spring 3 Standard + double val Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 50Hz C K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz C Stander voltage 60H	
1 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard 2 Standard + double val 1 Standard with spring 3 Standard + double val Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz adjustable H Standard voltage 60Hz adjustable H Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
Liquid end version 0	
0 Standard 2 Standard + double val 1 Standard with spring 3 Standard + double val Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1	
1 Standard with spring 3 Standard + double val Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread DIN/ISO D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz	2/0
Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread DIN/ISO N Thread PIN/ISO Version D Flange DIN/ISO Version 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable H Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	vo with spilling
N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
Hydraulic connection discharge side G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable H Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
G Thread DIN/ISO N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable H Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
N Thread NPT/ANSI A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
A Flange ANSI D Flange DIN/ISO Version 0 No features 1 Liquid end polished 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
D Flange DIN/ISO Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz Without motor with IEC flange	
Version 0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz B Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz Without motor with IEC flange	
0 No features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
3 Special paint finish Power connector A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
Power connector A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
A Standard voltage 50Hz B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
B Standard voltage 50Hz adjustable H Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
H Standard voltage 60Hz K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
K Standard voltage 60Hz adjustable 0 Externally mounted pump 1 Without motor with IEC flange	
0 Externally mounted pump 1 Without motor with IEC flange	
1 Without motor with IEC flange	
I I I I I I I I I I I I I I I I I I I	
2 Without motor with NEMA flange	
Electrical protection system / explo	IP 56 EExn
	IP 56 EExe
	IP 56 EExde IP 65 EExde
	IF 05 EEXUE
Electrical options 0 No options	
1 Stroke sensor	
	mont
Stroke length adjust	ment
	nout Ex
2 0/4-20 mA Ex	
2 0/4-20 MA EX 3 0/4-20 mA Ex	
1	without EX offshore
	Zone 2 offshore
1	Zone 2 offshore
Environment	
	to 40 °C
1	to 40 °C
	55 °C
	CE
	API 675
	VDMA
	ATEX
	ATEX / API 675
	VDMA / ATEX

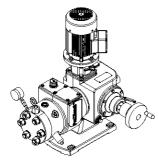
*For further pump configurations see Type of drive page → 2-43

^{**} Modified design (M) is available with every identity code feature

Hydraulic Diaphragm Metering Pumps Orlita® **Evolution 3**

2.9.1

Hydraulic Diaphragm Metering Pumps Orlita® Evolution 3


Maximum process reliability and flexibility

Capacity range of single pump: 25 - 1,335 l/h, 353 - 18 bar

The Orlita® Evolution 3 meets the most exacting safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, among other things, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system. Its modular construction offers extremely good flexibility in terms of applications.

The Orlita® Evolution (EF3a) hydraulic diaphragm metering pump together with the pumps EF1a, EF2a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range from 3 to 7,400 l/h at 400 - 10 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® Evolution product range is designed to comply with API 675.

P ORL 063 SW1 Orlita® Evolution EF3a

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm layer control protects against impermissible operating statuses (e.g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than \pm 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Continuous bleeding of the oil chamber ensures reliable operation

P_PZ_0008_SW1 Orlita® Evolution triplex pump

Excellent flexibility:

- The modular construction with single and multiple pump versions permits a wide range of applications, with up to 5 metering units, even with different pump capacities, which can be combined with multiple pump systems
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical details

- Stroke length: 0 25 mm, Rod force: 8,000 N
- Stroke length adjustment: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.9 Hydraulic Diaphragm Metering Pumps Orlita[®] Evolution 3

Technical data for EF3a single pump 50 Hz

Plunger Ø	Stroke volume	pressure										
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				valve
mm	ml/	I/h	I/h	I/h	I/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
17	5.67	24.68	32.91	39.49	49.37	56.10	61.71	68.57	352	0.75	0.86	DN 6
18	6.36	27.67	36.90	44.28	55.35	62.89	69.18	76.87	314	0.77	0.87	DN 6
22	9.50	41.34	55.12	66.14	82.68	93.95	103.35	114.83	210	0.86	0.92	DN 6
25	12.27	53.38	71.18	85.41	106.77	121.32	133.46	148.28	163	0.86	0.93	DN 10
30	17.67	76.87	102.49	122.99	153.74	174.71	192.18	213.53	113	0.90	0.93	DN 10
36	25.45	110.69	147.59	177.11	221.39	251.58	276.74	307.48	78	0.92	0.94	DN 16
42	34.64	150.67	200.89	241.07	301.33	342.42	376.67	418.52	57	0.93	0.94	DN 16
50	49.09	213.53	284.71	341.65	427.06	485.30	533.83	593.14	41	0.94	0.95	DN 25
60	70.69	307.48	409.98	491.97	614.97	698.83	768.71	854.12	27	0.95	0.96	DN 25
70	96.21	418.52	558.03	669.63	837.04	951.18	1,046.30	1,162.55	21	0.96	0.97	DN 25
75	110.45	480.44	640.59	768.71	960.89	1,091.92	1,201.11	1,334.56	17	0.97	0.98	DN 25

Technical data for EF3a single pump 60 Hz

Plunger Ø	Stroke volume	Theoretica	al pump cap	acity in I/h	at strokes/n	nin (60 Hz)	Max. pressure	E	fficiency at	Standard type of valve
		88 [1]	117 [2]	140 [3]	175 [4]	199 [5]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
17	5.67	29.79	39.72	47.67	59.58	67.71	352	0.75	0.86	DN 6
18	6.36	33.40	44.53	53.44	66.80	75.91	314	0.77	0.87	DN 6
22	9.50	49.89	66.52	79.83	99.78	113.39	210	0.86	0.92	DN 10
25	12.27	64.43	85.90	103.08	128.85	146.43	163	0.86	0.93	DN 10
30	17.67	92.78	123.70	148.44	185.55	210.85	113	0.90	0.93	DN 10
36	25.45	133.60	178.13	213.75	267.19	303.63	78	0.92	0.94	DN 16
42	34.64	181.84	242.45	290.94	363.68	413.27	57	0.93	0.94	DN 16
50	49.09	257.71	343.61	412.33	515.42	585.70	41	0.94	0.95	DN25
60	70.69	371.10	494.80	593.76	742.20	843.41	27	0.95	0.96	DN 25
70	96.21	505.11	673.48	808.17	1,010.22	1,147.98	21	0.96	0.97	DN 25
75	110.45	579.84	773.13	927.75	1,159.69	1,317.83	17	0.97	0.98	DN 25

Important note:

Dosing head

Abridged presentation of our complete product range. Other types on request

Diaphragm

Materials in contact with the medium

Dosing head complete

Diaphragm retaining screw

Stainless steel 1.4404	4 Stainles	s steel 1.4462		PTFE multi-layer diaphragm				
	Ball valve	e						
	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring		
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SIN	Stainless steel 1.4404	Stainless steel 1.4404	Stainless steel 1.4571, steel 2.4610		
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Stainless steel 1.4571, steel 2.4610		

Plate valve DN 15/DN 25

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15 / DN 25	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.10 Hydraulic Diaphragm Metering Pumps Orlita® MH

2.10.1

Hydraulic Diaphragm Metering Pumps Orlita® MH with Metal Diaphragm

Reliable capacity even at very high pressure

Capacity range of single pump: up to 800 l/h, up to 700 bar

The diaphragm metering pump ORLITA® MH has a robust metal diaphragm, which permits precise pump capacities even at very high pressure. The ORLITA® MH has a modular construction and therefore has a versatile range of uses. A range of power end versions are therefore available and drives, power ends and dosing heads can be freely combined.

ORLITA® MH hydraulic diaphragm metering pumps (MHS 18 to MHS 1400) with a stroke length of 15 to 60 mm provide a capacity range of up to 800 l/h at pressures of up to 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

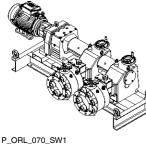
- Metal double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation even at very high pressure
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing precision
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Temperature range 60 °C to + 200 °C
- Customised designs are available on request

Technical details

- MhS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- MhS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- MhS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- MhS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- MhS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- MhS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 − 100% in operation and idle.
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive).
- Metering reproducibility is better than ± 0.5 % within the stroke length adjustment range of 10 100% under defined conditions and with proper installation.
- Metal diaphragm with diaphragm rupture monitoring system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 60 °C to + 200 °C
- Design in compliance with API 675 among others

Field of application


- Oil/ gas production (onshore/offshore)
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)

P ORL 068 SW1

Orlita® MHS 18-20

P_ORL_069_SW1 Orlita® MHS 35-8-8

P_ORL_070_SW1 Orlita® MHS 600-28-28

rocess Metering Pumps

2.10 Hydraulic Diaphragm Metering Pumps Orlita® MH

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)						
			58	73	91	112	145	207		
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar	
MHS 18/	3	0.11	0.37	0.46	0.58	0.71	0.92	1.32	100	
	5	0.29	1	1.2	1.6	1.9	2.5	3.6	400	
	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	400	
	7	0.58	2	2.5	3.1	3.8	5	7.1	400	
	8	0.75	2.6	3.2	4.1	5	6.5	9.3	348	
	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	222	
	12	1.70	5.9	7.3	9.2	11.3	14.7	21	154	
	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	87	
	20	4.71	16.4	20.5	25.5	31.5	41	58.5	55	

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)							
			58	73	91	112	145	207			
	mm	ml/stroke	I/h	l/h	l/h	l/h	l/h	l/h	bar		
MHS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	900		
	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	630		
	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	445		
	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	309		
	14	3.08	10.7	13.3	16.7	20.6	26.7	38.2	227		
	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	174		
	18	5.09	17.7	22.1	27.6	34.0	44.2	63.2	137		
	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	111		
	22	7.60	26.4	33.0	41.3	50.8	66.1	94.4	92		
	25	9.80	34.1	42.7	53.3	65.7	85.4	122.0	71		
	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	34		
	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	27		
	45	31.81	110.6	138.3	172.9	212.8	276.7	395.3	22		

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)							
			98	104	122	134	160	182			
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar		
MHS 80/	16	4.02	23.6	25.0	29.4	32.4	38.6	43.9	696		
	18	5.09	29.9	31.7	37.2	41.0	48.8	55.5	550		
	20	6.28	37.0	39.1	46.0	50.6	60.3	68.5	445		
	22	7.60	44.7	47.4	55.6	61.3	73.0	82.9	368		
	25	9.82	57.8	61.2	71.9	79.1	94.2	107.1	285		

Pump type	Plunger Ø	Stroke volume		Ма	x. capacity ((theo.) in I/h	at strokes/m	in (50 Hz)	Max. pressure
			99	117	134	156	173	204	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 600/25,5	25.5	20.43	121	143	164	191	211	249	783
MHS 600/28	28	24.63	146	172	198	230	255	300	649
MHS 600/30	29.2	26.79	159	188	215	250	277	327	570
MHS 600/32	32	32.17	191	225	258	301	333	393	497

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)						
			93	106	125	143	169	191		
	mm	ml/stroke	I/h	l/h	l/h	l/h	l/h	l/h	bar	
MHS 1400/	30	42.41	235	270	318	364	431	486	848	
	32	48.25	268	307	362	414	490	553	746	
	36	91.07	339	388	458	524	620	700	589	
	40	75.40	419	480	565	647	766	864	477	

Important note

Abridged presentation of our complete product range. Other types on request

Process Metering Pumps

2.11 Hydraulic Metal Diaphragm Metering Pump Highpressure MHHP

P_ORL_065_SW1

Orlita® MHR 150/7

Hydraulic Metal Diaphragm Metering Pump High-pressure MHHP

Reliable capacity even at maximum pressure

Capacity range of single pump: 3 - 11 l/h, 4,000 bar

The metal diaphragm metering pumps ORLITA® MHR/MHS are special pumps, which provide precise pump capacities even at maximum pressures of up to 3,000 bar.

The hydraulic metal diaphragm metering pumps ORLITA® MHR 150 / MHS 600 have a metal diaphragm, which is designed to meter precisely at maximum pressures of up to 4,000 bar. Excellent process reliability is guaranteed as the Orlita® MHR/MHS are designed to comply with API 675.

Technical details

- MHS: Stroke length: 0 40 mm, Rod force: 40,000 N
- MHR: Stroke length: 0 32 mm, Rod force: 15,000 N
- Stroke length adjustment range: 0 100 % in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Metal diaphragm with diaphragm rupture monitoring system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range -60 °C to +200 °C
- Design in compliance with API 675 among others

Field of application

- Chemical/petrochemical industry
- Maximum pressure applications of up to 3,000 bar

Pump type	Plunger Ø	Stroke volume	Max.	Max. capacity (theo.) in I/h at strokes/min (50 Hz)					
			58	87	116	145	-		
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar		
MHR 150/	6	0.90	3.1	4.7	6.3	7.8	3,000		
	7	1.23	4.2	6.4	8.5	10.7	3,000		

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.)					
			90	99	117	134	156	173	
	mm	ml/stroke	I/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 600/	10.5	3.46	18.6	20.6	24.3	27.8	32.4	35.9	3,000

2.12 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.12.1

pk 2 006

Sigma Basic Type SBKa

Plunger Metering Pump Sigma/ 2 (Basic Type)

Sigma plunger pump - durable and high-performance

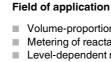
Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/ 2 (Basic Type) is an extremely robust plunger metering pump with high-performance plunger and the option to adjust the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

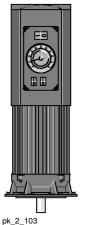
The plunger petering pump Sigma/ 2 (Basic Type) (SBKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 1 % within the 10 – 100 % stroke length range under defined conditions and with correct installation


Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request


- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.12 Plunger Metering Pump Sigma/ 2 (Basic Type)

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ω response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100 %. Automatic/manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated speed controller (identity code characteristic V)

Power supply 1 ph 230 V, 50/60 Hz, 0.37 kW.

External control with 0/4-20 mA (see pk_2_103)

(Speed Controllers see p. → 1-72)

Speed controllers in metal housing (identity code characteristic Z)

The speed controller assembly consists of a speed controller and a 0.37 kW variable speed motor.

(Speed Controllers see p. → 1-72)

Process Metering Pumps

2.12 Plunger Metering Pump Sigma/ 2 (Basic Type)

Technical Data

Type SBKa	With	1500 r	pm moto	r at 50 Hz	With '	1800 rբ	•		Perm. pre-	Connector Suction/	Shipping weight	Plunger Ø	
		•	at max. ressure	Max. stroke rate	De max. b	-	rate at essure	Max. stroke rate		pressure suction side	Discharge Side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	bar	Rp-DN	kg	mm
32002	320	1.9	0.46	71	4,641	2.3	0.61	84	5.0	160	1/4	24	8
					,							24	_
23004	230	4.0	0.52	129	3,336	4.8	1.27	154	5.0	115	1/4	= :	8
10006	100	6.4	0.55	195	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	6.1	1.42	71	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	11.0	1.43	129	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	16.7	1.43	195	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	12.4	2.90	71	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	22.5	2.91	129	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	34.1	2.92	195	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	22.4	5.26	71	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	41.5	5.37	129	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	64.0	5.45	195	174	76.0	20.08	233	4.0	6	3/8	25	23

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.25 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5 %	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.18 kW	
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.18 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.18 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.18 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.21 kW	With PTC, speed control range 1:5

 $\label{thm:motion} \mbox{Motor data sheets can be requested for more information.}$

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.12 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.12.2

Identity Code Ordering System for SBKa

Sigma Basic Type SBKa

SBKa	Drive t	type													
	HK		rive, plu	nger											
	1,	Type	, p.u	g-·											
		Type	bar	I/h											
		32002		1.9											
		23004		4.0											
		10006		6.4											
		14006	-	6.1											
		10011		11.0											
		05016		16.7											
		07012		12.4											
		04522	45	22.5											
		02534	25	34.1											
		04022	40	22.4											
		02541		41.5											
		01264		64.0											
				end ma	aterial										
			SS		ess steel										
			00		ess steel ng material*										
				_		riai"									
				Т	PTFE										
							t body*		,						
					4	Plunge	er (oxide	ceramic	c)						
						Liquid	l end ve								
						0		ing (star							
						1	With 2	valve sp	orings, F	lastelloy	C, 0.1 I	oar			
							Hydra	ulic cor	nection	1					
							0				nector	accordi	ng to technical data)		
								Versio	n						
								0		roMinen	t® logo	(standar	rd)		
								1		t ProMir					
								M	Modifie			90			
											or cun	nlv			
									S	rical power supply 3 ph, 230 V/400 V 50/60 Hz, 0.18 kW					
									R				otor, 230/400 V, 0.37 kW		
									V (0)						
													with integrated SC 1 pH, 230 V, 50/60 Hz		
									Z				et 230 V, 50/60 Hz		
									M				Hz, 0.18 kW		
									N				0.18 kW		
									L				Hz, (EExe, EExd), 0.18 kW		
									Р				Hz, (EExe, EExd), 0.18 kW		
									1	No mot	or, with	B 14 fla	nge (size 71 (DIN)		
									2	No mot	or, C 56	flange	(NEMA)		
									3	No mot	or, B 5	size 63 ((DIN)		
										Enclos	ure rat	ina			
										0	IP 55 (standard	d)		
										1			sion ATEX-T3		
										2	Fxd m	otor vers	sion ATEX-T4		
										A		power e			
										, ,					
											0	senso			
													oke sensor (standard)		
											2	_	relay (reed relay)		
											3		sensor (Namur) for hazardous locations		
													length adjustment		
												0	Manual (standard)		
												1	With stroke positioning motor, 230 V/50/60 Hz		
												2	With stroke positioning motor, 115 V/50/60 Hz		
												3	With stroke control motor 020 mA 230 V/50/60 Hz		
												4	With stroke control motor 420 mA 230 V/50/60 Hz		
	1											5	With stroke control motor 020 mA 115 V/50/60 Hz		
		i	1		1	1						6	With stroke control motor 420 mA 115 V/50/60 Hz		
												U	VIIII 60 600 6010 11116161 126 111/1 1 1 6 1/66/66 1 12		
													What stroke control motor in Economy 170 V/30/ co 112		

2.12 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.12.3 Spare Parts Kits

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

Process Me

2.13 Plunger Metering Pump Sigma/ 2 (Control Type)

2.13.1

Plunger Metering Pump Sigma/ 2 (Control Type)

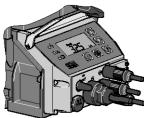
Sigma plunger pump - durable, high-performance and intelligent Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/2 (Control Type) is an extremely robust metering pump with integral control for analogue and/or contact operation. It has a high-performance plunger and offers the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, and different flange designs.

The plunger metering pump Sigma/ 2 (Control Type) (SCKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks.

Your benefits

Process reliability:


■ Metering reproducibility is better than ± 1 % within the 10 – 100 % stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks
- Customised designs are available on request

Sigma control type SCKa

P ORL 066 SW1

pk 2 104 Sigma Controller

Technical details

- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1,4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- Integrated control for analogue and/or contact operation
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (220 W)
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.13 Plunger Metering Pump Sigma/ 2 (Control Type)

Technical Data

Туре	Delivery rate at max. back pressure		Dolivon		1800 rpm n	notor at 60 Hz Max. stroke	Suction lift	Perm. pre- pressure suction	Connector Suction/ Discharge Side	Shipping weight	Plunger Ø
					pressure			side	O.u.o		
	bar	ml/stroke	psi	l/h	gph (US)	Strokes/min	mWC	bar	Rp-DN	kg	mm
32002	320	0.46	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	0.52	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	0.55	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	1.42	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	1.43	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	1.43	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	2.90	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	2.91	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	2.92	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	5.26	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	5.37	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	5.45	174	65.4	17.28	200	4.0	6	3/8	25	23

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply	Remarks		
U	1-phase, IP 55	100 – 230 V ±10 %, 240 V ±6 %,	50/60 Hz	220 W	

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.13 Plunger Metering Pump Sigma/ 2 (Control Type)

2.13.2

Identity Code Ordering System for SCKa

Sigma Control Type SCKa

SCKa																	
	HK		rive, plu	ınger													
		Type															
		32002	bar 320	l/h 2.3													
		23004		4.8													
		10006		6.4													
		14006		7.1													
		10011	100	13.1													
		05016		16.7													
		07012		14.8													
		04522	_	26.7													
		02534		34.1													
		04022 02541		26.5 49.2													
		01264	_	49.2 64.0													
		01204		l end m	aterial												
			SS		ess steel												
					g mate												
				Т	PTFE												
							t body*										
					4	_	er (oxide		c)								
						Liquid 0	end ve		- d - u d \								
						1		ing (stai		lactalla	C 4, 0.	1 har					
						'			nection		0 4, 0.	ı bai					
							0				nector	accordi	ng to te	chnica	al data	a)	
								Version	n			`					
								0		roMiner							
								1			nent® lo	_					
											ver sup		F0/00				
									U		00-230 \		, 50/60	HZ			
										A	and plu	ropean					
										В	2 m Sv						
										С	2 m Au	stralian					
										D	2 m US	SA					
											Relay						
											0	No rela					
											1						nangeover 230 V – 2A
											3						nangeover 230 V – 2A y open 24 V - 100 mA
											5						ally open 24 V – 100 mA
											A						rmally closed 2x normally open
												24 V -	100 mA	`			
											F		•		y clos	ed 1	x changeover 230 V - 8 A
													ol varia				
												0					pulse control
												1				ı + pu	ılse control + analogue
													_	ss cod	-	s cod	Δ
													1		acces		
													'		ering		
														0			vith pulse evaluation
														1			vith cont. evaluation
															St 0	troke	length adjustment Manual

2.13.3

Spare Parts Kits

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	applies to identity code: 04022, 02541, 01264	910472

2.14 Plunger Metering Pump Meta

-

2.14.1

Plunger Metering Pump Meta

Meta plunger pump - durable and high-performance

Capacity range 6 - 59 l/h, 216 - 52 bar

The extremely high-performance Meta is a plunger metering pump with the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

pk_2_010
Meta plunger metering pump MTKa

pk_2_011 Meta plunger metering pump MTKa

The Meta (MTKa) is a plunger metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100 % stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details

- Stroke length: 15 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons.

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Control of Meta piston metering pumps

(Speed Controllers see p. → 1-72)

Speed controllers in metal housing (Identity code characteristic Z)

Frequency changer built into IP 54 protective housing and main switch designed for max. 0.37 kW motor output.

Externally controlled with 0/4-20 mA / 0-10 V to correspond to 0-50 (60) Hz output frequency.

Integrated controller with versatile functions e.g. switching between external/internal control. With internal control, frequency input is via arrow keys. Multi lingual fault message display and motor temperature monitoring (thermistor-protection).

The speed controller assembly consists of a speed controller and a variable speed motor (see also identity code characteristic R).

2.14 Plunger Metering Pump Meta

Technical Data

Type MTKa	With	1500 r	rpm moto	or at 50 Hz	With 1	1800 rpm m	otor at 60 Hz	Suc- tion lift	Perm. pre- pressure	Connector Suction/ Discharge	Motor rating	Shipping weight	Plung- er Ø
			y rate at ck pres- sure	Max. stroke rate	Delivery rate at max. back pressure		Max. stroke rate		suction side	Side			
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	Rp-DN	W	kg	mm
21606	216	6.1	1.42	72	3,130	7.3/1.9	86	4.0	108	1/4	180	18	12
24006	240	6.1	1.42	72	3,477	7.3/1.9	86	4.0	120	1/4	370	20	12
16208	162	8.1	1.42	96	2,347	9.8/2.6	115	4.0	81	1/4	180	18	12
22508	225	8.1	1.42	96	3,260	9.8/2.6	115	4.0	112.5	1/4	370	20	12
12910	129	10.2	1.42	120	1,878	12.2/3.2	144	4.0	64.5	1/4	180	18	12
21610	216	10.2	1.42	120	3,130	12.2/3.2	144	4.0	108	1/4	370	20	12
10812	108	12.2	1.42	144	1,565	14.7/3.9	173	4.0	54	1/4	180	18	12
21012	210	12.2	1.42	144	3,043	14.7/3.9	173	4.0	105	1/4	370	20	12
10213	102	13.0	3.01	72	1,479	15.6/4.1	86	4.0	51	1/4	180	18	17
11313	113	13.0	3.01	72	1,644	15.6/4.1	86	4.0	56.5	1/4	370	20	17
07617	76	17.3	3.01	96	1,109	20.8/5.5	115	4.0	38	1/4	180	18	17
10617	106	17.3	3.01	96	1,541	20.8/5.5	115	4.0	53	1/4	370	20	17
06122	61	21.7	3.01	120	888	26.0/6.9	144	4.0	30.5	1/4	180	18	17
10222	102	21.7	3.01	120	1,479	26.0/6.9	144	4.0	51	1/4	370	20	17
05126	51	26.0	3.01	144	740	31.2/8.2	173	4.0	25.5	1/4	180	18	17
09926	99	26.0	3.01	144	1,438	31.2/8.2	173	4.0	49.5	1/4	370	20	17
05425	54	24.6	5.71	72	782	29.5/7.8	86	4.0	27	3/8	180	18	23
06025	60	24.6	5.71	72	869	29.5/7.8	86	4.0	30	3/8	370	20	23
04033	40	32.8	5.71	96	587	39.4/10.4	115	4.0	20	3/8	180	18	23
05633	56	32.8	5.71	96	815	39.4/10.4	115	4.0	28	3/8	370	20	23
03241	32	41.1	5.71	120	469	49.3/13.0	144	4.0	16	3/8	180	18	23
05441	54	41.1	5.71	120	782	49.3/13.0	144	4.0	27	3/8	370	20	23
02749	27	49.3	5.71	144	391	59.2/15.6	173	4.0	13.5	3/8	180	18	23
05249	52	49.3	5.71	144	761	59.2/15.6	173	4.0	26	3/8	370	20	23

Materials in contact with the medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat	Plunger
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404	Ceramic
			PTFE + 25 % carbon			

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.18/0.37 kW 0.18/0.37 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	with PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.37 kW	
N	1 ph AC, IP 55	115 V ±5 %	60 Hz	0.37 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	with PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	with PTC, speed control range 1:5

The motor power is dependent on the pump type (see technical data).

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.14 Plunger Metering Pump Meta

2.14.2 Identity Code Ordering System for MTKa

Meta piston metering pump, version a

「Ka Driv	e type											
Н	Main d											
Α	Add-or	n drive										
	Type											
		bar	l/h									
	21606		6.1									
	24006		6.1									
	16208		8.1									
	22508		8.1									
	12910 21610		10.2 10.2									
	10812		12.2									
	21012		12.2									
	10213		13.0									
	11313		13.0									
	07617		17.3									
	10617		17.3									
	06122		21.7									
	10222		21.7									
	05126	51	26.0									
	09926	99	26.0									
	05425		24.6									
	06025		24.6									
	04033		32.8									
	05633		32.8									
	03241		41.1									
	05441		41.1									
	02749 05249		49.3 49.3									
	05249			atavial								
		SS	l end m	ateriai ess steel								
				ig mate								
		ı	T	PTFE	ııaı							
					cemen	t body*						
				S			ger, oxid	de ceran	nic			
						l end ve						
					0		ve sprin	gs				
					1	With 2	valve s	prings, H	lastelloy	/ C, 0.1	bar	
								nnectio				
						0	Standa	ard threa	ided coi	nnector	(accord	ing to technical data)
							Version					
							0				(standa	rd)
							1 M		ıt ProMi	nent® ic	ogo	
							IVI	Modifie	ea ical pov			
								S				/60 Hz (WBS)
								R				notor, 230 V/400 V
								z				et 230 V, 50/60 Hz
								M			V, 50/60	
								N			V, 60 Hz	
								L				Hz, (Exe, Exd)
								Р	3 ph, 2	30 V/40	00 V, 60	Hz, (Exe, Exd)
								1	No mo	tor, with	n flange s	90/63
								2			n flange	
								3		,	n flange	
								4			flange !	
								0			(no mot	or)
				1		1				sure ra		-1)
									0		(standar	
									1			sion ATEX-T3 sion ATEX-T4
				1		1			A		power e	
				1		1			 		e senso	
										0		oke sensor (standard)
										1		troke sensor, Namur signal (Ex)
												e length adjustment
				1		1					0	Manual (standard)
				1		1					2	With stroke positioning, 115 V/50/60 Hz
		1			1	1					A	With stroke control motor 020 mA 230 V/50/60 Hz
											В	With stroke control motor 420 mA 230 V/50/60 Hz
											B C	With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 020 mA 115 V/50/60 Hz

Process Metering Pumps

2.14 Plunger Metering Pump Meta

2.14.3 **Spare Parts**

Spare parts kit Meta (MTKa) piston metering pump

Consisting of:

- ceramic plunger
- valve balls
- ball seat discs
- PTFE /graphite plunger packing rings
- plunger guide bands
- 14 flat seals
- O-rings

	Order no.
Liquid end FK 12.5 applies to identity code: 21606, 24006, 16208,	910470
22508, 12910, 21610, 10812, 21012	
Liquid end FK 25 applies to identity code: 10213, 11313, 07617,	910471
10617, 06122, 10222, 05126, 09926	
Liquid end FK 50 applies to identity code: 05425, 06025, 04033,	910472
05633, 03241, 05441, 02749, 05249	

Base Frames for Meta MTMa and MTKa

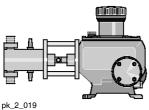
A base frame is available for main and add-on pump combinations.

	Order no.
Base frame for main and one add-on pump	803897
Base frame for main and two add-on pumps	803898
Base frame for main and three add-on pumps	803899

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

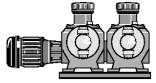
2.15.1


Plunger Metering Pumps Makro TZ

Powerful, built to last with a plunger

Capacity range of single pump: 8 - 1,141 l/h, 320 - 11 bar

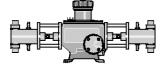
The plunger metering pump Makro TZ impresses with its excellent process reliability, outstanding flexibility and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.


Makro TZ plunger metering pump

The plunger metering pump Makro TZ (TZKa) has an adjustable eccentric drive mechanism and, together with the Makro TZ diaphragm metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Process reliability:


■ Metering reproducibility is better than ± 0.5 % within the 10 – 100 % stroke length range under defined conditions and with correct installation

pk_2_018 Makro TZ TZKa externally mounted pump

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 4 different gear ratios are available
- Customised designs are available on request

pk 2 020 Makro TZ TZKa double head pump

Technical details

- Stroke length: 0-20 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of shift ring in 0.5 % increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the stroke length adjustment range of 10 100% under defined conditions and with proper installation. Observe the information in the operating instructions.
- High-performance ceramic-coated stainless steel plunger Wetted materials: Stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_103 Variable speed motor with integrated frequency converter

Makro TZ Metering Pump Actuators

Makro TZ stroke length actuator/control drive Makro TZ actuator

Servomotor for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, including 1 k Ω feedback potentiometer for stroke position response signal, IP 54 degree of protection. Electrical connection 230 V (\pm 10 %), 50/60 Hz, 40 W mech. stroke length display fitted on the Makro TZ power end.

Special voltage/higher degrees of protection/explosion protection upon request.

Makro TZ control drive

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Technical data see actuator.

Design:

Standard signal current input 0/4-20 mA corresponds to stroke length 0 -100 %, manual /automatic operation switch, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

The following functions are integrated in the terminal box cover:

- Start/Stop switch
- Manual/external operation switch (0/4 20 mA)
- Potentiometer for speed control in manual mode
- Onn request externally controllable via PROFIBUS® DP

Variable speed motors with integrated speed controller See page → 1-72

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Frequency converter for speed controller See page \rightarrow 1-72

Process Metering Pumps

2.15 Plunger Metering Pumps Makro TZ

Technical Data

Typ TZKa	W	/ith 1500 i	rpm moto	r at 50 Hz	With 18	800 rpm moto	r at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight	Plunger Ø		
	Del	livery rate back p	at max. ressure	Max. stroke rate	Delivery	Delivery rate at max. back pressure		•					
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	rate Strokes/ min	mWC	G-DN	kg	mm		
320009	320	8.7	2.0	72	4,627	10/2.6	86	4.0	Rp 1/4**-8	50	12		
320012	320	11.6	2.0	96	4,627	14/3.7	115	4.0	Rp 1/4**-8	50	12		
320014	320	14.5	2.0	120	4,627	17/4.5	144	4.0	Rp 1/4**-8	50	12		
320017	320	17.4	2.0	144	4,627	21/5.5	173	4.0	Rp 1/4**-8	50	12		
320018	320	17.7	4.1	72	4,627	21/5.5	86	4.0	Rp 1/4**-8	50	17		
320024	320	23.6	4.1	96	4,627	28/7.4	115	4.0	Rp 1/4**-8	54	17		
320030	320	29.5	4.1	120	4,627	35/9.2	144	4.0	Rp 1/4**-8	54	17		
313035	313	35.4	4.1	144	4,526	42/11.1	173	4.0	Rp 1/4**-8	54	17		
192033	192	32.9	7.6	72	2,776	39/10.3	86	4.0	Rp 3/8**-10	55	23		
192044	192	43.9	7.6	96	2,776	59/15.6	115	4.0	Rp 3/8**-10	55	23		
192055	192	54.8	7.6	120	2,776	66/17.4	144	4.0	Rp 3/8**-10	55	23		
168066	168	65.8	7.6	144	2,437	79/20.9	173	4.0	Rp 3/8**-10	55	23		
113057	113	57.5	13.3	72	1,634	69/18.2	86	4.0	Rp 3/8**-10	56	30		
113077	113	76.6	13.3	96	1,634	92/24.3	115	4.0	Rp 3/8**-10	56	30		
113096	113	95.8	13.3	120	1,634	115/30.4	144	4.0	Rp 3/8**-10	56	30		
096115	96	114.9	13.3	144	1,392	138/36.5	173	4.0	Rp 3/8**-10	56	30		
063104	63	104.3	24.2	72	911	125/33.0	86	4.0	G 1 1/4–20	58	40		
063139	63	139.0	24.2	96	911	167/44.1	115	4.0	G 1 1/4-20	58	40		
063174	63	173.8	24.2	120	914	209/55.2	144	4.0	G 1 1/4-20	58	40		
052208	52	208.5	24.2	144	754	250/66.0	173	4.0	G 1 1/4-20	58	40		
040163	40	162.9	37.7	72	578	195/51.5	86	4.0	G 1 1/4-20	58	50		
040217	40	217.2	37.7	96	578	261/68.9	115	4.0	G 1 1/4-20	58	50		
040271	40	271.5	37.7	120	580	326/86.1	144	4.0	G 1 1/4-20	58	50		
033326	33	325.8	37.7	144	479	391/103.3	173	4.0	G 1 1/4-20	58	50		
028237	28	237.0	54.9	72	405	284/75.0	86	4.0	G 1 1/2-25	62	60		
028316	28	315.9	54.9	96	405	379/100.1	115	4.0	G 1 1/2-25	62	60		
027395	27	394.9	54.9	120	392	474/125.2	144	4.0	G 1 1/2-25	62	60		
022474	22	473.9	54.9	144	319	569/150.3	173	4.0	G 1 1/2-25	62	60		
020322	20	322.5	74.7	72	289	387/102.2	86	4.0	G 1 1/2-25	62	70		
020430	20	430.0	74.7	96	289	516/136.3	115	4.0	G 1 1/2-25	62	70		
020538	20	537.6	74.7	120	290	645/170.4	144	4.0	G 1 1/2–25	62	70		
016645	16	645.1	74.7	144	232	774/204.5	173	4.0	G 1 1/2–25	62	70		
014475	14	475.1	110.0	72	202	571/150.8	86	4.0	G 2 1/4–40	68	85		
014634	14	634.1	110.0	96	202	761/201.0	115	4.0	G 2 1/4-40	68	85		
013793	13	792.6	110.0	120	189	951/251.2	144	4.0	G 2 1/4–40	68	85		
011951	11	951.1	110.0	144	160	1,141/301.4	173	4.0	G 2 1/4-40	68	85		
0.1007	•	551.1	. 10.0		100	.,	1.13				- 00		

Other gear reduction ratios are available upon request.

The permissible admission pressure on the suction side is approx. 50 % of the max. permissible back pressure.

Materials in contact with the medium

Pump type	Hydraulic Ø mm	Dosing head connection	Suction/ discharge seals	Ball seat	Valve balls	Plunger
SST	12 S to 30 S	Stainless steel 1.4571/1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
SST	40 S to 70 S	Stainless steel 1.4571/1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
SST	85 S	Stainless steel 1.4571/1.4404	1.4581	PTFE/PTFE	1.4404 (plate) Hast. C (spring)	Stainless steel/ ceramic

20 00 ml-

 $^{^{\}star\star}$ The suction and discharge connectors Rp 1/4 and Rp 3/8 are inner threaded and fitted with double ball valves.

Process Metering Pumps

2.15 Plunger Metering Pumps Makro TZ

2.15.2

Identity Code Ordering System TZKa

Plunger metering pump TZKa

TZKa	Drive t	ype											
	Н	Main dri	ive										
	Α	Add-on											
	D		main drive										
	В	Double											
	В		auu-on										
		Type*			440057		000474		000007		000500		
		320009			113057		063174		028237		020538		
		320012	313035		113077		052208		028316		016645		
		320014			113096		040163		027395		014475		
		320017	192044		096115		040217		022474		014634		
		320018			063104		040271		020322		013793	3	
		320024	168066	6	063139	(033326		020430		011951	1	
			Liquid end m	aterial									
			SS Stainles	ss steel									
			Sealing	a mate	rial								
			T	PTFE									
					acement	hody							
				S	Stainless		lunger	chromi	um diovi	do-coa	tad		
				٦				CHIOTH	uiii uioxi	ue-coa	ieu		
					Liquid e			a o					
					0		ve sprin	-					
					1		alve spr						
							ulic cor						
							Standar						
						4	SS unio	n nut ai	nd insert				
						,	Version	ı					
						(0				, no fram		
						2	2	Withou	ut ProMir	nent® lo	go, no fi	rame	
							A	With P	roMinen	t® logo	, with fra	ame, sim	plex
							В	With P	roMinen	t® logo	, with fra	ame, dup	olex
							С	With P	roMinen	t® logo	, with fra	ame, tripl	lex
						l li	м	Modifi		J	,	, ,	
									ical pow	er eur	nlv		
								S			V 50/60 I	Hz (WB	S)
								R	•				30/400 V
												•	gr. frequency converter
								Z (0)				_	t 1 ph, 230 V, 50/60 Hz
								P			•		•
									•		V 60 Hz		·
								L	•		V 50 Hz		
								V (2)					verter (Exd)
								4			56 C flai	•	
								7			120/80 f	_	
								8	No moto	or, with	160/90 f	flange	
								0	Without	motor,	external	lly moun	nted drive
									Enclos	ure rat	ing		
									0	IP 55	(Standar	rd) ISO d	class F
									1	Exe ve	ersion A	TEX-T3	
									2	Exd ve	ersion A	TEX-T4	
									Α	ATEX	power e	end	
											e senso		
										0		ke sens	or
										1			nsor (Namur)
													adjustment
											0		length adjustment, man.
											1		stroke adjustment motor
											2		stroke adjustment motor
											3		0-20 mA stroke controller
											4	230 V	4-20 mA stroke controller
											5	115 V	0-20 mA stroke controller
											6	115 V	4-20 mA stroke controller
												Applic	
												0	Standard

* Digits 1 - 3=back pressure [bar]; digits 4 - 6=feed rate [l/h]

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	1.5 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	2.2 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	3 ph, IP 55	400 V ±10 %	50/60 Hz	2.2 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	1.5 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.5 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	1.5 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	1.5 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10 %	50/60 Hz	2.2 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.15.3 Spare Parts Kits

Spare parts kit for Makro TZ

Comprising:

Valve balls

Valve plate with spring

Ball seat discs

PTFE/graphite plunger packing rings

Plunger guides

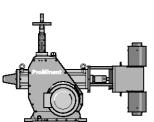
Flat seals/O rings

	Order no.
Spare parts kit for Makro TZ FK 12/20 S DN 8	1019106
Spare parts kit for Makro TZ FK 17/20 S DN 8	1019107
Spare parts kit for Makro TZ FK 23/20 S DN 10	1019108
Spare parts kit for Makro TZ FK 30/20 S DN 10	1019109
Spare parts kit for Makro TZ FK 40/20 S DN 20	1019110
Spare parts kit for Makro TZ FK 50/20 S DN 20	1019111
Spare parts kit for Makro TZ FK 60/20 S DN 25	1019112
Spare parts kit for Makro TZ FK 70/20 S DN 25	1019113
Spare parts kit for Makro TZ FK 85/20 S DN 40	1019124

2.16

2.16 Plunger Metering Pumps Makro/ 5

2.16.1


Plunger Metering Pumps Makro/ 5

Powerful, built to last with a plunger

Capacity range of single pump: 38 - 6,014 l/h, 320 - 6 bar

1

The plunger metering pump Makro/ 5 can virtually be used throughout the low-pressure range and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

pk_2_075 Makro/ 5 M5Ka

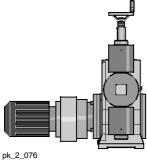
The plunger metering pump Makro/ 5 (M5ka) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

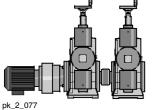
Process reliability:

Metering reproducibility is better than \pm 0.5 % within the 10 – 100 % stroke length range under defined conditions and with correct installation

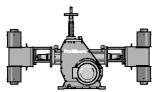
Excellent flexibility:


- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical details


- Stroke length: 0-50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- High-performance ceramic-coated stainless steel plunger
- Wetted materials: Stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application


- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Makro/ 5 M5Ka

Makro/ 5 M5Ka externally mounted pump

pk_2_078 Makro/ 5 double head pump

Makro/ 5 Pump Control

Stroke length variable speed drive Makro/ 5

Variable speed drive consisting of actuator with motor actuator and integrated microprocessor controller for stroke length adjustment via a standard signal. Actuating time approx. 100 sec. for 100% stroke length, equipped with 2 limit switches for min./max. position, IP rating: IP 52. Electrical connection 230 V (±10 %), 50/60 Hz, approx. 40 W, mech. stroke position indicator present at drive Makro/ 5.

Special voltage/higher IP ratings/Ex protection on request.

Standard current input 0/4-20 mA (corresponds to stroke length 0-100%); internal switch for manual/ automatic operation, key switch for stroke adjustment in manual operation mode. Actual value output 0/4-20 mA for remote display.

Frequency converter for speed control in metal housing, IP rating 54

Frequency converter installed in protective housing IP 54 with integrated control unit and main switch suitable for the motor output stated in the following.

Externally controllable with 0/4-20 mA or 0-10V corresponding to 0-50 (60) Hz output frequency.

Integrated control unit with numerous functions, such as toggling external/internal control. With internal control, frequency setting is via arrow keys, error message on multi lingual display etc.

Including evaluator for temperature monitoring of the motor (thermistor protection).

Stroke sensor with namur signal

Mounted on the crank drive of the Makro/5 gearbox. For precise detection of each metering stroke, consisting of actuating cams and inductive proximity switch, switching signal according to Namur. Combined with electronic preselection counters suitable for batch metering or proportional metering in connection with the proportional control.

Retrofitting is only possible on factory premises.

Approved for ex-proof operation with IP rating EEx ia II C T6.

Technical Data

Type M5Ka	Wit	th 1500 r	pm moto	or at 50 Hz	Wit	th 1800 r _i	om moto	or at 60 Hz	Suction lift	Connection, suction/	Shipping weight	Plunger Ø
	Deliv	ery rate back p	at max. ressure	Max. stroke rate	Deliv	Delivery rate at max. back pressure		Max. stroke rate		discharge side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	G-DN	kg	mm
3200038	320	38	11	60	4,640	44	12	71	3.0	Rp 1/4–8	300	17
3200048	320	48	11	75	4,640	56	15	89	3.0	Rp 1/4–8	300	17
3200066	320	66	11	103	4,640	78	21	123	3.0	Rp 1/4–8	300	17
3200085	320	85	11	133	4,640	101	27	159	3.0	Rp 3/8–10	300	17
3200100	320	100	11	156	_	_	_		3.0	Rp 3/8–10	300	17
2400070	240	70	21	60	3,480	82	22	71	3.0	Rp 3/8–10	300	23
2400088	240	88	21	75	3,480	104	27	89	3.0	Rp 3/8–10	300	23
2400121	240	121	21	103	3,480	144	38	123	3.0	Rp 3/8–10	300	23
2160157	216	157	21	133	3,132	187	49	159	3.0	Rp 3/8–10	300	23
1700184	170	184	21	156	-	-			3.0	G 1–15	300	23
1400120	140	120	35	60	2,030	142	38	71	3.0	G 1–15	302	30
1400151	140	151	35	75	2,030	179	47	89	3.0	G 1–15	302	30
1400207	140	207	35	103	2,030	247	65	123	3.0	G 1–15	302	30
1270267	127	267	35	133	1,842	319	84	159	3.0	G 1 1/4–20	302	30
1000314	100	314	35	156	-	-	-	-	3.0	G 1 1/4–20	302	30
0800214	80	214	63	60	1,160	253	67	71	3.0	G 1 1/4–20	303	40
0800268	80	268	63	75	1,160	318	84	89	3.0	G 1 1/4–20	303	40
0800368	80	368	63	103	1,160	439	116	123	3.0	G 1 1/4–20	303	40
0700476	70	476	63	133	1,015	569	150	159	3.0	G 1 1/2–25	303	40
0560558	56	558	63	156	-	-	-	-	3.0	G 1 1/2–25	303	40
0500335	50	335	98	60	725	396	105	71	3.0	G 1 1/2–25	303	50
0500419	50	419	98	75	725	497	131	89	3.0	G 1 1/2–25	303	50
0500576	50	576	98	103	725	687	181	123	3.0	G 1 1/2–25	303	50
0450744	45	744	98	133	653	889	235	159	3.0	G 2–32	303	50
0350872	35	872	98	156	- F00	- 571	151	- 71	3.0	G 2–32 G 1 1/2–25	303	50
0350483 0350604	35 35	483 604	141 141	60 75	508 508	716	189	71 89	3.0	G 1 1/2-25	311 311	60 60
0350829	35	829	141	103	508	989	261	123	3.0	G 2-32	311	60
0330029	30	1,071	141	133	435	1,280	338	159	3.0	G 2-32	311	60
0251257	25	1,257	141	156	400	1,200	-	-	3.0	G 2–32	311	60
0251257	25	658	192	60	363	778	206	71	3.0	G 2–32	311	70
0250822	25	822	192	75	363	975	258	89	3.0	G 2–32	311	70
0250022	25	1,129	192	103	363	1,348	356	123	3.0	G 2–32	311	70
0231458	23	1,458	192	133	334	1,743	460	159	3.0	G 2 1/4–40	311	70
0181710	18	1,710	192	156	- 004	1,7 40	-	-	3.0	G 2 1/4–40	311	70
0160970	16	970	284	60	232	1,147	303	71	3.0	G 2 1/4-40	317	85
0161212	16	1,212	284	75	232	1,438	380	89	3.0	G 2 1/4–40	317	85
0161665	16	1,665	284	103	232	1,988	525	123	3.0	G 2 1/4-40	317	85
0162150	16	2,150	284	133	232	2,570	679	159	3.0	G 2 3/4–50	317	85
0162522	16	2,522	284	156	_	_,070	-	-	3.0	G 2 3/4–50	317	85
0121343	12	1,343	393	60	174	1,589	420	71	3.0	G 2 3/4–50	331	100
0121678	12	1,678	393	75	174	1,991	526	89	3.0	G 2 3/4–50	331	100
0122305	12	2,305	393	103	174	2,752	727	123	3.0	G 2 3/4–50	331	100
0122977	12	2,977	393	133	174	3,558	940	159	3.0	G 2 3/4–50	331	100
0103491	10	3,491	393	156	-	-	-	-	3.0	G 2 3/4–50	331	100
0062269	6	2,269	664	60	87	2,684	709	71	3.0	G 2 1/2-65	350	130
0062837	6	2,837	664	75	87	3,366	889	89	3.0	G 2 1/2–65	350	130
0063896	6	3,896	664	103	87	4,652	1,229	123	3.0	G 2 1/2-65	350	130
0065031	6	5,031	664	133	87	6,014	1,589	159	3.0	G 2 1/2–65	350	130
0066000	6	6,000	664	156	-	-	-	-	3.0	G 2 1/2-65	350	130
0000000	0	0,000	004	100	_	-	_	_	3.0	G Z 1/Z-05	350	130

2.16.2

Identity Code Ordering System for M5Ka

Makro/ 5 piston metering pump

M5Ka Dr	rive t	/ne																
WISKA DI		Main drive																
A		Add-on po		nd														
D		Double ma																
В			d-on power end															
			u-0[1	power en	u													
		Type*		1 100100		050005		0050050		0101010								
		3200038 3200048		1400120		0500335		0250658		0121343								
				1400151		0500419 0500576		0250822		0121678								
		3200066		1400207 1270267				0251129		0122305								
		3200085				0450744		0231458		0122977								
		3200100		1000314		0350872		0181710		0103491								
		2400070		0800214		0350483		0160970		0062269								
		2400088 2400121		0800268 0800368		0350604 0350829		0161212 0161665		0062837 0063896								
		2160157		0700476		0301071		0162150		0065031								
		1700184		0700476 0560558		0251257		0162522		0066000								
		1700104		uid end n				0102322		0000000								
				Stainless														
				Sealing T	mater PTFE													
				•		- lacement	hod	,										
					S				hromi	um dioxide	2-CO2	ted						
					١	Liquid e				aiii aioxide	, coa							
						0		alve sprin	ns									
						1		valve spri										
						'		raulic cor		on								
							0	Standard										
							4	SS union										
								Version										
										0		ProMinent	® log	o, no fr	ame			
											2	No P	roMinent®	logo	, no frar	me		
												Α	With	ProMinent	® log	o, with	frame, simplex	
								В	With	ProMinent	® log	o, with	frame, duplex					
													С	With	ProMinent	® log	o, with	frame, triplex
								D	With	ProMinent	® log	o, with	frame, quadruplex					
								M	Modi	fied								
									Elect	rical pow	er sı	upply						
									S	3 ph. 230	/400	V 50/60	Hz (WBS)					
									R				4-pole 230/400 V					
									V (0)	Motor wit	h inte	egrated	frequency converter					
									Р				z (Exe, Exd)					
									L				z (Exe, Exd)					
													frequency converter (Exd)					
									5				0 gearbox					
									6				2 gearbox					
									0	No motor								
										Enclosur		-						
										0			dard) ISO class F					
										1			ATEX.T3					
										1 -			ATEX-T4					
										Α		X powe						
											Stro 0	ke sen	sor oke sensor					
											1		oke sensor troke sensor (Namur)					
									Stroke length adjustment 0 Stroke length adjustment, man. 3 230 V 0-20 mA stroke controlle 4 230 V 4-20 mA stroke controlle				, ,					
												115 V 0-20 mA stroke controller						
											115 V 4-20 mA stroke controller							
											l	0						
													Application 0 Standard					
													Standard					

* Digits 1 - 3=back pressure [bar]; digits 4 - 7=feed rate [l/h]

Materials in contact with the medium

	Liquid end	Suction/pressure connector	Valve seat/ seals	Valve balls	Plunger
Makro 5/50 HKDN 8-DN 10	Stainless steel 1.4571/ 1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
Makro 5/50 HKDN 15-DN 25	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
Makro 5/50 HKDN 32-DN 65	Stainless steel 1.4571/ 1.4404	1.4581/1.4404	PTFE/PTFE	Stainless steel 1.4404 (plate/spring)	Stainless steel/ ceramic

The permissible priming pressure on the suction side is approx. 50 % of the max. permissible back pressure.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	3 kW	
		250-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10 %	50/60 Hz	3 kW	Variable speed motor with integrated
					frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10 %	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.16.3 Spare Parts Kits

Spare parts kits for Makro/ 5

Comprising:

Valve balls

Valve plate with spring

Ball seat discs

PTFE/graphite plunger packing rings

Plunger rings

Flat seals/O-rings

	Order no.
Spare parts kit for Makro/ 5 FK 17/50 S DN 8	1005899
Spare parts kit for Makro/ 5 FK 17/50 S DN 10	1005536
Spare parts kit for Makro/ 5 FK 23/50 S DN 10	1005004
Spare parts kit for Makro/ 5 FK 23/50 S DN 15	1005900
Spare parts kit for Makro/ 5 FK 30/50 S DN 15	1005901
Spare parts kit for Makro/ 5 FK 30/50 S DN 20	1005537
Spare parts kit for Makro/ 5 FK 40/50 S DN 20	1005902
Spare parts kit for Makro/ 5 FK 40/50 S DN 25	1005538
Spare parts kit for Makro/ 5 FK 50/50 S DN 25	1005539
Spare parts kit for Makro/ 5 FK 60/50 S DN 25	1005903
Spare parts kit for Makro/ 5 FK 60/50 S DN 32	1005540
Spare parts kit for Makro/ 5 FK 70/50 S DN 32	1005541
Spare parts kit for Makro/ 5 FK 70/50 S DN 40	1005904
Spare parts kit for Makro/ 5 FK 85/50 S DN 40	1005542
Spare parts kit for Makro/ 5 FK 85/50 S DN 50	1005905
Spare parts kit for Makro/ 5 FK 100/50 S DN 50	1005543
Spare parts kit for Makro/ 5 FK 130/50 S DN 65	1005544

2.17 Plunger Metering Pumps Orlita® PS

P ORL 071 SW1

P_ORL_072_SW1 Orlita® PS 80-30

P ORL 073 SW1

P_ORL_074_SW1

Orlita® PS 35-7-7

P ORL 075 SW1 Orlita® PS 600-40-40-40

Orlita® PS 18-12 high-temperature

Orlita® PS 18-36

Plunger Metering Pumps Orlita® PS

Orlita® PS - simple, robust and reliable.

Capacity range of single pump: 0 - 37,000 l/h, 400 - 4 bar

The high-performance plunger metering pump ORLITA® PS enables precise pump capacities even at maximum pressure and temperatures of up to +400 °C. The ORLITA® PS pump has a modular construction and thus versatile uses.

ORLITA® PS plunger metering pumps (PS 18 to PS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 37,000 l/h at 400 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® PS product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10-100 % stroke length range under defined conditions and with correct installation.
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request
- Temperature range 40 °C to + 400 °C

Technical details

- PS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- PS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- PS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- PS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- PS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- PS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 $^{\circ}$ C to + 400 $^{\circ}$ C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to +400 °C

Process Metering Pumps

2.17 Plunger Metering Pumps Orlita® PS

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)							
			58	73	91	112	145	207			
	mm	ml/stroke	l/h	I/h	l/h	l/h	l/h	l/h	bar		
PS 18/	5	0.29	1.0	1.2	1.6	1.9	2.5	3.6	250		
	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	250		
	7	0.58	2.0	2.5	3.1	3.8	5.0	7.1	250		
	8	0.75	2.6	3.2	4.1	5.0	6.5	9.3	250		
	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	200		
	12	1.70	5.9	7.3	9.2	11.3	14.7	21.0	139		
	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	78		
	20	4.71	16.4	20.5	25.6	31.5	41.0	58.5	50		
	25	7.36	25.6	32.0	40.0	49.2	64.0	91.5	32		
	30	10.60	36.9	46.1	57.6	70.9	92.2	131.7	16		
	36	15.27	53.1	66.4	83.0	102.1	132.8	189.7	15		
	40	18.85	65.6	82.0	102.4	126.1	163.9	234.2	10		
	50	29.45	102.4	128.1	160.1	197.1	256.2	366.0	8		

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			58	73	91	112	145	207				
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar			
PS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	630			
	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	400			
	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	400			
	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	250			
	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	156			
	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	100			
	25	9.82	34.1	42.7	53.3	65.7	85.4	122.0	64			
	30	14.14	49.2	61.5	76.8	94.6	122.9	175.7	44			
	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	30			
	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	25			
	50	39.27	136.6	170.8	213.5	262.8	341.6	488.0	16			
	65	66.37	230.9	288.6	360.8	444.1	577.3	824.8	9			
	80	100.53	349.8	437.3	546.6	672.7	874.6	1,249.4	6			
	100	157.08	546.6	683.3	854.1	1,051.2	1,366.5	1,952.2	4			

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			78	98	122	134	155	182	193			
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar		
		stroke										
PS 80/	20	6.28	29	37	46	50	58	68	72	400		
	25	9.82	45	57	71	79	91	107	113	250		
	30	14.14	66	83	103	113	131	154	163	178		
	36	20.36	95	119	149	164	189	222	235	123		
	40	25.13	117	148	184	202	233	274	290	100		
	50	39.27	183	231	287	316	365	428	453	64		
	60	56.55	264	333	414	455	526	617	653	44		
	65	66.37	310	390	486	535	617	724	766	37		
	80	100.53	470	592	736	810	935	1,097	1,161	25		
	100	157.08	734	925	1,150	1,266	1,461	1,714	1,814	16		
	125	245.44	1,148	1,445	1,797	1,978	2,283	2,679	2,835	10		
	140	307.88	1,440	1,813	2,254	2,482	2,864	3,360	3,557	8		
	160	402.12	1,880	2,368	2,944	3,242	3,741	4,389	4,646	6		

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.17 Plunger Metering Pumps Orlita® PS

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			107	117	134	152	171	200				
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar			
PS 180/	30	28.27	181	199	226	257	290	339	229			
	36	40.72	262	286	326	370	417	489	159			
	40	50.27	323	353	403	457	515	604	125			
	50	78.54	505	552	630	714	805	943	80			
	54	91.61	589	644	735	833	939	1,100	70			
	65	132.73	854	934	1,065	1,207	1,361	1,594	48			
	70	153.94	990	1,083	1,235	1,400	1,579	1,849	40			
	80	201.06	1,293	1,415	1,613	1,829	2,062	2,416	32			
	94	277.59	1,786	1,953	2,227	2,526	2,847	3,335	23			
	125	490.87	3,158	3,455	3,939	4,467	5,036	5,898	13			
	140	615.75	3,962	4,334	4,941	5,603	6,317	7,399	10			
	160	804.25	5,175	5,660	6,454	7,318	8,251	9,664	8			
	200	1,256.64	8,086	8,845	10,085	11,435	12,892	15,100	5			

Pump type	Plunger Ø	Stroke volume	Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			99	117	134	156	173	204			
	mm	ml/stroke	I/h	l/h	l/h	l/h	l/h	l/h	bar		
PS 600/	30	28.27	168	198	227	264	293	345	400		
	36	40.27	242	285	327	381	422	497	353		
	40	50.27	299	352	403	470	521	614	286		
	50	78.54	467	551	630	735	814	959	183		
	54	91.61	545	643	735	857	949	1,119	157		
	65	132.73	789	932	1,067	1,243	1,376	1,621	100		
	70	153.94	916	1,080	1,236	1,441	1,596	1,880	93		
	80	201.06	1,196	1,411	1,616	1,882	2,084	2,456	71		
	94	277.59	1,651	1,949	2,229	2,599	2,878	3,391	51		
	125	490.87	2,921	3,446	3,946	4,596	5,090	5,998	29		
	140	615.75	3,664	4,323	49,451	5,766	6,385	7,523	23		
	160	804.25	4,785	5,647	6,466	7,531	8,339	9,827	16		
	200	1,256.64	7,477	8,823	10,104	11,768	13,030	15,354	11		

Pump type	Plunger Ø	Stroke volume		Max. pressure					
			93	106	125	143	169	191	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 1400/	40	75.40	419	480	565	647	766	864	400
	50	117.81	654	750	884	1,011	1,197	1,350	275
	60	169.65	943	1,080	1,273	1,456	1,724	1,944	190
	70	230.91	1,283	1,470	1,733	1,983	2,346	2,646	140
	80	301.59	1,676	1,920	2,263	2,590	3,065	3,456	107
	94	416.39	2,314	2,651	3,125	3,576	4,231	4,772	77
	125	736.31	4,093	4,689	5,527	6,323	7,483	8,439	44
	140	923.63	5,134	5,882	6,933	7,932	9,387	10,587	35
	160	1,206.37	6,706	7,683	9,055	10,360	12,261	13,827	25
	200	1,884.96	10,478	12,005	14,149	16,188	19,157	21,606	17
	280	3,694.51	20,538	23,530	27,732	31,729	37,549	42,348	8

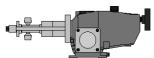
Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.18 Plunger Metering Pump Orlita® DR

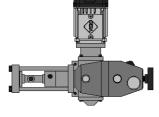
2.18.1


Plunger Metering Pump Orlita® DR

For the precise metering of high-viscosity and extremely high-viscosity media even containing solid fractions

Capacity range of single pump: 0 - 4,000 l/h, 400 - 4 bar

The plunger metering pump Orlita® DR does not need valves and can be operated within a broad stroke rate range. It is therefore suitable for use with high-viscosity and extremely high-viscosity media of up to 106 mPas within a wide temperature range from -40 °C to 400 °C, for example in the food industry.


P ORL 0020 SW Orlita® DR

Orlita® DR plunger metering pumps (DR 15 to DR 150) are special pumps for high-viscosity and extremely high-viscosity media, which can also contain solids. The pump can be operated within a broad stroke rate range due to its operation without valves.

Your benefits

Optimum adaptation to processes with high-viscosity and extremely high-viscosity media, even containing solid fractions:

- Low-wear and precise operation even at high pressures, thanks to the rotary plunger with abrasion-resistant/wear-resistant surface coating
- Valve-free operation guarantees a broad stroke rate range
- Wide range of uses: Operating pressure of up to 400 bar, temperature range of 40 °C to + 400 °C
- Pump direction can be selected depending on the fitting position of the plunger
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Excellent hydraulic efficiency
- A reverse suction effect is continuously adjustable by rotating the pump head around its longitudinal axis
- 4 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

P ORL 0021 SW Orlita® DR 15/12

P_ORL_0022_SW

Orlita® 150/90

Technical details

- DR 15 Stroke length: 0-15 mm, Rod force: 1,800 N
- DR 150 Stroke length: 0-32 mm, Rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the stroke length adjustment range of 10 to 100% under defined conditions and with proper installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- The interplay between the plunger and cylinder responsible for the sealing effect, is selected depending on the viscosity
- Turret on the rear head end as a circular collecting vessel
- The turret is sealed by elastomer lip sealing rings
- Design in compliance with API 675 among others

Field of application

Metering of high-viscosity and extremely high-viscosity media containing some solid fractions, for example in the food industry.

Process Metering Pumps

2.18 Plunger Metering Pump Orlita® DR

Pump type	Plunger Ø	Stroke volume	Capacity max.	Capacity max. (theo.) in I/h at strokes/min (50 Hz)			
			58	77	116		
	mm	ml/stroke	l/h	l/h	I/h	bar	
DR 15/	7	0.58	2.0	2.6	4.0	400	
	12	1.70	5.9	7.8	11.8	159	
	18	3.82	13.2	17.7	26.5	70	
	25	7.36	25.6	34.1	51.2	36	
	36	15.27	53.1	70.8	106.2	17	
	50	29.45	102.4	136.6	204.9	9	
	70	57.73	200.8	267.8	401.7	4	

Pump type	Plunger Ø	Stroke volume	Сар	Capacity max. (theo.) in I/h at strokes/min (50 Hz						
			58	77	116	145				
	mm	ml/stroke	l/h	l/h	I/h	l/h	bar			
DR 150/	12	3.62	12.5	16.7	25.1	31.4	400			
	18	8.14	28.3	37.7	56.6	70.8	400			
	25	15.71	54.6	72.8	109.3	136.6	250			
	36	32.57	113.3	151.1	226.7	283.3	147			
	50	62.83	218.6	291.5	437.3	546.6	76			
	70	123.15	428.5	571.4	857.1	1,071.4	38			
	90	203.58	708.4	944.5	1,416.8	1,771.1	23			
	120	361.91	1,259.4	1,679.2	2,518.9	3,148.6	13			
	140	492.60	1,714.2	2,285.6	3,428.5	4,285.6	9			

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.19 Diaphragm Process Pump Zentriplex

2.19.1

Diaphragm Process Pump Zentriplex

The innovative process metering pump with the ideal dimensions and excellent energy-saving efficiency

Capacity range 424 - 8,000 l/h, 367 - 36 bar

The Zentriplex guarantees excellent performance and provides outstanding efficiency as an oscillating triplex process diaphragm pump, with an extremely small footprint thanks to the space-saving arrangement of the pump and drive unit. It also stands out on account of its efficiency, as minimal material and labour are required.

The Zentriplex is an oscillating process diaphragm metering pump, which has a very small footprint thanks to its unconventional design, as the pump and drive unit are mounted above each other to save space. Diaphragm dosing heads and hydraulic units are arranged in a star pattern around the drive unit, resulting in minimised loads and significantly lower material and drive requirements. The Zentriplex is designed in compliance with API 674.

- Excellent energy efficiency.
- Diaphragm replacement without dismantling the suction and discharge lines ensures cost-effective maintenance of the pump
- Low noise emissions
- Very quiet thanks to complete balancing of masses
- Only one connection required by the customer. Collective discharge and suction lines are integrated in
- Low flow rate pulsation
- Customised designs are available on request

P PZ 0009 SW1

Process diaphragm pump Zentriplex (1= cus-

Technical details

- Stroke length: 40 mm, Rod force: 18,000 N fixed stroke pump
- Metering reproducibility is better than ± 1% under defined conditions and with proper installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of motor versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Chemical industry
- Petrochemical industry
- Refineries
- Oil and gas industry

Process Metering Pumps

2.19 Diaphragm Process Pump Zentriplex

Technical Data

Plunger Ø	Stroke volume	Theoretic	cal pump o	capacity (oke rate n in rpm	Max. operating pressure	Rated pressure	Ef	Standard type of valve	
mm	ml/	120 [3] l/h	145 [4] l/h	170 [5] l/h	200 [6] l/h	220 [7] l/h	bar	bar	100%	50%	
	stroke 58.90	404	F10	601	707	770	367	06	pressure	pressure	DN 10
25		424	512	601	707	778		36	0.78	0.83	DN 10
26	63.71	459	554	650	765	841	339	32	0.78	0.83	DN 10
30	84.82	611	738	865	1,018	1,120	255	25	0.81	0.85	DN 15
36	122.15	879	1,063	1,246	1,466	1,612	177	16	0.84	0.87	DN 20
44	182.46	1,314	1,587	1,861	2,190	2,409	118	10	0.85	0.88	DN 20
60	339.29	2,443	2,952	3,461	4,072	4,479	64	6	0.90	0.92	DN 25
70	461.81	3,325	4,018	4,711	5,542	6,096	47	4	0.90	0.92	DN 32
80	603.19	4,343	5,248	6,152	7,238	7,962	36	2	0.90	0.92	DN 32

Abridged presentation of our complete product range. Other types on request

Materials in contact with the medium

Dosing head compl	ete		Manifold	
Dosing head	Diaphragm retaining screw	Diaphragm	Suction/pressure connector	Seal, manifold
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm	Stainless steel 1.4571	Viton O-ring with seamless FEP jacket
Suction/pressure connector	Seal valve/head	Valve ball	Valve seat	Valve housing
Stainless steel 1.457	1 Stainless steel 1.4571	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404
	Plate valve DN	15 / DN 20 / DN 25 / DN 32	:	
Suction/pressure connector	Seal valve/head	Valve plate	Valve seat	Valve housing
Stainless steel 1.457	1 Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4571	Stainless steel 1.4571

Further material versions and details available on request.

Motor and gearbox data

 $Motors \ and \ gearboxes \ from \ 7.5 \ to \ 15 \ kW \ are \ available \ for \ the \ Zentriplex \ product \ range. \ Further \ options \ and \ and \ and \ and \ are \ available \ for \ the \ Zentriplex \ product \ range.$ details available upon request.

Standard gear motor 7.5 kW, 9.2 kW, 11 kW, 15 kW	3 ph, IP 55	400/690V	50/60 Hz	Control range 1:5
Ex gear motor EExde IICT4 11 kW, 15 kW	3 ph, IP 65	400/690V	50/60 Hz	Control range 1:5
Standard external gearbox 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Standard external gearbox 11 kW15 kW	IP 55			NEMA flange version
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			NEMW flange version

2.20 Diaphragm Process Pump TriPower®

2.20.1

P_TR_0003_SW1

P_TR_0003_SW3

Diaphragm Process Pump TriPower®

The product range for high capacities with a minimal footprint Capacity range 4 - 38 m³/h, 415 - 50 bar

The process diaphragm pump TriPower® is perfect for use in the oil/gas industry or in the chemical industry. It is compact yet high-performance and has a multi-layer safety diaphragm. Its compact design enables it to be installed in the smallest space.

With TriPower® process pumps, the discharge stroke of the individual dosing heads is displaced through a 120° crank angle. The result is a low-pulsation discharge flow even without the use of pulsation dampers. This design of process diaphragm pumps is favoured in the chemical and petrochemical industries.

Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve protects against overloading
- Metering reproducibility is better than ± 0.5 % under defined conditions and with proper installation
- Safe, leak-free metering, even of potentially hazardous media.
- Excellent process safety thanks to resistance to aggressive, corrosive and flammable media.

Excellent conservation of resources:

- Maintenance-friendly and low operating costs
- Minimal monitoring and maintenance expense due to integrated pressurised lubrication system
- Low pulsation metering without expensive pulsation damper
- Use in explosive atmospheres thanks to ATEX-compliant design
- Customised designs are available on request

- Stroke length: 60 mm, Rod force: 80,000 N
- Fixed stroke pump
- Metering reproducibility is better than ± 0.5% under certain defined conditions and with proper installation. Observe the information in the operating instructions.
- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Oil and gas industry
- Petrochemical industry
- Chemical industry

Process Metering Pumps

2.20 Diaphragm Process Pump TriPower®

Technical data TriPower® size B/ 60 mm stroke / MF liquid ends

Plunger Ø	Stroke volume	Pump capacity Q _{th} in I/h in total Triplex at a stroke rate n in 1/min Pressure						Standard type of valve		
		100 [3]	130 [4]	170 [5]	200 [6]	230 [7]				
mm	cm ³ /stroke	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
								pressure	pressure	
46	3 x 99.71	1,795	2,333	3,051	3,590	4,128	415	0.77	0.83	DN 32
55	3 x 142.55	2,566	3,336	4,362	5,132	5,902	320	0.81	0.85	DN 32
70	3 x 230.91	4,156	5,403	7,066	8,313	9,560	200	0.84	0.87	DN 40
90	3 x 381.70	6,871	8,932	11,680	13,741	15,802	125	0.90	0.90	DN 50
140	3 x 923.63	16,625	21,613	28,263	33,251	38,238	50	0.88	0.89	DN 80

Abridged presentation of our complete product range. Other types on request

Materials in contact with the medium

Dosing head complete

Dosing head	Diaphragm re	etaining screw	Diaphragm			
Stainless steel 1.4404	Stainless stee	l 1.4462	PTFE multi-layer diaphragm			
Conical valve						
Valve	Suction/discharge valve housing	Seals	Valve seat			
1.4462	1.4404	1.4571	1.4462			

Hydraulic/mechanical accessories

Hydraulic / mechanical accessories for metering pumps such as injection valves and foot valves, can be found in Chapter 1.5, sorted by nominal width DN 8 ... DN 40:

Please observe the permitted pressure ratings or material combinations when selecting. Further accessories are available on request.

Electrical accessories

Accessories for metering pumps, such as frequency converters etc., can be found in Chapter 1.6, sorted by motor capacity DN $8\dots$ DN 40.

2.21.1 Return/Pressure Relief Valve, Spring-loaded

Spring-loaded valves, inline version, designed as pump valves, i.e. to cope with a very high number of load cycles. Also suitable for use without pulsation damper.

Features:

- Female thread on both sides or with sealing surface
- For bracing between 2 flanges
- PN 200 or PN 400
- Settings factory-set
- Standard design in stainless steel, hastelloy also available on request, as is Inconel

Also available heatable on request.

DN	Adjustable pressure	Construction	Order no.
6	2.0 bar	Ball	1020074
6	4.0 bar	Ball	1019224
6	8.0 – 9.0 bar	Ball	1019097
10	2.0 bar	Cone, fixed	1019649
10	3.0 - 6.0 bar	Cone, adjustable	1023053
10	8.0 – 14.0 bar	Cone, adjustable	1024065
16	2.0 bar	Cone, fixed	1017937
16	3.0 bar	Cone, fixed	1035266
16	4.5 – 5.4 bar	Cone, fixed	1017936
25	1.0 – 2.0 bar	Cone, fixed	1021843

2.21.2

Safety Valve

P_AC_0231_SW

Regulations:

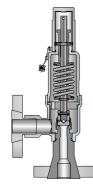
Safety valves are designed to comply with the following regulations:

- Pressurised Vessel and Steam Boiler Directive
- TRD 421, 721
- TRB 403
- AD 2000 Bulletins A2 and A4
- **DIN EN ISO 4126**
- Pressure Equipment Directive 97/23/EC
- ASME Code, Sections II and VIII
- API 526, 520, 527

The relevant product-specific certificates are available to prove compliance with these regulations and thus also the safety of the products.

Safety valves carry a parts label (specification label) stipulating the following data:

- Order date (serial no.)
- Technical data
- Set pressure
- VdTÜV Parts test number
- CE mark with number of nominated centre
- Further data, e.g. UV stamp with ASME-approved safety valves


Following adjustment and inspection, every safety valve is sealed by the manufacturer.

Connectors: NPT threaded connectors, threaded sockets, flange mountings comply with DIN / ANSI. Other connections are available on request.

Material description	X 14 CrNiMo 17-12-2
Material no.	1.4404
ASME	316L

Dimensions, pressure ranges, weights	Standard 10 mm
Pressure rating at inlet	320 PN
Pressure rating at outlet	160 PN
Min. response pressure	0.1 bar
Max. response pressure (4373 / 4374)	68 bar
Narrowest flow cross-section	78.5 mm ²
Narrowest flow diameter	10 mm
Leg length (outlet / inlet)	30 mm / 33 mm
Pin length (G 1/2 / G 3/4)	15 mm / 16 mm
Flange design	100 mm
Height (H2 / H4)	137/162 mm
Weight	1.2 kg

P_AC_0232_SW

Process Metering Pumps

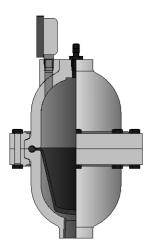
2.21.3

Pulsation Damper

Pulsation dampers with separating membrane / bubble / bellows for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing flow resistance in long metering lines and with viscous media. The response pressure of the gas cushion should be approx. 60-80 % of the operating pressure.

Important: A pressure relief valve should always be fitted with an adjustable back pressure valve when using a pulsation damper.

Bladder dampers, metal


0.066 - 379 | Volume **Pressure** 20.7 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, PTFE

Further material versions and details available on request.

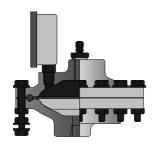
P_AC_0258_SW1

Volume 0.066 - 191 **Pressure** 17.2 bar Material of bladder/diaphragm EPDM or FKM Housing material **PVDF**

Further material versions and details available on request.

P_AC_0259_SW1

P_AC_0260_SW1


Bladder damper, high pressure

Volume 0.13 - 0.39 | Pressure 793 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

Diaphragm damper with PTFE diaphragm

Volume 0.20 137 bar Material of bladder/diaphragm PTFE

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

P_AC_0261_SW1

ProMinent®

Data Required for Specification of Metering Pump and Accessories

Pump Specification Data

Min./max. required feed rate	l/h
Available power supply	V, Hz
Min./max. operating temperature	°C
Properties of process chemical	
Name, concentration %	
Solids content %	
Dynamic viscosity mPa (= cP)	
Vapour pressure at operating temperature	e bar
Remarks, e.g. abrasive,	
gaseous, flammable,	
corrosive towards	
Suction conditions:	
Min./max. suction lift	m
Min./max. positive suction head	m
Pressure in chemical tank	bar
Suction line length	m
Suction line diameter	mm
Discharge conditions:	
Min./max. back pressure	bar
Min./max. discharge head	m
Min./max. negative discharge head	m
Discharge line length	m
Discharge line diameter	mm
Number of valves and fittings in	
suction and discharge line	
Data required for proportional dosing:	
Water flow Q min./max.	m ³ /h
Required final concentration	g/m ³ , ppm

Example:

A required dose in $mg/I = g/m^3 = ppm$

(Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter 5 l.

 $Process \ fluid = sodium \ hypochlorite \ solution \ Na \ OCI \ with \ 12 \ \% \ chlorine \ (by \ weight) = 120 \ g/kg = 150 \ g/l = 150 \ mg/ml$

Selected dosing pump GALa 1005 NPB2 with 0.41 ml/per stroke volume, at max. 10800 strokes/h.

Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput I/h: pulse spacing I/pulse = 50,000 I/h: 5 I/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (I/h)} \times \text{stroke volume (I)}}{\text{pulse spacing (I)}} = \frac{50,000 \text{ I} \times 0.00041 \text{ I}}{\text{h} \times 5 \text{ I}} = 4.1 \text{ I/h}$$

Final dose
$$=$$
 $\frac{\text{concentration (mg/ml) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg} \times 0.41 \text{ ml}}{\text{ml} \times 5 \text{ l}} = 12.3 \text{ mg/l}$
 $= 12.3 \text{ g/m}^3$
 $= 12.3 \text{ ppm chlorine Cl}_2$

pk_0_002

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see
*	=	For bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)
**	=	does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, referred to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM (Hypalon®)** and **IIR (butyl rubber)** used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70 % H ₂ SO ₄ + 5 % K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10 % CrO ₃
Hydrochloric acid	≥ 25 % HCl
Hydrogen peroxide	≥ 5 % H ₂ O ₂
Hydrofluoric acid	≥ 0 % HF

Explanation of abbreviations used as column headings:

Acrylic:	Acrylic resistance
PVC:	PVC, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	PVDF resistance
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
Tygon:	Tygon® R-3603 resistance
Pharmed:	Pharmed® resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WGK:	Water endangering class

 $\mathsf{Viton}^{\texttt{@}}$ is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1	=	slightly hazardous to water
2	=	hazardous to water
3	=	severely hazardous to water
(X)	=	No classification. Classification according to conclusion by analogy.
		To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

The data has been taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	-	+/0	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	-	+	0	+	1
Acetic Ether => Ethyl Acetate	, <u>, , </u>													
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	n	+	+	
Acetyl Chloride	CH ₃ COCI	100%	-	+	n	-	0	+	-	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	n	+	+	1
Acetylene Dichloride => Dichlo	ro Ethylene													
Acetylene Tetrachloride => Tet	rachloro Ethane													
Acrylonitril	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	-	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	-	0	+	+/0	2
Aluminium Acetate	AI(CH ₃ COO) ₃	S	+	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	s	+	+	+	+	-	+	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+	+/o	1
Aluminium Hydroxide	Al(OH) ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	$Al(NO_3)_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	$Al_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	$(NH_4)_2CO_3$	40%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH ₄ Cl	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Ammonium Fluoride	NH₄F	S	+	0	+	+	0	+	+	+	+	+	+	1
Ammonium Hydroxide	"NH ₄ OH"	30%	+	+	+	+	+	-	+	+	+	+	+	2
	4 -					(25 °C)								
Ammonium Nitrate	NH ₄ NO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Oxalate	$(COONH_4)_2 * H_2O$	s	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ ClO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	$(NH_4)_2S_2O_8$	S	+	+	+	+	5%	+	+	+	+	+	5%	2
Ammonium Phosphate	(NH4)3PO4	S	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphate	(NH4)2SO4	S	+	+	+	+	10%	+	+	+	+	+	10%	1
Ammonium Sulphide	(NH ₄) ₂ S	S	+	+	+	+	n	+	+	n	n	+	n	2
Ammoniumaluminium Sulphate	$NH_4AI(SO_4)_2$	S	+	+	+	+	+	+	+	+	+	+	+	1
Amyl Alcohol	C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCl	S	n	+	+	+	-	+/0	+/0	-	0	+	+	2
Antimony Trichloride	SbCl ₃	s	+	+	+	+	-	+	+	+	+	+	n	2
Aqua Regia	3 HCl + HNO ₃	100%	-	+	-	+	-	-	0	-	-	-	-	2
Arsenic Acid	H ₃ AsO ₄	s	+	+	+	+	+	+	+	20%	0	+	+	3
Barium Carbonate	BaCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	1
Barium Hydroxide	Ba(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphide	BaS	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Benzaldehyde	C ₆ H ₅ CHO	100%		-	+	-	+	+	+	-	-	0	+	1
Benzene	C ₆ H ₆	100%		-	0	+	+	0	-	-	-	0	+	3
Benzene Sulphonic Acid	C ₆ H ₅ SO ₃ H	10%	n	n	+	+	+	+	-	-	-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	S	+	+	+	+	+	+	+	-	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI	100%		n	0	n	0	+	+	n	n	0	+	2
,	05 = - 2.													

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1 4404	FPM	FPDM	Tygon	PharMed	PF	HastelloyC	WPC
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇		-	-	+	0	+	+		-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ Cl	90%	-	n	0	+	+	+			_	0	+	2
Bitter Salt => Magnesium Sulp		30 /6		"	0		т	т				0	т	_
Bleach => Sodium Hypochlori														
Blue Vitriol => Copper Sulphat														
Borax => Sodium Tetraborate	.c													
Boric Acid H ₃ BO ₃		S	+	+	+	+	+	+	+	+	+	+	+	1
Brine	113003	s	+	+/0	+	+	+/0	+	+	+	+	+	+	1
Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	-	+	2
Bromine Water	Br ₂ + H ₂ O	S	-	+	_	+	-	-	-	n	n	-	n	(2)
Bromo Benzene	C_6H_5Br		n	n	0	+	+	0		-	-	0	+	2
														2
Bromochloro Methane	CH ₂ BrCl	100%	-	-	-	+	+	n	+/0	-	-	0	+	
Bromochlorotrifluoro Ethane	HCCIBrCF ₃		-	-	0	+	+	+	•	+	+	0	+	(3)
Butanediol	HOC ₄ H ₈ OH	10%	n	+	+	+	+	0	+	+	+	+	+	1
Butanetriol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	0	+	+	+	+	+	1
Butanol	C ₄ H ₉ OH		-	+	+	+	+	0	+/0	-	-	+	+	1
Butyl Acetate	C ₇ H ₁₃ O ₂		-	-	+	+	+	-	•	-	+/0	+	+	1
Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	-	+/0	-	+	1
Butyl Alcohol => Butanol														
Butyl Amine	C ₄ H ₉ NH ₂		n	n	n	-	+	-	-	n	n	+	+	1
Butyl Benzoate	C ₆ H ₅ COOC ₄ H ₉	100%	-	-	0	n	+	+	+	-	-	0	+	2
Butyl Mercaptane	C ₄ H ₉ SH	100%	n	n	n	+	n	+	-	n	n	n	n	3
Butyl Oleate	$C_{22}H_{42}O_2$	100%	n	n	n	+	+	+	+/0	n	n	n	+	1
Butyl Stearate	$C_{22}H_{44}O_2$	100%	0	n	n	+	+	+	-	n	n	n	+	1
Butyraldehyde	C ₃ H ₇ CHO	100%	-	n	+	n	+	-	+/0	-	-	+	+	1
Butyric Acid	C ₃ H ₇ COOH	100%	5%	20%	+	+	+	+	+	-	+/0	+	+	1
Calcium Acetate	(CH ₃ COO) ₂ Ca	S	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Bisulphite	Ca(HSO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Carbonate	CaCO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Chloride	CaCl ₂	S	+	+	+	+	-	+	+	+	+	+	+	1
Calcium Cyanide	Ca(CN) ₂	S	+	+	+	+	n	+	+	+	+	+	n	3
Calcium Hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Calcium Hypochlorite	Ca(OCI) ₂	s	+	+	0	+	-	0	+	+	+	+	+	2
Calcium Nitrate	Ca(NO ₃) ₂	s	+	50%	50%	+	+	+	+	+	+	+	+	1
Calcium Phosphate	. 0, =	s				+	+	+		+	+		+	1
·	Ca ₃ (PO ₄) ₂		+	+	+				+			+		1
Calcium Sulphate	CaSO ₄	S	+	+	+	+	+	+	+	+	+	+	+	
Calcium Sulphide		S	+	+	+	+	n	+	+	+	+	+	+	(2)
Calcium Sulphite	CaSO ₃	S	+	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Thiosulphate	CaS ₂ O ₃	S	+	+	+	+	-	+	+	+	+	+	+	1
Carbolic Acid => Phenole	00	1000/												•
Carbon Disulphide	CS ₂	100%		-	0	+	+	+	-	-	-	0	+	2
Carbon Tetrachloride	CCI ₄	100%		-	-	+	+	+	-	-	-	0	+	3
Carbonic Acid	"H ₂ CO ₃ "	S	+	+	+	+	+	+	+	+	+	+	+	1
Caustic Potash => Potassium	,													
Caustic Soda => Sodium Hydr														
Chloric Acid	HCIO ₃	20%	+	+	-	+	-	0	0	+	+	10%	+	2
Chlorinated Lime => Calcium I														
Chlorine Dioxide Solution	$CIO_2 + H_2O$	0.5%	0	+	0	+	-	0	-	0	-	0	+	
Chlorine Water	Cl ₂ + H ₂ O	S	+	+	0	+	-	+	+	0	-	0	+	
Chloro Benzene	C ₆ H ₅ CI	100%	-	-	+	+	+	+	-	-	-	0	+	2
Chloro Ethanol	CICH ₂ CH ₂ OH	100%	-	-	+	0	+	-	0	-	+	+	+	3
Chloro Ethylbenzene	C ₆ H ₄ ClC ₂ H ₅	100%	-	-	0	n	+	0	-	-	-	0	+	(2)
Chloro Phenole	C ₆ H ₄ OHCI	100%	-	n	+	+	+	n	-	-	-	+	+	2
Chloro Toluene	C ₇ H ₈ Cl	100%	-	-	n	+	+	+	-	-	-	n	+	2
Chloroacetone	CICH ₂ COCH ₃	100%		-	n	n	+	-	+	-	-	n	+	3
Chlorobutadiene	C ₄ H ₅ Cl	100%		-	n	n	+	+	-	-	-	n	+	1
Chloroform	CHCl ₃	100%		-	0	+	+	+	-	-	0	-	+	2
Chlorohydrin	C ₃ H ₅ OCl	100%		n	+	-	+	+	0	-	+	+	+	3
Chloroprene => Chlorobutadie		. 55 /5							-					-
Chlorosulphonic Acid	SO ₂ (OH)Cl	100%	_	0	_	+	-	-	-	-		-	0	1
Chrome-alum => Potassium C		100 /6		J		'							J	
Chromic Acid	•	50%		+*	0	_	10%	_	-	^	0	_	10%	3
Onformo Acid	H ₂ CrO ₄	30%	-	т	U	+	IU70	+	-	0	0	+	10 /0	J

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tvaon	PharMed	PE	HastelloyC	WPC
Chromic-Sulphuric Acid	K ₂ CrO ₄ + H ₂ SO ₄	s	-	+*	-	+	n	n	n	-	-	-	n	3
Chromium Sulphate	$Cr_2(SO_4)_3$	S	+	+	+	+	+	+	+	+	+	+	+	1
Citric Acid	C ₆ H ₈ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	1
Cobalt Chloride	CoCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
Copper-II-Acetate	Cu(CH ₃ COO) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Arsenite	Cu ₃ (AsO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Carbonate	CuCO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Copper-II-Chloride	CuCl ₂	s	+	+	+	+	1%	+	+	+	+	+	+	2
Copper-II-Cyanide	Cu(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	+	(3)
Copper-II-Fluoride	CuF ₂	s	+	+	+	+	+	+	+		+		+	(2)
Copper-II-Nitrate	Cu(NO ₃) ₂	s	+	+		+	+	+	+	+	+	+	+/0	2
Copper-II-Sulphate	, 0,-				+							+		2
., .	CuSO ₄	S 1000/	+	+	+	+	+	+	+	+	+	+	+	
Cresols	C ₆ H ₄ CH ₃ OH	100%	0	0	+	+	+	+	-		-	+	+	2
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	-	-	+	+	3
Cubic Nitre => Sodium Nitrate														
Cumene => Isopropyl Benzene		1000/												4
Cyclo Hexane	C ₆ H ₁₂	100%	+	-	+	+	+	+	-	-	-	+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-	-	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	-	+	+	1
Cyclohexyl Alcohol => Cyclohe														
Cyclohexylamine	C ₆ H ₁₁ NH ₂		n	n	n	n	+	-	n	n	n	n	+	2
Decahydronaphthaline	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-	-	-	0	+	2
Decaline => Decahydronaphth	alene													
Dextrose => Glucose														
Diacetonalcohol	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+	-	-	+	+	1
Dibromoethane	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	-	-	-	-	+	3
Dibutyl Ether	$C_4H_9OC_4H_9$	100%	-	-	+	+	+	-	0	-	-	+	+	2
Dibutyl Phthalate	C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	0	+	0	+	2
Dibutylamine	(C ₄ H ₉) ₂ NH	100%	n	n	+	+	+	-	-	n	n	+	+	1
Dichloro Acetic Acid	Cl ₂ CHCOOH	100%	-	+	+	+	+	-	+	-	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-	-	0	+	+	+	-	-	-	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-		0	-	+	2
Dichloroisopropyl Ether	(C ₃ H ₆ CI) ₂ O	100%	-	-	0	n	+	0	0	-	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	-	0	+	2
Diethyleneglycol	$C_4H_{10}O_3$	s	+	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether		100%	n	n	+	+	+	n	+/0		0	+	+	1
Diethylether	C ₈ H ₁₈ O ₃ C ₂ H ₅ OC ₂ H ₅	100%		-	0	+	+	-	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+	+/0	+	+	3
Dihexyl Phthalate		100%		-	+	+	+	-	n	0	+		+	
•	C ₂₀ H ₂₆ O ₄											+		(1)
Diisobutylketone	C ₉ H ₁₈ O	100%		-	+	+	+	- n	+ n	-	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%		-	+	+	+	n	n	0	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%		-	+	+	+	-	+	-	-	+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	-	n	n	+	+	1
Dimethyl Ketone => Acetone	0 11 0	1000							,					
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%		-	+	+	+	-	+/0	0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%		-	+	-	+	-	+	-	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%		n	+	n	+	-	+	n	n	+	+	3
Dioctyl Phthalate	$C_4H_4(COOC_8H_{17})_2$	100%		-	+	+	+	-	+/0	0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100%	-	-	0	-	+	-	+/0	-	-	+	+	1
Disodium Hydrogenphosphate Disulfur Acid Oleum	Na ₂ HPO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-	-	-	n	n	
DMF => Dimethylformamide	-22													
Engine Oils		100 %	n	+/0	+	+	+	+	-	-	-	+	+	2
Epsom salts => Magnesium Su	ulphate						·							_
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	-	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%		n	+	-	+	-	+/0	-	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%		-	35%		+	-	+/0	-	+/0	+	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%		-	+	0	+	_	+/0	-	-	+	+	2
Lulyi Adi yidle	021130000205	100%			T	0	т		+/0			Т	•	_

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404		EPDM	Tygon	PharMed	PE	HastelloyC	
Ethyl Benzene	$C_6H_5-C_2H_5$	100%	-	-	0	+	+	0	-	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	-	+/0	+	+	1
Ethylacrylic Acid	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/o	n	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	n	+	0	2
Ethylene Dibromide => Dibrom														
Ethylene Dichloride => Dichloro	o Ethane													
Ethylene Glycol => Glycol														
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n	+	+	+	n	+/0	-	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0		0	+	+	1
Ferric Chloride	FeCl ₃	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	Fe ₂ (SO ₄) ₃	s	+	+	+	+	0	+	+	+	+	+	+	1
Ferrous Chloride	FeCl ₂	s	+	+	+	+	-	+	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	S	+	+	+	+	+	+	+	+	+	+	+/0	1
·	-	3	т	т	T	т	T	T	т	T	-	т	r	1
Fixing Salt => Sodium Thiosulp Fluoro Benzene		100%	-	-	_	_	_	0	-	-	-	0	+	2
	C ₆ H ₅ F				+	+	+							
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	25%	0	40%	+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	-	+	+	2
Formalin => Formaldehyde														
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	n	+	+	1
Formic Acid	НСООН	s	-	+/0	+	+	+	-	-	+/0	+/0	+	+	1
Furane	C ₄ H ₄ O		-	-	+	-	+	-	n	-	-	+	+	3
Furane Aldehyde	C ₅ H ₅ O ₂	100%	n	n	n	0	+	-	+/0	-	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	-	+	+	1
Gallic Acid	$C_6H_2(OH)_3COOH$	5%	+	+	+	+	+	+	+/0	+	+	+	+	1
Gasoline		100 %	-	-	+	+	+	+	-	-	-	+	+	2
Glauber's Salt => Sodium Sulp	hate													
Glucose	C ₆ H ₁₂ O ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol	$C_3H_5(OH)_3$	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	$C_3H_5(CH_3COO)_3$	100%	n	n	+	+	+	-	+	n	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+	+/0	+	+	1
Gypsum => Calcium Sulphate														
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-		-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	S	n	+	+	+	-	n	+	n	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%		n	+	+	+	-	+/0	-	-	+	+	1
Hexane	C ₆ H ₁₄	100%		+	+	+	+	+	-	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%		-						-	0			1
					+	+	+	n	+			+	+	1
Hexantriol Hexene	C ₆ H ₉ (OH) ₃	100%		n	+	+	+	+	+	n -	n -	+	+	
	C ₆ H ₁₂	100%		+	+	+	+	+				+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S 500/	+	+	+	+	+	n	+	-	0	+	+	3
Hydrobromic Acid	HBr	50%	+	+	+	+	-	-	+	+	-	+	0	1
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	+	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40% *	40% **	+	-	+	0	40%	-	40%	+/0	1
Hydrogen Cyanide	HCN	S	+	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H ₂ O ₂	90%	40%	40%*			+	30%		30%	+	+	+	1
Hydroiodic Acid	HI	S	+	+	+	+	-	-	n	+	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+	+/0	+	+	2
Hydroxylamine Sulphate	(NH ₂ OH) ₂ * H ₂ SO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	S	+	+	0	+	-	+	+/0	+		0	+	(1)
Iodine	I ₂	s	0	-	+	+	-	+	+/0	+		0	+/0	(1)
Iron Vitriol => Ferrous Sulphate		•	•		•			•	.,,	•		•	.,,	
Isobutanol => Isobutyl Alcohol	·													
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%		+	+	+	+	+	+	-	0	+	+	1
1000atyl Aloonol	02115011(011)0113	100/0			'	'		'	•		•		•	•

1.1.2015 5

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Isopropanol => Isopropyl Alcoh														
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/0	-	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	-	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	-	-	0	+	+	+	-	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	-	0	0	+	1
Kitchen Salt => Sodium Chlorid	le													
Lactic Acid	$C_3H_6O_3$	100%	-	+	+	+	+/0	+	10%	-	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate														
Lead Sulphate	PbSO ₄	s	+	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	Pb(C ₂ H ₅) ₄	100%	+	+	+	+	+	+	-	n	n	+	+	3
Lime Milk => Calcium Hydroxid	le													
Liquid Ammonia => Ammonium	n Hydroxide													
Lithium Bromide	LiBr	s	+	+	+	+	+	+	+	+	+	+	+	1
Lithium Chloride	LiCl	S	+	+	+	+	-	+	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate														
Magnesium Carbonate	MgCO ₃	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium Chloride	MgCl ₂	s	+	+	+	+	0	+	+	+	+	+	+	1
Magnesium Hydroxide	Mg(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate	MgSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	C ₄ H ₄ O ₄	s	+	+	+	+	+	+	+	-	0	+	+	1
Malic Acid	C ₄ H ₆ O ₅	s	+	+	+	+	+	+	+	+	+	+	+	1
Manganese-II-Chloride	MnCl ₂						-							1
		s	+	+	+	+		+	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	S	+	+	+	+	+	+	+	+	+	+	+	
MEK => Methyl Ethyl Ketone	II.	1000/												0
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	S	+	+	+	+	-	+	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	S	+	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	Hg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	-	-	n	n	+	-	+/0	-	-	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0	-	+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	-	+/0	+	+	1
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	-	0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	-	+/0	+	+	2
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	-	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	-	+	+	2
Methyl Catechol	C ₆ H ₃ (OH) ₂ CH ₃	s	+	+	+	+	+	+	-	+	+0	+	+	(1)
Methyl Cellulose	0 0(/2	S	+	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	-	+	+	2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%		+	+	+	+	+	-	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃		-		+	n	+	-	n	-	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%		-	+	-	+	_	+	-	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%		+	+	+	+	-	+/0	+	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%		-	+	-	+	-	0	-	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%		-		-		-	+/0	-	-			1
					+		+		+/0	-	-	+	+	
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%		-	+	+	+	-				+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%		n	+	+	+	+	+/0	n	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%		-	+	+	+	n	+/0	-	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%		-	+	+	+	-	+/0	-	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	+	2
Methylene Chloride => Dichloro	Methane													
Mirabilit => Sodium Sulphate														
Morpholine	C ₄ H ₉ ON	100%	-	-	+	-	+	n	n	-	-	+	+	2
Muriatic Acid => Hydrochloric A	Acid													
Natron => Sodium Bicarbonate														
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	s	+	+	+	+	-	+	+	+	+	+	+	2
Mickel-II-Cilionae														0
Nickel-II-Nitrate	Ni(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	+/0	2
	Ni(NO ₃) ₂ NiSO ₄	s s	+	+	+	+	+	+	+	+	+	+	+/0	2

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed		HastelloyC	WPC
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	-	-	+	n	+	-	+/0	-	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	+	+	0	-	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+	-	-	-	+	+	1
Octanol	C ₈ H ₁₇ OH		-	-	+	+	+	+	+	-	-	+	+	1
Octyl Cresol	•	100%	-	-	+	+	+		n	-		+	+	(1)
•	C ₁ 5H ₂₄ O	100 /6	-	-		_	_	U	11	_		_	+	(1)
Oil => Engine Oils	11.00 .00	_	_											_
Oleum	H ₂ SO ₄ + SO ₃	S	n	-	-	-	+	+	-	+	+	-	+	2
Orthophosphoric Acid => Phos							100/						,	
Oxalic Acid	(COOH) ₂	S	+	+	+	+	10%	+	+	+/0	+/0	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	-	+	+	1
Pentanol => Amyl Alcohol														
Perchloric Acid	HCIO ₄	70%	n	10%	10%	+	-	+	+/0	0	+	+	n	1
Perchloroethylene => Tetrachle	oro Ethylene													
Perhydrol => Hydrogen Peroxi	de													
Petroleum Ether	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-	-	-	+	+	1
Phenole	C ₆ H ₅ OH	100%	-	-	+	+	+	+	-	10%	+	+	+	2
Phenyl Ethyl Ether	C ₆ H ₅ OC ₂ H ₅	100%	-	-	+	n	+	-	-		-	+	+	2
Phenyl Hydrazine	$C_6H5NHNH_2$		-	-	0	+	+	0	-	-	-	0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	+	1
Phosphorous Oxychloride	POCI ₃	100%	-	_	+	+	n	+	+	n	n	+	+	1
	•			-										1
Phosphorous Trichloride	PCl ₃		-		+	+	+	0	+	+	+/0	+	+	
Phthalic Acid	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+	•	+	+	+	1
Picric Acid	$C_6H_2(NO_3)_3OH$	s	+	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	•	n	+	2
Potash Alum => Potassium Alu	ıminium Sulphate													
Potassium Acetate	CH ₃ COOK	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate	KAI(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	s	n	+	+	+	+	+	+	+	+	+	+	1
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	s	+	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	s		+	+	+	10%	+	+	+	+	+	0,1	1
Potassium Carbonate			+							55%	55%		,	1
	K ₂ CO ₃	S	+	+	+	+	+	+	+			+	+	
Potassium Chlorate	KCIO ₃	S	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Chloride	KCI	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Potassium Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+	+	+	3
Potassium Chrome Sulphate	KCr(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN	S	+	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	S	+	+	+	+	5%	+	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	K ₂ Cr ₂ O ₇	S	+	+	+	+	25%	+	+	+	+	+	10%	3
Potassium Fluoride	KF	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Hydroxyde	KOH	50%	+	+	+	+	+	-	+	10%	10%	+	+	1
7 7						(25 °C)								
Potassium Iodide	KI	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄	S	+	+	+	+	+	+	+	6%	6%	+	+	2
Potassium Persulphate	$K_2S_2O_8$	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => P	- :	3				1	'	1			1			1
<u>-</u>		C												1
Potassium Sulphate	K ₂ SO ₄	S	+	+	+	+	+	+	+	+	+	+	+	1
Potassium Sulphite	K ₂ SO ₃	S	+	+	+	+	+		+	+	+	+	+	1
Propionic Acid	C ₂ H ₅ COOH	100%		+	+	+	+	+	+	•	+/0	+	+	1
Propionitrile	CH ₃ CH ₂ CN	100%		n	+	+	+	+	-	-	-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+		+/0	-	-	+	+	1
Fropyi Acetate	0 0 1													
Propylene Glycol	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	+	1
	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	+	1

1.1.2015 7

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	-	+	+	2
Roman Vitriol => Copper Sulpl	hate													
Salicylic Acid	HOC ₆ H ₄ COOH	S	+	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chloric	de													
Saltpeter => Potassium Nitrate														
Silic Acid	SiO ₂ * x H ₂ O	S	+	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	+	1
Silver Chloride	AgCI	S	+	+	+	+	-	+	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hydro	oxide													
Soda => Sodium Carbonate	N. OH. OOO	_												
Sodium Acetate	NaCH ₃ COO	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate Sodium Bicarbonate	C ₆ H ₅ COONa	S	+	+	+	+	+	+	+	+	+	+	+	1
	NaHCO ₃	S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO ₄ NaHSO ₃	S	+	+	+	+	+	+	+	+	+	+	+	
Sodium Bisulphite		S	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate Sodium Bromate	NaBO ₂	S	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBrO ₃	S	+	+	+	+	+	+	+	+	+	+	+	
Sodium Bromide Sodium Carbonate	NaBr Na-CO-	s s	+	+	+	+	+ +/0	+	+	+	+	+	+	1
Sodium Carbonate Sodium Chlorate	Na ₂ CO ₃						+/0			+		+	+	2
Sodium Chloride	NaClO ₃	s s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	+	10%	2
Sodium Chromate	Na ₂ CrO ₄	S S	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Cyanide	NaCN	S	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇	s	+	+	+	+	+	+	+	+	+	+	+	3
Sodium Dithionite		S	+	10%		+	+	n	n	+	+	10%		1
Sodium Fluoride	Na ₂ S ₂ O ₄ NaF	s	+	+	+	+	10%	+	+	+	+	+	+	1
Sodium Hydrogen Sulphate =>		3	т	т	т	т	10 /0	т	т	т	т	_	т	'
Sodium Hydroxide	NaOH	50%	+	+	+	+ (60%/ 25 °C)	+	-	+	10%	30%	+	+	1
Sodium Hypochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	+	0	> 10%	2
Sodium Iodide	Nal	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Metaphosphate	(NaPO ₃) _n	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrate	NaNO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrite	NaNO ₂	s	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Oxalate	Na ₂ C ₂ O ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Perborate	NaBO ₂ *H ₂ O ₂	s	+	+/0	+	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	s	+	+	+	+	+	+	+	n	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	s	+	+	+	+	+	n	n	+	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite						+	50%	+	+	+	+	+	50%	1
Codiditi Calpitito	Na ₂ SO ₃	s	+	+	+	+	JU /0							
Sodium Tetraborate	Na ₂ SO ₃ Na ₂ B ₄ O ₇ * 10 H ₂ O	s s	+	+ +	+	+	+	+	+	+	+	+	+	1
<u>'</u>	Na ₂ B ₄ O ₇ * 10 H ₂ O									+	+ +	+	+ 25%	
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O Na ₂ S ₂ O ₃	S	+	+	+	+	+	+	+					1
Sodium Tetraborate Sodium Thiosulphate	Na ₂ B ₄ O ₇ * 10 H ₂ O Na ₂ S ₂ O ₃ Na ₅ P ₃ O ₁₀	s s	+	+	+	+++	+ 25%	++	+	+	+	+	25%	1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate	Na ₂ B ₄ O ₇ * 10 H ₂ O Na ₂ S ₂ O ₃ Na ₅ P ₃ O ₁₀ (C ₆ H ₁₀ O ₅) _n	s s s	+ + + +	+ + + +	+ + + +	+ + + +	+ 25% +	+ + +/o	+ + + +	+	+	+	25% +	1 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch	Na ₂ B ₄ O ₇ * 10 H ₂ O Na ₂ S ₂ O ₃ Na ₅ P ₃ O ₁₀	s s s	+ + + + + + +	+ + + + +	+ + + + +	+ + + + +	+ 25% + +	+ + +/0 +	+ + + n	+ + +	+++++	+ + + +	25% + +	1 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum	$Na_2B_4O_7 * 10 H_2O$ $Na_2S_2O_3$ $Na_5P_3O_{10}$ $(C_6H_{10}O_5)_n$ $C_6H_5CHCH_2$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+ + + + + + +	+ + + + + +	+ + + + + +	+ + + +	+ 25% + +	+ + +/o +	+ + + n +	+ + + + + +	+ + + + + +	+ + + + +	25% + + +	1 1 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene	$Na_2B_4O_7 * 10 H_2O$ $Na_2S_2O_3$ $Na_5P_3O_{10}$ $(C_6H_{10}O_5)_n$ $C_6H_5CHCH_2$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+ + + + + + +	+ + + + + +	+ + + + + +	+ + + +	+ 25% + +	+ + +/o +	+ + + n +	+ + + + + +	+ + + + + +	+ + + + +	25% + + +	1 1 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor	$\begin{array}{c} {\rm Na_2B_4O_7*10\:H_2O} \\ {\rm Na_2S_2O_3} \\ {\rm Na_5P_3O_{10}} \\ {\rm (C_6H_{10}O_5)_n} \\ \\ {\rm C_6H_5CHCH_2} \\ {\rm ide} \end{array}$	s s s s s 100%	+ + + + + -	+ + + + + + -	+ + + + + 0	+ + + + + + +	+ 25% + + +	+ + +/o + + o	+ + + n +	+ + + + -	+ + + + + -	+ + + + 0	25% + + + +	1 1 1 1 1 2
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid	$\begin{array}{c} {\rm Na_2B_4O_7} * 10 \ {\rm H_2O} \\ {\rm Na_2S_2O_3} \\ {\rm Na_5P_3O_{10}} \\ {\rm (C_6H_{10}O_5)_n} \\ \\ {\rm C_6H_5CHCH_2} \\ {\rm ide} \\ {\rm C_4H_6O_4} \end{array}$	s s s s s 100%	+ + + + + + - + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + 0	+ + + + + + + +	+ 25% + + + +	+ + +/0 + + 0	+ + + n + -	+ + + + + + + + + + + + + + + + + + + +	+ + + + + - + + + + + + + + + + + + + +	+ + + + + 0	25% + + + + +	1 1 1 1 1 2
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid Sugar Syrup	$\begin{array}{c} {\rm Na_2B_4O_7} * 10 \ {\rm H_2O} \\ {\rm Na_2S_2O_3} \\ {\rm Na_5P_3O_{10}} \\ {\rm (C_6H_{10}O_5)_n} \\ \\ {\rm C_6H_5CHCH_2} \\ {\rm ide} \\ {\rm C_4H_6O_4} \end{array}$	s s s s s 100%	+ + + + + + - + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + 0	+ + + + + + + + + + +	+ 25% + + + +	+ + +/0 + + 0	+ + + n + -	+ + + + + + + + + + + + + + + + + + + +	+ + + + + - + + + + + + + + + + + + + +	+ + + + + 0	25% + + + + + +	1 1 1 1 1 2
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid Sugar Syrup Sulphur Chloride => Disulphur	$\begin{array}{c} \text{Na}_2\text{B}_4\text{O}_7 * 10 \text{ H}_2\text{O} \\ \text{Na}_2\text{S}_2\text{O}_3 \\ \text{Na}_5\text{P}_3\text{O}_{10} \\ (\text{C}_6\text{H}_{10}\text{O}_5)_{\text{n}} \\ \\ \text{C}_6\text{H}_5\text{CHCH}_2 \\ \text{ide} \\ \\ \text{C}_4\text{H}_6\text{O}_4 \\ \\ \\ \text{Dichloride} \\ \\ \text{H}_2\text{SO}_4 \\ \end{array}$	s s s s 100%	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + 0	+ + + + + + + + + + +	+ 25% + + + + +	+ + +/o + + o +	+ + + n + -	+ + + + + + + + + + +	+ + + + + + + + +	+ + + 0	25% + + + + + +	1 1 1 1 2 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid Sugar Syrup Sulphur Chloride => Disulphur Sulphuric Acid Sulphuric Acid, fuming> Oler Sulphurous Acid	$\begin{array}{c} \text{Na}_2\text{B}_4\text{O}_7 * 10 \text{ H}_2\text{O} \\ \text{Na}_2\text{S}_2\text{O}_3 \\ \text{Na}_5\text{P}_3\text{O}_{10} \\ (\text{C}_6\text{H}_{10}\text{O}_5)_{\text{n}} \\ \\ \text{C}_6\text{H}_5\text{CHCH}_2 \\ \text{ide} \\ \\ \text{C}_4\text{H}_6\text{O}_4 \\ \\ \\ \text{Dichloride} \\ \\ \text{H}_2\text{SO}_4 \\ \\ \text{um} \\ \\ \text{H}_2\text{SO}_3 \\ \end{array}$	s s s s 100%	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + 0	+ + + + + + + + + + +	+ 25% + + + + +	+ + +/o + + o +	+ + + n + -	+ + + + + + + + + + +	+ + + + + + + + +	+ + + 0	25% + + + + + +	1 1 1 1 1 2
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid Sugar Syrup Sulphur Chloride => Disulphur Sulphuric Acid Sulphuric Acid, fuming> Ole	$\begin{array}{c} \text{Na}_2\text{B}_4\text{O}_7 * 10 \text{ H}_2\text{O} \\ \text{Na}_2\text{S}_2\text{O}_3 \\ \text{Na}_5\text{P}_3\text{O}_{10} \\ (\text{C}_6\text{H}_{10}\text{O}_5)_\text{n} \\ \\ \text{C}_6\text{H}_5\text{CHCH}_2 \\ \text{ide} \\ \text{C}_4\text{H}_6\text{O}_4 \\ \\ \\ \text{Dichloride} \\ \text{H}_2\text{SO}_4 \\ \text{um} \\ \\ \text{H}_2\text{SO}_3 \\ \text{SO}_2\text{Cl}_2 \\ \end{array}$	s s s s s 100%	+ + + + - - + +	+ + + + + - - + +	+ + + + 0 + + 85%	+ + + + + + + + + +	+ 25% + + + + + + +	+ + +/o + + o + +	+ + + n + - + +	+ + + + - - + + +	+ + + + - + + + 30%	+ + + 0 + + 80%	25% + + + + + +	1 1 1 1 2 1 1
Sodium Tetraborate Sodium Thiosulphate Sodium Tripolyphosphate Starch Starch Gum Styrene Sublimate => Mercury-II-Chlor Succinic Acid Sugar Syrup Sulphur Chloride => Disulphur Sulphuric Acid Sulphuric Acid, fuming> Oler Sulphurous Acid	$\begin{array}{c} \text{Na}_2\text{B}_4\text{O}_7 * 10 \text{ H}_2\text{O} \\ \text{Na}_2\text{S}_2\text{O}_3 \\ \text{Na}_5\text{P}_3\text{O}_{10} \\ (\text{C}_6\text{H}_{10}\text{O}_5)_{\text{n}} \\ \\ \text{C}_6\text{H}_5\text{CHCH}_2 \\ \text{ide} \\ \\ \text{C}_4\text{H}_6\text{O}_4 \\ \\ \\ \text{Dichloride} \\ \\ \text{H}_2\text{SO}_4 \\ \\ \text{um} \\ \\ \text{H}_2\text{SO}_3 \\ \end{array}$	s s s s 100% s s s	+ + + + + - + + + +	+ + + + + - - + + +	+ + + + + 0 + + +	+ + + + + + + + + + + +	+ 25% + + + + + + + 10%	+ + +/o + + o + + +	+ + + n + - + + +	+ + + + - + + + +	+ + + + - + + + + +	+ + + + 0 + + 80%	25% + + + + + + +	1 1 1 1 1 2 1 1 1 (1)

Chemical	Formula	Conc	Acryl	PVC	PP	PVDF	1.4404	FPM	EPDM	Tygon	PharMed	PE	HastelloyC	WPC
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	-	0	0	+	3
Tetrachloromethane => Carbo	n Tetrachloride													
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	-	0	+	3
Tetralin => Tetrahydro Naphth	alene													
THF => Tetrahydrofurane														
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	s	+	0	+	+	-	+	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	s	n	+	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	s	n	+	+	+	-	+	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	n	+	+	2
Tributyl Phosphate	(C ₄ H ₉) ₃ PO ₄	100%	n	-	+	+	+	-	+	0	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	-	0	0	+	3
Trichloro Methane => Chlorofo	orm													
Trichloroacetaldehyde Hydrate	CCI ₃ CH(OH) ₂	s	-	-	0	-	+	0	0	n	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+	+/0	+	+	1
Tricresyl Phosphate	(C ₇ H ₇) ₃ PO ₄	90%	-	-	+	n	+	0	+	0	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	-	0	+	+	1
Trilene => Trichloro Ethane														
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	0	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	s	+	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	s	+	+/0	+	+	+	+	+	20%	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	-	+/0	+	+	2
Water Glass => Sodium Silicat	te													
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-	-	-	+	+	0	-	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+	+	+	1
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	+	n	1
Zinc Sulphate	ZnSO ₄	s	+	+	+	+	+	+	+	+	+	+	+/0	1

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+	=	resistant
0	=	conditionally resistant
-	=	not resistant

The data has been taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetic acid	50	0
Acetic acid (wine vinegar)		0
Acetic acid anhydride	100	-
Acetic acid, aqueous	10	+
Acetic ester	100	-
Acetone	all	-
Acetylene tetrabromide	100	-
Aluminium salts, aqueous	all	+
Alums of all kinds, aqueous	all	+
Ammonium salts	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Butanol	100	+
Butyl acetate	100	-
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Calcium chloride, aqueous	all	+
Carbon disulphide	100	-
Carbonic acid	all	+
Caustic potash	15	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Copper sulphate, aqueous	all	+
Creosote		-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Difluorodichloromethane	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Ferric chloride, aqueous	all	+
Fertilizing manure salt, aqueous	all	+
Formaldehyde, aqueous	30	0
Glacial acetic acid	100	-
Glucose, aqueous	saturated	+
Glycerol	100	-
Halogens	all	-
J		

10 1.1.2015

Corrosive agent	Concentration in %	Evaluation
Hydrochloric acid	15	+
Hydrogen bromide	10	+
Hydrogen peroxide	to 10	+
Hydrogen sulphide, gaseous	100	-
Ink		+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Nitric acid, aqueous	25	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+
Silver nitrate	10	+
Sodium chloride, aqueous	all	+
Sodium hydroxide	aqueous	+
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sulphur dioxide, gaseous	all	+
Sulphuric acid	30	+
Tetrachloromethane	100	-
Toluene	100	-
Trichloroethylene	100	-
Urea, aqueous	all	+
Xylene	100	-
Zinc salts	all	+

20 00 11 1-

Product catalogue 2015

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2015.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue
Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2015

Pro Maqua

Product Catalogue Volume 4

Water Treatment and Water Disinfection

A clear case of disinfection

Hygienically pure water is one of the greatest challenges of our time. With ProMaqua® products and systems - combined with our many years of practical experience - we have developed application-based solutions for a range of different industries. They are characterised by their outstanding handling of natural resources, minimal operating costs and maximum efficiency.

Chapter 1 offers **UV systems** for the gentle and chemical-free disinfection of water. They are ideal for applications associated with the treatment of potable water or swimming pool water, as well as in the beverage industry.

Refer to Chapter 2 for the effective removal of undesirable organic and inorganic substances or for efficient disinfection in the treatment of cooling and process water. The chapter focuses on **ozone systems** with the most diverse capacity ranges. Choose from this diverse product range for a trouble-free outcome - advice included!

Chlorine dioxide systems – the economically and ecologically sensible alternative to chlorine-based disinfectants is described in chapter 3.

Chapter 4 describes **electrolysis systems**, precisely the right alternative for ultra-environmentally-friendly applications, for example instead of chlorine gas.

Chapter 5 is devoted to the treatment of swimming pool water. The product range DULCODOS® Pool is available for this. These complete **panel-mounted systems** are available in different models - for private pools to public swimming pools.

When it comes to the reliable removal of particles and salts, we recommend systems with **membrane filter technology** described in Chapter 6.

We're happy to help!

The selection of a product depends on a number of different factors.

Our team will be happy to be of assistance should you have any questions about water treatment and water disinfection. Give us a call! We look forward to hearing from you.

Monday to Friday 8:00 - 16:30

ProMinent Germany Sales 0049 6221 842 – 0

info-de@prominent.com

Technical Consulting

0049 6221 842 – 1850 service@prominent.com

Important note:

We can also support you by phone in selecting the right products and, in many cases, optimising entire applications. For more complex requirements, our consultants will hand the task over to a field sales colleague, who will then clarify your requirements in person on site

After-sales Service

Our service technicians are on hand to help you. Whether for the initial installation or for maintenance and repair work. We're happy to help!

0049 6221 842 – 1850 service@prominent.com

New Products Water Treatment and Water Disinfection

Chlorine Dioxide Systems Bello Zon® CDLb with Multiple Points of Injection

Flexible solutions for the production and metering of ${\rm ClO_2}$ adapted to our customers´ tasks, requirements and anticipated pricing. Perfectly coordinated modular chlorine dioxide system, which can operate up to 6 points of injection.

0-120 g/h preparation capacity with storage of up to 60 g of chlorine dioxide for peak metering. Max. flow at 0.2 ppm CIO_2 metering is 600 m³/h

For more information see page \rightarrow 3-10

Electrolysis System CHLORINSITU® V

Scope of delivery:

Electrolysis systems of type Chlorinsitu® V are ready mounted, wired for use, on a powder coated stainless steel frame with a Programmable Logic Controller (PLC) in the control cabinet, Remote Control Engineer for remote diagnosis and troubleshooting, integral water softening unit, diaphragm electrolysis cells, ATEX-95-compliant bleed system and separate salt dissolving tank with level monitoring. The scope of delivery also includes a frequency-controlled central injector system matched to the system to meter active chlorine and sodium hydroxide for pH correction and a single booster pump. A chlorine gas warning unit and automatic monitoring of water hardness downstream of the softening system come as standard with systems producing more than 600 g/h.

For more information see page → 4-10

New Products Water Treatment and Water Disinfection

Swimming Pool Metering Systems DULCODOS® Pool

Sof

DULCODOS® Pool Soft is especially suited to private pools used by a small number of people. It works with active oxygen substances, which are less effective than chlorine. Water treatment with active oxygen is a good alternative for ecologically-minded pool owners or if users are allergic to chlorine. DULCODOS® Pool Soft uses no chlorine chemicals.

■ Basic

DULCODOS® Pool Basic regulates the pH and chlorine content using the redox potential. This is the direct measurement of effective oxidation in the water and is therefore an indication of the disinfectant effect and concentration of the metered chlorine. The concentration of chlorine cannot be determined with accuracy with this process. ORP measurements allow a particular range of chlorine to be set. DULCODOS® Pool Basic is robust and requires little maintenance.

■ Comfort

DULCODOS® Pool Comfort uses highly specific chlorine sensors to measure the chlorine content. The concentration of chlorine in the water can be determined and set with accuracy. The effectiveness of the pool filter is boosted by an integrated feeder assembly for flocculant, resulting in crystal-clear water! Numerous features to enhance operating convenience, such as measured values being mapped by a screen plotter or remote control from your PC, iPad or other tablet device using an integrated web server, make the metering system very popular with customers.

Professional

In addition to the features described above, DULCODOS® Pool Professional also measures the combined chlorine. This is an important parameter in public pools. It can be incorporated in the building management system via OPC and KNX and alarm messages can be sent by text or e-mail. Eco!Mode operating mode reduces the energy consumption of the filter pumps. The integrated soft PLC control can be used to operate several peripheral devices and functions. The swimming pool controller becomes the central control unit for all the swimming pool technology.

For more information see page \rightarrow 5-1

1-2 1.1.2015

Contents

V	Vater treati	ment and water disinfection	page
1	IIV S	ystems Dulcodes	1-1
•	1.1	General Notes on UV Treatment	1-1
	1.1		1-1
		1.1.1 Applications of Dulcodes UV Systems1.1.2 Description of Dulcodes UV Systems	1-1
	1.2	Performance Overview of Dulcodes UV Systems	1-2
	1.2	1.2.1 Notes on Planning and Designing an UV System	1-4
	1.0		
	1.3 1.4	Questionnaire for Designing an UV System	1-6 1-7
	1.4	UV System Dulcodes P	1-7
	1.6	UV System Dulcodes D for Highly Turbid Water	
	1.6	UV System Dulcodes K with PE-HD Radiation Chamber	1-10 1-12
	1.7	UV System Dulcodes S for Chloramine Reduction in Pool Water UV System Dulcodes A with Medium-pressure Lamps Arranged	1-12
	1.0	Perpendicular to the Flow	1-14
	1.9	UV System Dulcodes Z with Certified Performance	1-16
	1.10	UV System Dulcodes R with Wiper	1-18
	1.11	UV System Dulcodes W	1-20
	1.12	UV System Dulcodes M with Powerline Medium-Pressure Lamps	1-22
	1.13	Accessories for Dulcodes UV Systems	1-24
_	_		
2		e Systems OZONFILT®	2-1
	2.1	Ozone In Water Treatment	2-1
	2.2	Performance Overview of Ozone Systems	2-2
	2.3	Questionnaire on the Design of an Ozone System	2-3
	2.4	Ozone System OZONFILT® OZVa	2-4
		2.4.1 OZONFILT® OZVa 1-4 Ozone Production Systems (Operating Gas - Air)	2-5
		2.4.2 OZONFILT® OZVa 5-7 Ozone Production Systems	2-5
		(Operating Gas - Oxygen)	2-7
		2.4.3 Ordering Information for OZONFILT® OZVa Systems	2-9
		2.4.4 Ozone System OZONFILT® Compact OMVa	2-11
	2.5	Ozone System OZONFILT® OZMa	2-13
		2.5.1 Ozone Generation Systems OZONFILT® OZMa 1-6 A	
		(Operating Gas - Air)	2-15
		2.5.2 Ozone Generation Systems OZONFILT® OZMa 1-6 O	
		(Operating Gas - Oxygen)	2-18
		2.5.3 Order Information for OZONFILT® OZMa Systems	2-21
	2.6	Accessories and Spare Parts for Ozone Systems	2-22
		2.6.1 Compressors for OZONFILT® OZVa 1-4	2-22
		2.6.2 Oxygen Generator for OZONFILT® OZVa 5-7	2-23
		2.6.3 PVC or Stainless Steel Static Helical Mixer	2-24
		2.6.4 Accessories for OZONFILT® OZMa	2-24
		2.6.5 Bleed Valves	2-25
		2.6.6 Residual Ozone Gas Destructor	2-25
		2.6.7 Room Air Monitor	2-26
		2.6.8 Cooling Water Heat Exchanger	2-27
		2.6.9 Personal Protection Needs	2-27
		2.6.10 Overvoltage Protection	2-28
		2.6.11 Replacement Plug-in Insert After Tripping	2-28
3	Bello	Zon® Chlorine Dioxide Systems	3-1
	3.1	Chlorine Dioxide in Water Treatment	3-1
		3.1.1 Chlorine Dioxide Applications	3-1
		3.1.2 Bello Zon® System Technology	3-2
	3.2	Performance Overview of Chlorine Dioxide Systems	3-3
	3.3	Questionnaire on the Design of a Chlorine Dioxide System	3-4
	3.4	Bello Zon® Chlorine Dioxide Systems Type CDLb	3-5
		3.4.1 Identity code ordering system for chlorine dioxide systems Bello Zon® CDLb	3-6
		3.4.2 Accessories and Maintenance Sets for Chlorine Dioxide Systems Bello Zon® CDLb	3-7
	3.5	Chlorine Dioxide Systems Bello Zon® CDLb with Multiple	
	<u>.</u> -	Points of Injection	3-10
	3.6	Chlorine Dioxide System Bello Zon® CDEa	3-11

Contents

Wate	r treatr	ment and water disinfection pa	age
	3.7	•	3-13
		3.7.2 Maintenance Sets for Bello Zon® CDV Chlorine Dioxide	3-15 3-16
	3.8		3-10 3-17
	0.0		3-19
		3.8.2 Maintenance Kits for Bello Zon® Type CDK Chlorine Dioxide	3-20
	3.9		3-21
	3.10	Chemical Supply Accessories	3-24
	3.11	Safety Accessories and Analysis	3-26
4	Electr	olysis Systems CHLORINSITU® and Dulco®Lyse	4-1
	4.1	Electrolysis Systems CHLORINSITU®	4-1
	4.2	Performance Overview	4-2
	4.3 4.4	Questionnaire on the Design of an Electrolysis System	4-3 4-4
	4.4 4.5	Electrolysis System CHLORINSITU® II Electrolysis System CHLORINSITU® III	4-4 4-5
	4.6	Electrolysis Systems CHLORINSITU® III Compact and IV Compact	4-7
		4.6.1 Electrolysis System CHLORINSITU® III Compact	4-7
		4.6.2 Electrolysis System CHLORINSITU® IV Compact	4-8
	4.7		4-10
	4.8		4-12
	4.9		4-14 4-15
	4.10 4.11	• •	4-15 4-16
_			- 10
5		uring, Control and Metering Systems for ming Pool Water Treatment	5-1
	5.1	DULCODOS® Pool Swimming Pool Metering Systems	1-د 5-1
	5.1	Metering System DULCODOS® Pool Soft	5-3
	5.3	Metering System DULCODOS® Pool Basic	5-5
	5.4	Metering System DULCODOS® Pool Comfort	5-7
	5.5	Metering System DULCODOS® Pool Professional	5-9
	5.6		5-12
		· · · · · · · · · · · · · · · · · · ·	5-12
			5-12 5-12
	5.7		5-13
	· · ·		5-13
			5-14
6	Memb	prane Technology and Membrane Filtration	6-1
	6.1	Overview of Membrane Technology	6-1
	6.2	Performance Overview of Ultrafiltration Performance Overview of Nanofiltration	6-2
	6.3 6.4	Performance Overview of Nanofiltration Performance Overview of Reverse Osmosis	6-4 6-6
	6.5	Questionnaire	6-8
	0.0	6.5.1 Questionnaire on the Design of a UF System	6-8
		6.5.2 Questionnaire on the Design of an RO System	6-9
	6.6	,	6-10
		,	6-10
	6.7	•	6-11 - 11
		y	6-11 6-14
		•	3-14 3-16
			6-18
7	Sand		7-1
•		Sand Filter INTERFILT® SK	<i>7</i> -1

1.1 General Notes on UV Treatment

Disinfection is a key stage in modern water treatment. UV disinfection is used to an ever increasing extent, as a safe, chemical-free and reliable disinfection process. Extensive research projects and numerous trouble-free operational systems prove the safety and reliability of UV disinfection.

With UV disinfection, the water to be disinfected is irradiated with ultraviolet light, which involves a purely physical, chemical-free process for water disinfection.

UV-C radiation in particular, with a wavelength ranging from 240 to 280 nm, attacks the vital DNA of the bacteria directly. The radiation initiates a photochemical reaction and destroys the genetic information contained in the DNA. The germ loses its reproduction capability and is destroyed. Even parasites, like Cryptosporidia or Giarda, which are extremely resistant to chemical disinfectants, are efficiently reduced.

Photochemical reactions are triggered in other applications too. The undesirable use of combined chlorine in swimming pool water is reduced by UV radiation, as a result of which enormous fresh water savings are achieved. Oxidants, such as ozone, chlorine or chlorine dioxide, are reliably reduced in the production water used in the food and beverage industry, avoiding the need for costly activated charcoal filters.

UV disinfection has many advantages:

- Immediate and safe destruction of germs without the addition of chemicals
- Photochemical reduction of undesirable substances
- No THM or AOX formation, no formation of other undesirable substances
- No impairment of the odour or taste of the water
- No storage and handling of chemicals required
- Effect is independent of pH
- No reaction vessel or reaction tank required
- Minimal space requirement
- Low investment and operating costs with excellent reliability and efficiency

1.1.1 Applications of Dulcodes UV Systems

A large number of our UV disinfection systems have been supplied worldwide, for the most diverse of applications:

Private source water and municipal water works

For the disinfection of drinking water

Food and beverage industry

To destroy the germs and bacteria in the water needed for food and beverage production and for the disinfection of process water

To reduce the chlorine dioxide in the production water

Pharmaceutical and cosmetics industry

To uphold the high microbiological requirements of the production water

To destroy residual ozone in the production water without the use of activated charcoal

Reverse osmosis systems

For permeate disinfection

Municipal clarification plants

For the reduction of the micro-biological count in the clarification plant outflow
For the reduction of the micro-biological count in the process water extracted from the clarification plant
outflow

■ Horticulture

For the disinfection of the irrigation water

Spa pools and swimming pools

For the disinfection of the pool water

For chloramine reduction in the pool water

1.1.2 Description of Dulcodes UV Systems

Dulcodes UV disinfection systems essentially comprise:

- High-quality radiation chambers made of stainless steel (DIN 1.4404) or UV-resistant plastic
- Lamp protection tubes made of high-quality quartz, easily removable for cleaning purposes
- Lamps with an exceptionally high UV output in the 254 nm range, ensuring outstanding disinfection
- Highly selective long-term and temperature-stable UVC sensors
- UV system controllers and modern electronic ballasts fitted in a control cabinet

The special features of our Dulcodes UV disinfection systems are:

- Uniform radiation of the entire water flow through optimised system hydraulics, thereby ensuring outstanding disinfection results
- Flow-optimised inlet zone
- Highly turbulent flow along the UV lamps
- Use of UV lamps with a long lamp life time and high UV-C output
- Automatic cleaning system for the protection tube of medium-pressure lamps
- Protection tube manual cleaning system for Dulcodes R and S system types
- System controller with comprehensive monitoring and reporting functions
- Display of all important operating parameters and reporting of faults in plain text
- Trend display of the variation of the UV sensor signal over time
- Analogue output sensor signal and fault indicating relay
- Use of modern electronic ballasts with bus technology for gentle lamp ignition and operation
- Individual lamp monitoring
- Direct control of automatic shut-off and flushing valves

Dulcodes UV Lamps

Standard low-pressure lamp

Robust, high performance low-pressure mercury lamp with a life expectancy of approx. 14,000 operating hours. The operating temperature of the lamp is 30-50 °C which is why its use is limited to water temperatures between 5 and 40 °C. The output is approx. 100 W per metre arc length.

High-Flux low-pressure lamp

Low-pressure amalgam lamp with a life expectancy of approximately 10,000 operating hours. The operating temperature of the lamp is 100-130 $^{\circ}$ C so that it can even be used in water temperatures of up to approximately 70 $^{\circ}$ C. The output is independent of the water temperature and is approximately 200 W per metre arc length.

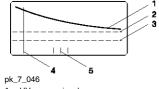
Low-pressure Opti-Flux lamp

Doped, high-performance low-pressure amalgam lamp with a life expectancy of approximately 14,000 operating hours. The operating temperature of the lamp is 100-130 °C so that it can even be used in water temperatures of up to approximately 70 °C. The output is independent of the water temperature and is approximately 300 W per metre arc length.

Medium-pressure Powerline lamp

Medium-pressure mercury lamp with a life expectancy of approx. 8,000 to 10,000 operating hours, depending on lamp size. The high output of these lamps (up 10,000 W per metre arc length) permits the treatment of very large flows. Thanks to their broad range spectrum, these lamps are particularly suitable for photochemical processes. The operating temperature of the lamps is 650-850 °C. Powerline medium-pressure lamps are typically operated with a mechanical wiper system, which is why their use is limited to water temperatures of up to about 40 °C.

Dulcodes UV Controllers


Compact controller

Compact unit for control of all basic functions of the UV system. The large graphic display shows the current UV-C output, the operating hours and the number of lamp switch-ons. With fixed-setting warning and safety threshold levels, a warning signal is generated and a relay output (230 V / 0.2 A) for operation of an shutoff valve is actuated if the UV output is too low. Alternatively, this output can also be used as a common alarm relay (230 V / 2.5 A).

The Dulcodes deluxe control includes a large, graphic display for viewing the UVC sensor signal. Shown as a trend display, lamp ageing, deposit formation on the lamp protection tube or a change in water quality can be seen in a time window. The freely programmable safety and alarm thresholds are also shown, as well as the number and times of lamp activations. All operating and error messages are shown in plain text. Setting the operating parameters is facilitated by the clear menu layout. The control offers a selection of 9

Deluxe control

different languages.

- UV sensor signal
- Warning threshold
- Calibration
- On/off contacts
- Safety threshold

The control is connected to the ballasts via a bus system so that each individual lamp can be monitored. This also makes it possible to position the control at long distances from the radiation chamber, lamps and Various auxiliary functions, such as the automatic flushing of the system over a freely programmable

flushing time, control of a shut-off valve and a circulating pump are integrated as standard. 2 voltage outputs 230 V / 0.2 A and a switching output 230 V / 2.5 A are provided for this purpose.

The UVC sensor signal can be monitored online via a standard signal output 0/4-20 mA. If the warning and safety thresholds are undershot, two relay outputs (230 V / 2.5 A) send a corresponding signal. All other faults are signalled via a combined alarm relay (230 V / 2.5 A).

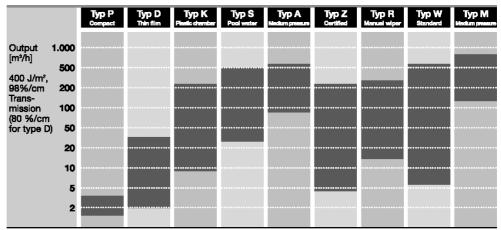
3 potential-free control inputs make it possible to connect external information to the control: The error input can, for example, be used for external temperature monitoring, the pause input can be used to interrupt operation of the system at scheduled intervals, the flow control can be of help in connection with flushing procedures.

Powerline deluxe control

This control additionally includes the option of external power control via a standard signal 0/4-20 mA (not for Dulcodes M 2 kW, 3 kW and Dulcodes S). The systems can thus, for example, be controlled according to the flow or the lamp output and can be automatically adjusted to a defined UVC sensor signal. This saves energy costs and extends the lamp service life.

The control is also equipped with a display and monitor for the radiation chamber temperature, together with a freely programmable control for the mechanical wiper system used in automatic cleaning of the lamp protection tube.

Dulcodes A deluxe control


A Siemens S7-1200 control with a KP 300 Basic operating unit is used for operation and control of Dulcodes A systems. In addition to the functions of the Powerline deluxe control, it also has a digital input. The digital input can be used to set one of two freely programmable power levels (e.g. night reduction for pool water).

1.2

1 UV Systems Dulcodes

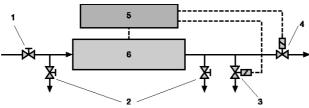
Performance Overview of Dulcodes UV Systems

ProMinent offers a wide range of UV systems for the most diverse applications. The following overview shows the capacity and main applications of our standard systems:

Application

Drinking water					
Industrial water					
Swimming pool water					
Waste water					
Salt water					

P_PMA_DS_0026_SW


ProMinent provides all the advice needed for the safe operation of a Dulcodes UV system:

- Evaluation of the situation on site by trained, expert field sales staff.
- We can measure all the key water parameters required for optimum system design in our water laboratory.
- Project planning of the system.
- $\quad \blacksquare \quad \mbox{Commissioning and system maintenance by our trained service technicians.}$

1.2.1 Notes on Planning and Designing an UV System

- The system should always be designed for the maximum water flow.
- The system should always be designed for the worst anticipated UV transmission.
- Fireproof sampling cocks for microbiological tests should be provided upstream and downstream of UV disinfection systems.
- A manual shut-off valve should be provided before the UV system to isolate the system for maintenance work.
- With potable water disinfection and similar applications, an electrically-controlled shut-off valve should be provided downstream of the UV disinfection system, which also closes automatically on mains failure (solenoid valve, automatic closing flap valve or similar).
- With service water disinfection, it is normally sufficient to provide a manual valve to isolate the system for maintenance work, instead of the electrically-controlled valve.
- With potable water disinfection and similar applications, a flushing valve should be provided downstream of the UV disinfection.
- It should be ensured that there is sufficient space available for removing the lamp protection tube and lamp replacement.
- Modern electronic ballasts only allow a limited cable length between ballast and lamp, so that the control box with the ballasts should be positioned close to the lamp. On the other hand, the controller can be fitted in a control area, for example. However, the maximum cable lengths we have specified should not be exceeded in this case.

pk 7 059

Typical installation diagram of a UV disinfection system

The following details are required for design of a UV system:

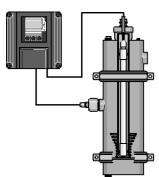
- Application of the system
- Maximum water flow
- Minimum UV transmission of the water

The UV transmission should be determined by means of a laboratory measurement of the absorption at 254 nm.

A full water analysis gives important conclusions on the operating conditions of the system. The following questionnaire provides our project engineers with the information needed to design an appropriate system.

Shut-off valve

Sampling cock Flushing valve Shut-off valve Controller/ballast Radiation chambe


1.3 Questionnaire for Designing an UV System

Application of the UV system:	
☐ for disinfection of	☐ drinking water
	□ production water in the food industry, cosmetics or pharmaceuticals
	□ utility water
	□ wastewater
	□ salt water or brackish water
	
☐ for photochemical reduction of	□ ppm ozone
	ppm chlorine dioxide
	□ ppm chlorine
	ppm chloramine
Water data:	
Maximum water flow m³/h	Maximum water pressure bar
Minimum UV transmission at 254 nm %/1 cm	%/10 cm SAC 254 nm
Turbidity FNU	NTU
Suspended particles content m	ng/l
Water quality constant fluctuating	9
Total hardness mmol/l °dH	
Carbonate hardness mmol/l °dH	
Chloride mg/l	
Manganese mg/l	
Iron mg/l	
Water temperature °C	
Other requirements:	
	

1.4

UV System Dulcodes P

Dulcodes P UV systems are used for the disinfection of potable water and service water and – depending on transmission – can be used with flows up to $4 \text{ m}^3/\text{h}$.

Features

- Flow: up to 4 m³/h (depending on transmission)
- Control with switching output, to which a shut-off valve or fault indicating device can be connected
- High-quality, factory-calibrated UV sensor
- Graphic display with display of UV intensity, total number of operating hours and number of lamp switching cycles
- Standard low-pressure lamp with a service life of approximately 10,000 operating hours
- Radiation chambers made of high-grade stainless steel 1.4404
- Control and ballast in a compact plastic housing

pk_7_045_V2

Main applications

Potable water	Industrial water	Swimming pool water	Waste water	Salt water	
V	✓	<u> </u>	_	_	

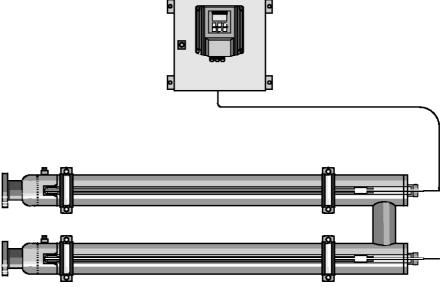
Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	kg	
16P	1.5*	16	30	382	350	114	6/10	G 3/4"
45P	3.8*	45	60	940	900	114	10/20	G 1 1/4"

Lamp type Standard low-pressure lamp (see p. \rightarrow 1-2)

 $\begin{tabular}{ll} \textbf{Controller type} & Compact controller (see p. \rightarrow 1-3) \end{tabular}$

 $\begin{array}{ll} \textbf{Permissible operating pressure} & 10 \text{ bar} \\ \textbf{Permissible ambient temperature} & 5-45 \, ^{\circ}\text{C} \\ \textbf{Permissible water temperature} & 5-40 \, ^{\circ}\text{C} \\ \end{array}$


Spare Parts for Dulcodes P UV Systems

	Order no.
UV lamp 16 W	1002472
UV lamp 45 W	1002473
O-ring for fixing the lamp in the lamp protection tube	481016
Lamp protection tube for Dulcodes 16 P	1004450
Lamp protection tube for Dulcodes 45 P, 45 D and 130 D, 130 W	1002468
O-ring lamp protection tube/lamp cover	1004920
UVC sensor P/D/W/R G 3/4 1.4539 for systems delivered from Sept. 2006; U sensor	1004734
O-ring for UVC sensor	1002175
Sensor connection cable, 2 m long for systems supplied since September 2006	1029262
Screwed plug G 1/4"	1002752
O-ring for G 1/4" screwed plug	741256

^{* 98%/}cm transmission; 400 J/m² UV dose

1.5 UV System Dulcodes D for Highly Turbid Water

Dulcodes D thin-film type UV systems with High-Flux lamps are used for the disinfection of high-turbidity or discoloured service water or waste water and – depending on transmission – can be used with flows up to 33 m³/h

pk_7_050

Features

- Flow: up to 33 m³/h (depending on transmission)
- Standard chambers made up of one or more longitudinal flow radiation chambers arranged one after the other, each with its own lamp
- High-efficiency, low-pressure High-Flux lamp with special amalgam technology, increased UV output, largely independent of temperature
- Lamp service life approximately 10,000 h
- Ballasts with BUS interface for ignition and monitoring of each individual lamp
- Variable lamp current, hence lamp-friendly ignition process and precise adjustment of the optimum lamp operating current
- Long-term stable UVC sensor for monitoring the disinfection capacity and transmission (UV transmission factor) of the water, factory-calibrated
- Large, graphic display for viewing the sensor signal
- Monitoring of lamp ageing, lamp protection tube fouling and changes in water quality
- Freely programmable control, e.g. for different flushing, warning and shut-down procedures
- Radiation chambers made of high-grade stainless steel 1.4404
- Control cabinets made of painted steel
- Complete cleaning system available as an accessory and consisting of acid tank, circulating pump, valves and hoses for rapid chemical cleaning of the lamp sleeve and radiation chamber

Main applications

Potable water	Process water	Swimming pool water	Waste water	Salt water
_	V	_	✓	_

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	kg	
1x45 D**	2.0*	1x45	60	940	900	89	10/15	1"
1x130 D	4.6*	1x130	150	940	900	89	10/15	1"
1x230 D	8.2*	1x230	250	1,500	1,400	89	18/25	DN 65
2x230 D	16.0*	2x230	500	1,500	1,400	89	36/50	DN 65
3x230 D	25.0*	3x230	750	1,500	1,400	89	54/75	DN 65
4x230 D	33.0*	4x230	1,000	1,500	1,400	89	72/100	DN 65

^{* 80 %/}cm transmission; 400 J/m² UV dose

Lamp type Standard low pressure lamp with 1x45 D

High-Flux low pressure lamp with 1x130 D - 4x230 D (see p. \rightarrow 1-2)

Controller type Compact controller with 1x45 D

De luxe controller with 1x130 D - 4x230 D (see p. $\rightarrow 1-3$)

Permissible operating pressure 10 bar Permissible ambient temperature 5–40 °C

Permissible water temperature 5-70 °C **5 – 40 °C

Spare Parts for Dulcodes D UV Systems

	Order no.
UV lamp 45 W	1002473
High-Flux UV lamp 130 W	1002486
High-Flux UV lamp 230 W	1002487
Lamp protection tube for Dulcodes 45 P, 45 D and 130 D, 130 W	1002468
Lamp protection tube for Dulcodes 1-6x230 D, 230 W	1002469
O-ring lamp protection tube/lamp cover	1004920
UVC sensor P/D/W/R G 3/4 1.4539 for systems delivered from Sept. 2006; U sensor	1004734
O-ring for UVC sensor	1002175
Sensor connection cable, 5 m long for systems supplied since September 2006	1021041
Screwed plug G 1/4"	1002752
O-ring for G 1/4" screwed plug	741256
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212
Sickle spanner (special tool required to change the lamp protection tube)	1002764

1.1.2015 Product Catalogue 2015 1-9

1.6

pk_7_047

1 UV Systems Dulcodes

UV System Dulcodes K with PE-HD Radiation Chamber

Chemical-free and reliable disinfection of water containing salt, such as sea water or thermal water.

Flow up to 250 m³/h

1

Disinfection of saline sea water or thermal water without corrosion problems caused by the UV system Dulcodes K. The UV system consists of a reactor and a UV sensor made of highly UV-resistant plastic.

The UV system Dulcodes K is absolutely corrosion-free. This is ensured by the UV-stabilised, highly compressed HD-PE reactor and a special sensor made of plastic. The reactor is temperature resistant through a special welding process and optimised to a pressure rating of more than 4 bar. The 130 or 290 W low-pressure lamps are powered by electronic ballasts and operated gently.

Your benefits

- Reactor made of UV-stabilised high-density HD-PE, absolutely corrosion-free and temperature stable.
- Long-term salt water-resistant UVC sensor for monitoring the disinfection capacity, contamination of the lamp protection tubes, lamp ageing and water transmission.
- Highly efficient Opti Flux 290 W lamps provide maximum disinfection and flow rate with a minimum number of lamps.
- Ballasts with BUS interface for the gentle ignition and operation of the lamps
- The replacement of lamps is reduced to the absolute minimum.
- Low maintenance costs and low follow-on costs, as there are fewer, high-performance lamps featuring amalgam technology with an excellent service life of up to 14,000 hours.

- Reactor made of UV-stabilised high-density HD-PE
- High-performance and highly efficient High-Flux (130 W) or Opti-Flux (290 W) low pressure amalgam lamps, largely temperature-independent
- Guaranteed (pro rata) lamp service life: High-flux lamp: 10,000 h; Opti-Flux lamp: 14,000 h
- Long-term stable UVC sensor made of PTFE for continuous system monitoring, factory calibrated in accordance with the DVGW standard.
- Control cabinet made of coated steel
- Deluxe control, freely programmable with large graphic display to show all important operating parameters, such as timing of the UV sensor signal (trend line), control type, operating status.
- Interfaces and connectors for:
 - Stopcock and flushing valve
 - Control of the feed pump
 - Warning and alarm relay for UV intensity
 - Collective malfunction alert relay
 - Pause contact
 - Relay for monitoring reactor temperature
 - Input for external fault
 - Standard signal output 4-20 mA of UV sensor signal

Field of application

- Process water
- Swimming pool water
- Salt water

Technical Data

Type	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	
1x130K	8.7*	1x130	150	1,371	1,400	125	DN 50
1x290K	26.6*	1x290	310	1,530	1,710	138	DN 80
2x290K	93.5*	2x290	600	1,535	1,710	188	DN 125
3x290K	192.7*	3x290	910	1,535	1,710	268	DN 200
4x290K	250.0*	4x290	1,200	1,535	1,710	268	DN 200

^{* 98 %/}cm transmission; 400 J/m² UV dose

Lamp type High-Flux low-pressure lamp 130 W

Opti Flux low-pressure UV lamp, 290 W (see page → 1-2)

Controller type De luxe controller (see p. \rightarrow 1-3)

Permissible operating pressure 4 bar Permissible ambient temperature 5–40 °C Permissible water temperature 5–30 °C

Spare Parts for Dulcodes K UV Systems

	Order no.
High-Flux UV lamp 130 W	1002486
Opti Flux UV lamp 290 W	1040082
Lamp protection tube for Dulcodes 130 K	1006385
Lamp protection tube for Dulcodes 290 K and 290 W	1002471
O-ring lamp protection tube/lamp cover	1006332
UVC sensor K, red brass for systems supplied up to Nov. 2011	1006329
UVC-Sensor K, PTFE for systems supplied since Dec. 2011	1035201
O-ring for UVC sensor	1002175
O-ring for UVC sensor K, PTFE	1041049
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212

UV System Dulcodes S for Chloramine Reduction in Pool Water

Cost-effective solution for the treatment of bathing water – designed for the degradation of combined chlorine

Flow up to 569 m³/h

The UV system Dulcodes S for water treatment and disinfection in swimming pools. Combined chlorine is broken down and the typical swimming pool odour is eliminated: no more irritation for eyes, nose and skin. A manual stage switch permits adaptation to the required capacity requirement.

The UV system Dulcodes S is fitted with output-optimised medium-pressure lamps. They guarantee the efficient photochemical breakdown of combined chlorine in swimming pool water. The system is insensitive to the most adverse conditions in warm, humid plant rooms enriched by aggressive chemicals. The robust and conventional ballast technology remains completely unaffected by this.

Efficient cleaning of the lamp protection tubes during operation is possible with ease. The lamp protection tubes can either be cleaned by a manual wiper or by the optionally extendible motor-driven automatic wiper.

The Dulcodes S is a compact inline system. Thanks to its flexible flange options, the system can be used with ease for different nominal breadths of circulation rate. The UV reactor is designed in such a way that no UV radiation can escape from the reactor. This means that the system can be installed directly in a plastic pipe. The free choice of the fitting position simplifies installation and retrofitting in the extreme.

Your benefits

- Simple installation, thanks to the compact inline system, ensures minimum installation costs and fast retrofitting.
- Maximum flexibility when installing, thanks to free choice of fitting position and direct installation in plastic pipes, as no UV radiation escapes from the reactor.
- Automatic switching on and off based on the chloramine value, for example used in conjunction with the DULCOMARIN® II.
- Unbeatable simple and quick maintenance: All maintenance work can be carried out quickly and conveniently from one side.
- Manual power control for optimum adaptation of the system to the respective capacity requirement (not for Dulcodes 1 x 0.65 and 1S).
- Manual or automatic wiper system for the efficient removal of deposits on the lamp protection tube. The wiper system can be easily retrofitted.

- NSF 50-certified and specifically recommended for use in swimming pools.
- Optimised use of energy, thanks to large radiation chamber and uniform irradiation of the entire water flow due to optimised system hydraulics
- Radiation chambers made of high-grade stainless steel 1.4404/AISI316L
- Powerline S medium-pressure lamps with high power input of up to 3 kW
- Guaranteed (pro rata) lamp service life of 8,000 hours
- Long-term stable UVC sensor for monitoring the lamp output, dirt on the lamp protection tube and changes in water quality
- Integral temperature switch to monitor the water temperature in the radiation chamber
- Manual or automatic motor-driven wiper for the efficient removal of deposits on the lamp protection tube
- Control cabinet made of coated steel
- Freely parameterisable control (Dulcodes S deluxe control). Large graphic display to show all important
 operating parameters, such as timing of the UV sensor signal (trend line), control type and operating
 status
- Standard signal output 4-20 mA of UV sensor signal
- Interfaces and connectors for:
 - Warning and alarm relay for UV intensity
 - Operating signal relay
 - Collective malfunction alert relay
 - Pause contact

Field of application

- Process water
- Swimming pool water

P_PMA_DS_0018_SW1

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Min. distance from wall	Empty weight/ Operating weight	Connection nominal diameter can be selected
	m³/h	kW	kW	mm	mm	mm	kg	mm
1x0,65S	20.0*	0.65	0.75	500	335	160	21/31	65/80
1x1S	58.0*	1.00	1.10	700	400	450	31/47	100/125
1x2S	102.0*	2.00	2.10	700	500	550	38/65	125/150
1x3S	205.0*	3.00	3.20	800	600	650	52/118	200/250
2x2S	278.0*	4.00	4.20	900	1,000	670	78/166	200/250
2x3S	379.0*	6.00	6.20	900	1,000	670	78/166	200/250
3x3S	569.0*	9.00	9.20	900	1,000	670	78/166	250/300

 $^{^{\}star}$ 98 %/cm transmission; 600 J/m² UV dose for the breaking down of combined chlorine

Lamp type Powerline S medium-pressure lamp (see p. \rightarrow 1-2)

Controller type Powerline S comfort control (see p. → 1-3)

Permissible operating pressure 6 bar Permissible ambient temperature 5–40 °C Permissible water temperature 5–40 °C

Spare Parts for Dulcodes S UV Systems

	Order no.
Powerline UV lamp 1 kW	1035179
Powerline UV lamp 2 kW	1035057
UV lamp Powerline 3 kW	1035180
Lamp protection tube for Dulcodes 1 A and 0.6 S	1035218
Lamp protection tube for Dulcodes 1 S	1035166
Lamp protection tube for Dulcodes 2 S	1035041
Lamp protection tube for Dulcodes 3 S	1035193
Wiper element (2 required per UV lamp)	1027879
Spare part set for UV S 1-3 kW motorised wiper	1037735
Spare part set for UV S 2x2 kW and 2x3 kW motorised wiper	1037756
Spare part set for UV S 3x3 kW motorised wiper	1037757
O-ring lamp protection tube/lamp cover	790410
UVC-U sensor M 1.4539	1034147
O-ring for UVC sensor	1002175
Sensor connection cable, 5 m long for systems supplied since September 2006	1021041
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212

1.8 UV System Dulcodes A with Medium-pressure Lamps Arranged Perpendicular to the Flow

Perfect for the treatment of higher flows. Whether for the disinfection of potable water of the degradation of combined chlorine in swimming pool water.

Flow up to 739 m³/h

The UV system Dulcodes A helps to ensure water quality. The UV system works energy-efficiently and cleanly based on continuously variable medium pressure lamps and can therefore automatically compensate for variations in the water quality or level of contamination.

The UV system Dulcodes A has a compact design. Output-optimised medium pressure lamps ensure effective disinfection of potable water and the photochemical breakdown of oxidants and/or combined chlorine.

The system is fitted with electronic ballasts, which continuously adjust the lamp output, either via an external signal, such as the flow rate, or by specification of a setpoint.

A long-term stable UVC sensor ensures that the system operates safely and reliably. The motor-driven automatic wiper efficiently cleans the lamp protection tubes and minimises maintenance work with types of water that have a tendency to form films. After comprehensive certification and biodosimetric validation, the systems comply with strict internationally recognised NSF, UL, CSA and USEPA standards.

Your benefits

- Simple installation, thanks to the compact inline system, ensures minimal installation work and fast retrofitting
- Maximum flexibility when installing, thanks to the free choice of fitting position and direct installation in plastic pipes, as no UV radiation escapes from the reactor
- External power control via 0/4 20 mA standard signal for optimum adaptation of the system to changing operating conditions, such as flow fluctuations
- Automatic adjustment of the lamp output to a defined UV-C sensor signal with power increase to a raised, adjustable sensor signal via a digital input saves energy and extends the lamp service life.
- Unbeatable simple and quick maintenance: All maintenance work can be carried out quickly and conveniently from one side.
- Certified systems: NSF 50, CSA 22, UL508, comprehensively biodosimetrically validated to UVDGM 2006

Technical details

- Optimised use of energy, thanks to large radiation chamber and uniform irradiation of the entire water flow due to optimised system hydraulics.
- Radiation chambers made of high-grade stainless steel 1.4404/AISI316L
- Powerline A medium-pressure lamps with high power input of up to 3 kW
- Guaranteed (pro rata) lamp service life of 8,000 hours
- Long-term stable UVC sensor for monitoring the lamp output, lamp protection tube fouling and changes in water quality
- Integral temperature sensor for monitoring the water temperature in the radiation chamber
- $\quad\blacksquare\quad$ Automatic motor-driven wiper for efficient removal of deposits on the lamp protection tube
- Double, independent and automatic monitoring of the wiper function by revolution counter and limit switch
- Control cabinet made of coated steel
- Freely programmable control (Deluxe control Dulcodes A) with backlit display during normal operation (green), warning (yellow) and fault (red)
- Large graphic display to show all important operating parameters, such as the UV sensor signal, lamp power consumption, control type and operating status
- Interfaces and connectors for:
 - Stopcock and flushing valve
 - Control of the feed pump
 - Operating signal relay
 - Warning and alarm relay for UV intensity
 - Collective malfunction alert relay
 - Pause contact
 - Relay for monitoring reactor temperature
 - Temperature monitoring and fault indicating relay for control cabinet temperature
 - Input for external fault
 - Digital input for switch-over to second power stage
 - 4-20 mA standard signal input for flow-dependent lamp control or control dependent on measured value
 - Standard signal output 4-20 mA of UV sensor signal

P_PMA_DS_0018_SW1a

Field of application

- Potable water
- Process water
- Swimming pool water

Technical Data

Type	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Min. distance from wall	Empty weight/ Operating weight	Connector width DIN/ANSI
	m³/h	kW	kW	mm	mm	mm	kg	
1 x 1A	66.0* / 76.0**	1.00	1.10	700	400	450	31/47	DN 100/4"
1 x 2A	116.0* / 133.0**	2.00	2.10	700	500	550	38/65	DN 150/6"
1 x 3A	232.0* / 266.0**	3.00	3.20	800	600	650	52/118	DN 200/8"
2 x 2A	309.0* / 362.0**	4.00	4.20	900	1,000	670	78/166	DN 200/8"
2 x 3A	464.0* / 493.0**	6.00	6.20	900	1,000	670	78/166	DN 250/10"
3 x 3A	696.0* / 739.0**	9.00	9.20	900	1,000	670	78/166	DN 300/12"

 $^{^{\}star}$ 98 %/cm transmission; 600 J/m² UV dose for the breaking down of combined chlorine

Lamp type Powerline A medium-pressure lamp (see page → 1-2)

Permissible operating pressure 10 bar (for systems 1 x 1A - 1 x 3A) 7 bar (for systems 2 x 2A - 3 x 3A)

5–40 °C

 $\begin{array}{ll} \mbox{Permissible ambient temperature} & 5\mbox{-}40~^{\circ}\mbox{C} \\ \mbox{Permissible water temperature} & 5\mbox{-}40~^{\circ}\mbox{C} \\ \end{array}$

Spare Parts for Dulcodes A UV Systems

	Order no.
Powerline UV lamp 1 kW	1035179
Powerline UV lamp 2 kW	1041450
Powerline UV lamp 3 kW	1041451
Lamp protection tube for Dulcodes 1 A and 0.6 S	1035218
Lamp protection tube for Dulcodes 2 A	1041723
Lamp protection tube for Dulcodes 3 A	1041485
Wiper element (2 required per UV lamp)	1027879
Spare parts set for UV A 1-3 kW motor wiper	1042860
Spare part set for UV S 2x2 kW and 2x3 kW motorised wiper	1037756
Spare part set for UV S 3x3 kW motorised wiper	1037757
O-ring lamp protection tube/lamp cover	1023569
UVC-U sensor M -1, 4-20 mA	1041449
O-ring for UVC sensor	1002175
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212

1.1.2015 Product Catalogue 2015 1-15

 $^{^{**}}$ 98 %/cm transmission; 400 J/m² UV dose for disinfection applications

1.9

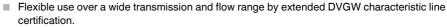
pk_7_025

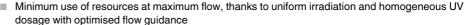
1 UV Systems Dulcodes

UV System Dulcodes Z with Certified Performance

Chemical-free disinfection of potable water - naturally DVGW-certified

Flow up to 230 m³/h




UV system Dulcodes Z for potable water treatment. Chemical-free disinfection, which conforms to all internationally established DVGW, ÖVGW and UVDGM standards. High-performance and energy-efficient high-output lamps.

UV system Dulcodes Z is equipped with energy-efficient Opti-Flux high performance lamps, incorporated in optimised reactors. The effectiveness of the disinfection necessary for certification was proved in comprehensive biodosimetric measurements. Dulcodes Z thus facilitates maximum possible disinfection and flow performance with a minimum number of lamps. The long-term stable, DVGW-compliant UVC sensor, in conjunction with the central control, ensures optimum continuous operating reliability in potable water treatment.

Your benefits

- DVGW-compliant, long-term stable UVC sensor for monitoring the disinfection capacity, contamination of the lamp protection tubes, lamp ageing and water transmission.
- Increased output with fewer lamps.
- Energy-efficient high-performance Opti-Flux 300 W lamps permit greater flow per lamp.
- Operating costs reduced by longer maintenance cycles: guaranteed (pro rata) 14,000 operating hours.
- Electronic ballasts for the gentle ignition and operation of the lamps

Technical details

- Hydraulically optimised reactor made of high-grade stainless steel 1.4404/AISI316L
- High-performance, energy-efficient Opti-Flux (300 W) low pressure amalgam lamp, largely temperature-independent
- 14,000 lamp service life guaranteed (pro rata)
- Long-term stable DVGW UVC sensor for continuous system monitoring, factory-calibrated and verifiable on site by means of reference radiometer which conforms to the DVGW/ÖVGW specification
- Control cabinet made of coated steel
- Electronic ballasts with BUS interface for the gentle ignition, operation and individual monitoring of the lamps
- Deluxe control, freely programmable with large graphic display to show all important operating parameters, such as timing of the UV sensor signal (trend line), control type, operating status.
- Interfaces and connectors for:
 - Stopcock and flushing valve
 - Control of the feed pump
 - Warning and alarm relay for UV intensity
 - Collective malfunction alert relay
 - Pause contact
 - Relay for monitoring reactor temperature
 - Input for external fault
 - Standard signal output 4-20 mA of UV sensor signal

Field of application

- Potable water
- Process water
- Food & beverage industry

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	kg	
75Z***	4.5*	1x75	90	1,115	1,035	140	12/27	G 1 1/4"
200Z	10.0*	1x200	220	1,040	910	140	16/30	DN 50
300Z	20.0*	1x300	320	1,540	1,420	140	25/47	DN 80
2x300Z	60.0*	2x300	650	1,590	1,420	219	39/97	DN 100
3x300Z	110.0*	3x300	1,000	1,625	1,420	219	39/97	DN 150
4x300Z	165.0*	4x300	1,300	1,630	1,420	273	56/143	DN 150
5x300Z	230.0*	5x300	1,600	1,630	1,420	273	56/144	DN 200
7x300Z	230.0**	7x300	2,200	1,630	1,420	324	73/201	DN 200

 * $\,$ 98%/cm transmission; 400 J/m² UV dose ** $\,$ 94%/cm transmission; 400 J/m² UV dose

Lamp type Standard low pressure lamp with Type 75 Z

Opti-Flux low pressure lamp with Types 200 Z to 7x300 Z (see p.

→ 1-2)

Controller type Deluxe controller

UVC sensor signal in W/m² which can be calibrated with the help of a reference radiometer (see p. \rightarrow 1-3, Reference Radiometer

RRM see p. → 1-24)

Permissible operating pressure 10 bar
Permissible ambient temperature 5–40 °C

Permissible water temperature $5 - 70 \,^{\circ}\text{C}$ ***5 $- 30 \,^{\circ}\text{C}$

Spare Parts for Dulcodes Z UV Systems

	Order no.
Opti-Flux UV lamp 75 W	1020911
Opti-Flux UV lamp 200 W	1021008
Opti-Flux UV lamp 300 W	1020929
Lamp protection tube for Dulcodes 75 W and 75 Z	1020845
Lamp protection tube for Dulcodes 200 Z	1021010
Lamp protection tube for Dulcodes 1-7x300 Z, Dulcodes R	1020846
O-ring lamp protection tube/lamp cover	1023569
UVC sensor Z 1.4404 DVGW	1022347
Sensor window G 1x20 for Dulcodes 75, 200, 2x300Z	1021113
Sensor window G 1x30 for Dulcodes 300, 3x300Z	1022377
Sensor window G 1x47.5 for Dulcodes 4-7x300Z	1023884
O-ring for sensor window	1023570
Lamp cable, 3.5 m long	1017867
Lamp cable, 7.5 m long	1024826
Sensor connection cable, 5 m long for systems supplied since September 2006	1021041
Extension for sensor cable, 5 m long	1024825
Screwed plug G 1/4"	1002752
O-ring for G 1/4" screwed plug	741256
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212

1.1.2015 Product Catalogue 2015 1-17

1.10 UV System Dulcodes R with Wiper

Disinfection of potable, process and swimming pool water

Flow up to 274 m³/h

UV system Dulcodes R for the disinfection of potable, process and swimming pool water. The system is used particularly when constituents, such as hardness, iron, manganese or organic substances, are present. Deposits are easily removed by the wiper mechanism even at maximum operating pressure without any need to interrupt operation.

Low-pressure UV systems Dulcodes R with energy-efficient high-performance amalgam lamps Opti-Flux and manual wiper. The system consists of food-compatible PTFE wiper elements and easily removes even stubborn deposits without any need to interrupt operation. Even at maximum operating pressure! The wiper system operates fully chemical-free and does not require the operator to handle hazardous acids or alkali. A long-term stable UVC sensor, in conjunction with the central control, ensures optimum continuous operating reliability.

Your benefits

- Cleaning without interrupting operation: the manual wiper is easy to operate even when the system is pressurised. Thanks to their self-sharpening function, the wiper elements deliver maximum cleaning and have a long service life.
- Long-term stable UVC sensor for monitoring disinfection capacity, contamination of the lamp protection tubes, lamp ageing and water transmission
- Greater performance with fewer lamps: energy-efficient high-performance Opti-Flux 300 W lamps permit greater flow per lamp
- Longer maintenance cycles, reduced operating costs: 14,000 operating hours guaranteed (pro rata)
- Electronic ballasts for gentle ignition and lamp operation: replacement lamps are kept to a minimum.

Technical details

- Hydraulically optimised reactor made of high-grade stainless steel 1.4404/AISI316L
- High-performance and energy-efficient low-pressure Opti-Flux (300 W) amalgam lamp, largely temperature-independent
- 14,000 lamp service life guaranteed (pro rata)
- Long-term stable UVC sensor for continuous system monitoring, factory calibrated in accordance with the DVGW standard
- Control cabinet made of coated steel
- Electronic ballasts with BUS interface for the gentle ignition, operation and individual monitoring of the lamps
- Deluxe control, freely programmable with large graphic display to show all important operating parameters, such as timing of the UV sensor signal (trend line), control type, operating status.
- Standard signal output 4-20 mA of UV sensor signal
- Interfaces and connectors for:
 - Stopcock and flushing valve
 - Control of the feed pump
 - Warning and alarm relay for UV intensity
 - Collective malfunction alert relay
 - Pause contact
 - Relay for monitoring reactor temperature
 - Input for external fault

Field of application

- Potable water
- Process water
- Swimming pool water

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	kg	
1x300R	30.0*	1x300	320	1,562	1,438	140	45/67	DN 80
2x300R	95.0*	2x300	650	1,633	1,438	220	75/134	DN 150
3x300R	179.0*	3x300	1,000	1,638	1,438	273	90/182	DN 200
4x300R	274.0*	4x300	1,300	1,652	1,438	330	120/253	DN 250

 $^{^{\}star}$ * 98%/cm transmission; 400 J/m 2 UV dose

Lamp type Opti-Flux low-pressure UV lamp (see p. \rightarrow 1-2)

Controller type Deluxe controller (see p. \rightarrow 1-3)

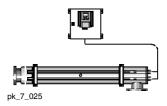
Permissible operating pressure 10 bar Permissible ambient temperature 5–40 °C Permissible water temperature 5–70 °C

Spare Parts for Dulcodes R UV Systems

	Order no.
Opti-Flux UV lamp 300 W	1020929
Lamp protection tube for Dulcodes 1-7x300 Z, Dulcodes R	1020846
O-ring lamp protection tube/lamp cover	1023569
Wiper element (2 required per UV lamp)	1027879
UVC-U sensor P/D/W/R 1.4539 from Sep. 2006	1028115
O-ring for UVC sensor	1002175
Lamp cable, 3.5 m long	1017867
Lamp cable, 7.5 m long	1024826
Sensor connection cable, 5 m long for systems supplied since September 2006	1021041
Extension for sensor cable, 5 m long	1024825
O-ring for screw plug G 1/4"	792872
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212

1.11 UV System Dulcodes W

Proven, safe and chemical-free disinfection of water


Flow up to 600 m³/h

UV system Dulcodes W for the disinfection of pathogenic micro-organisms in potable, process or swimming pool water. Energy-efficient and excellent disinfection performance thanks to high-output lamps.

UV system Dulcodes W offers proven disinfection performance against pathogenic micro-organisms in the water. The system's excellent performance is due to the high-output lamps. Their efficiency is enhanced by electronic control units, specifically adapted to the UV lamps. A long-term stable UVC sensor, in conjunction with the central control, ensures optimum continuous operating reliability.

Your benefits

- Compact system with excellent disinfection performance with minimum energy consumption. This is
 provided for by the hydraulically optimised reactor with low-pressure UV lamps arranged longitudinally
 to the flow
- Long-term stable UVC sensor for monitoring disinfection capacity, contamination of the lamp protection tubes, lamp ageing and water transmission.
- Excellent output with fewer lamps. Energy-efficient high-performance High-Flux lamps up to 230 W
 permit greater flow per lamp.
- Operating costs reduced by longer maintenance cycles: guaranteed (pro rata) 10,000 operating hours.
- Electronic ballasts for the gentle ignition and operation of the lamps

Technical details

- Hydraulically optimised reactor made of high-grade stainless steel 1.4404/AISI316L
- High-performance, energy-efficient High-Flux (80, 130 or 230 W) low pressure amalgam lamps, largely temperature-independent or standard 75 W mercury lamps
- 10,000 lamp service life guaranteed (pro rata)
- Long-term stable UVC sensor for continuous system monitoring, factory calibrated in accordance with the DVGW standard
- Control cabinet made of coated steel
- Electronic ballasts with BUS interface for the gentle ignition, operation and individual monitoring of the lamps.
- Freely programmable deluxe control with large graphic display to show all important operating parameters, such as timing of the UV sensor signal (trend line), control type, operating status.
- Interfaces and connectors for:
 - Stopcock and flushing valve
 - Control of the feed pump
 - Warning and alarm relay for UV intensity
 - Collective malfunction alert relay
 - Pause contact
 - Relay for monitoring reactor temperature
 - Input for external fault
 - Standard signal output 4-20 mA of UV sensor signal

Field of application

- Potable water
- Process water
- Swimming pool water

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	W	W	mm	mm	mm	kg	
1x75W**	5.7*	75	90	1,115	910	140	12/27	G 1 1/4"
1x80W**	5.4*	80	100	630	600	114	8/14	G 1 1/4"
1x130W	8.7*	130	150	940	900	114	10/20	G 2
1x230W	20.0*	230	250	1,468	1,400	140	24/46	DN 65
2x230W	64.0*	2x230	500	1,640	1,500	220	41/96	DN 125
3x230W	117.0*	3x230	750	1,665	1,500	273	53/138	DN 150
4x230W	184.0*	4x230	1,000	1,690	1,600	324	65/150	DN 200
5x230W	228.0*	5x230	1,200	1,690	1,600	324	70/190	DN 200
6x230W	273.0*	6x230	1,400	1,790	1,600	406	75/200	DN 250
7x230W	369.0*	7x230	1,700	1,920	1,600	406	115/310	DN 250
8x230W	418.0*	8x230	1,900	1,920	1,600	406	115/310	DN 250
9x230W	467.0*	9x230	2,100	1,920	1,600	406	130/320	DN 250
10x230W	514.0*	10x230	2,400	1,920	1,600	406	130/320	DN 250
11x230W	561.0*	11x230	2,600	1,920	1,600	406	130/320	DN 250
12x230W	600.0*	12x230	2,800	1,920	1,600	406	130/320	DN 250

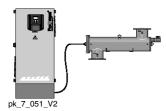
^{* 98 %/}cm transmission; 400 J/m² UV dose

Lamp type High-Flux low pressure lamp (see p. → 1-2)

Controller type Deluxe controller (see p. \rightarrow 1-3)

Permissible operating pressure 10 bar Permissible ambient temperature 5–40 $^{\circ}$ C

Permissible water temperature 5-70 °C **5-30 °C


Spare Parts for Dulcodes W UV Systems

	Order no.
Opti-Flux UV lamp 75 W	1020911
High-Flux UV lamp 80 W	1002485
High-Flux UV lamp 130 W	1002486
High-Flux UV lamp 230 W	1002487
Lamp protection tube for Dulcodes 75 W and 75 Z	1020845
Lamp protection tube for Dulcodes 80 W	1002467
Lamp protection tube for Dulcodes 45 P, 45 D and 130 D, 130 W	1002468
Lamp protection tube for Dulcodes 1-6x230 D, 230 W	1002469
Lamp protection tube for Dulcodes 2-5x230 W	1002470
Lamp protection tube for Dulcodes 290 K and 290 W	1002471
O-ring lamp protection tube/lamp cover	1004920
UVC-U sensor P/D/W/R 1.4539 from Sep. 2006	1028115
O-ring for UVC sensor	1002175
Screwed plug G 1/4"	1002752
O-ring for G 1/4" screwed plug	741256
Replacement filter mats for control cabinet ventilation (2 off required per control cabinet)	1004212
Sickle spanner (special tool required to change the lamp protection tube)	1002764

1.12

UV System Dulcodes M with Powerline Medium-Pressure Lamps

Dulcodes M UV systems with Powerline medium-pressure lamps are used for treatment of large water quantities and – depending on transmission – can be used with flows up to 800 m³/h. Their special lamp makes these systems particularly suitable for photochemical reduction of chloramine in swimming pool water, chlorine dioxide in the beverage industry, or chlorine and ozone in other applications.

Features

- Flow: up to 800 m³/h (depending on transmission)
- Powerline medium-pressure lamp with a mercury vapour pressure of greater than one bar, hence high connected loads of up to 10 kW per metre arc length
- High gas pressure and relatively high lamp operating temperature of 600 to 800 °C, hence broad emission spectrum
- Particularly suitable for the chemical photochemical degradation of chloramine in swimming pool water, chlorine dioxide in the beverage industry, or chlorine and ozone in other production water, for example, due to the broad emission spectrum of the lamps
- Lamp service life approximately 10,000 h
- Ballasts with BUS interface for ignition and monitoring of the lamp
- Variable lamp current, hence lamp-friendly ignition process and precise adjustment of the optimum lamp operating current
- Long-term stable UVC sensor for monitoring the disinfection capacity and transmission (UV transmission factor) of the water
- Integral temperature sensor for monitoring the water temperature in the radiation chamber
- Large, graphic display for viewing the sensor signal
- Monitoring of lamp ageing, lamp protection tube fouling and changes in water quality
- External power control via 0/4-20 mA standard signal for optimum adaptation of the system to changing operating conditions, such as flow fluctuations (from Dulcodes 4ML)
- Automatic adjustment of the lamp output to a defined UV-C sensor signal saves energy and extends the lamp service life (from Dulcodes 4ML)
- Freely programmable control, e.g. for different flushing, warning and shut-down procedures
- Automatic motor-driven wiper for efficient removal of deposits on the lamp protection tube
- Radiation chambers made of high-grade stainless steel 1.4404
- Control cabinets made of painted steel

Main applications

Potable water	Industrial water	Swimming pool water	Waste water	Salt water
V	✓	✓	_	_

Technical Data

Туре	Max. flow	Lamp power	Connected load	Radiation chamber length	Minimum clearance for maintenance work	Ø	Empty weight/ Operating weight	Connector nominal diameter
	m³/h	kW	kW	mm	mm	mm	kg	
1x2ML	88.0*	2	2.3	850	1,750	220	146	DN 100
1x3ML	158.0*	3	3.2	850	1,750	220	156	DN 150
1x4ML	229.0*	4	4.2	1,200	2,450	270	190	DN 200
1x6ML	406.0*	6	6.2	1,200	2,450	320	230	DN 250
1x8ML	541.0*	8	8.2	1,500	3,050	320	240	DN 250
1x10ML	600.0*	10	10.2	1,500	3,050	320	240	DN 250
1x10ML	800.0*	10	10.2	1,500	3,050	400	283	DN 300

 $^{^{\}star}$ 98 %/cm transmission; 600 J/m 2 UV dose

Lamp typePowerline medium pressure lamp (see p. \rightarrow 1-2)Controller typePowerline deluxe controller (see p. \rightarrow 1-3)

Permissible operating pressure 10 bar Permissible ambient temperature 5–40 °C Permissible water temperature 5–40 °C

Spare Parts for Dulcodes M UV Systems

	Order no.
Powerline UV lamp 3 kW	1009385
Powerline UV lamp 4 kW	1009386
Powerline UV lamp 6 kW	1009387
Powerline UV lamp 8 / 10 kW	1009388
Lamp protection tube for Dulcodes 2 ML / 3 ML	1009214
Lamp protection tube for Dulcodes 4/6 ML	1009215
Lamp protection tube for Dulcodes 8/10 ML	1009216
O-ring lamp protection tube/lamp cover	1027553
UVC sensor M 1.4539	1025685
UVC-U sensor M 1.4539	1034147
O-ring for UVC sensor	1002175
Sensor connection cable, 5 m long for systems supplied since September 2006	1021041
Replacement filter mat for control cabinet ventilation (2 No. required per control cabinet)	791038
Wiper complete	1009976

1.13

1 UV Systems Dulcodes

Accessories for Dulcodes UV Systems

Transmission Photometer UVT P200

Photometer for measuring 254 nm UV transmission.

Supplied in stable, compact, water-tight plastic box including 10 mm quartz cuvette. Storage of the in-situ calibration means that a calibration using deionised water prior to every calibration is not necessary.

Technical Data

Dimensions L x W x H (mm) 230 x 190 x 95

Weight 1.8 kg

Voltage supply 100 - 240 V AC 50/60 Hz, 12 V DC auto-adapter

UV-C lamp Mercury medium pressure lamp

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Measuring range 5 – 100%/cm

Order no.

Transmission Photometer UVT P200	1045245
	1043243

Reference Radiometer RRM

Reference radiometer for checking and recalibrating DVGW-certified Dulcodes Z UV systems. The portable instrument complies with DVGW technical standard W 294/Part 3/2003 and is fitted with an insertion sensor inserted directly into the radiation chamber of the Dulcodes Z UV system in place of the sensor to be calibrated, so that the radiation intensity can be measured without interrupting operation. Suitable UV protective glasses should be worn as UV radiation escapes from the radiation chamber during this procedure.

Technical Data

Measuring range 20/200/2,000/20,000 W/m² (switchable)

Display 3-digit

Voltage supply Battery, 9 V Type 6F22 or equivalent

Wavelength range 220 ... 290 nm, spectral adjustment in accordance with W 294

Angular field of view 40° in accordance with W 294, Item 7.2

Order no.

UV Protective Glasses

Protective glasses to protect against UV radiation that can be harmful to the eyes when working on open UV systems.

Order no.

UV protective glasses	1025243
-----------------------	---------

Protective Gloves

Protective gloves made of white cotton to avoid fingerprints on UV lamps and lamp sleeves. 1 pair universal size.

	Order no.
Protective gloves	1032815

Sampling Cock

Fireproof sampling cock made of stainless steel.

	Order no.
Sampling cock	On request

Cleaning System

Cleaning system for flushing the radiation chamber with a cleaning solution to remove deposits on the lamp tubes and internal surfaces of the UV system. Consists of chemical tanks, booster and metering pumps, valves and complete automatic or manual controller. Design and technical equipment are matched to the particular UV system and its application.

	Order no.
Cleaning system	On request

Clip-on Thermostat

A thermostat is fitted to the outside of the radiation chamber. The thermostat monitors the water temperature of the water and can be connected to the control. The flushing valve opens when the pre-set limit temperature is exceeded. IP30 degree of protection. Switching on temperature range 0-90° C.

	Order no.
Clip-on thermostat	1043944
Universal mounting tape suitable for all sizes	1044851

Fittings

Fittings provided for quick and easy wall mounting of the UV radiation chamber. Fitting parts comprise 2 screw-in pipe clips in high alloy steel (V2A), 2 base plates with M12 nut, 2 set screws and 4 M12 hexagon nuts.

Two-part clip with increased material cross-section to ensure high bearing strength and breaking resistance. A soundproofing layer ensures marked resistance in the sound level.

	For type	Order no.
Fittings A2	1x45D, 1x130D, 4x230D	1039826
	16P, 45P, 1x80W, 1x130W, 1x0,65S	1039827
	1x75W, 1x230W, 1x75Z, 1x200Z, 1x300Z, 1x300R	1039828
	2x230W, 2x300Z, 3x300Z, 2x300R, 1x2S	1039829
	3x230W, 4x300Z, 5x300Z, 3x300R	1039830

Overvoltage Protection

Overvoltage protection for Dulcodes UV systems operated at 230 V 50-60 Hz.

The external overvoltage protection is intended for operations when the device's internal protection is not sufficient for surge voltages of 1 kV between the conductors and 2 kV to earth. An overvoltage trip can be fitted as a low protection surge arrestor to significantly increase the stability of the Dulcodes systems to protect them when the supply mains is prone to disturbance energy.

It can only be determined by thorough investigation of the voltage behaviour on site whether the low protection surge arrester requires further measures, such as medium and main protection.

	Order no.
Fine protection PT 2-DE IS 230 IAC	733010

Replacement Plug-in Insert After Tripping

	Order no.	
Replacement plug-in insert PT 2-DE / S 230 / AC - ST	733011	

2.1 Ozone In Water Treatment

As the most powerful oxidant that can be used in water treatment, ozone permits a broad spectrum of possible applications:

Outstanding disinfection action against

- Bacteria and viruses
- Fungi and parasites

Oxidation of undesirable inorganic substances in the water

- Iron and manganese
- Arsenic
- Nitrite and sulphide

Oxidation of undesirable organic substances in the water

- Strong-smelling and strong-tasting compounds
- Humic substances and other compounds which affect the colour of the water
- Cyclic hydrocarbons
- Trihalomethanes, chloramines and other chlorine compounds

Micro-flocculating action

After oxidation with ozone, substances and colloids dissolved in the water become insoluble and can be filtered

Significantly less environmentally harmful by-products result from the generation and use of ozone than other comparable oxidants and disinfectants. As a highly reactive gas, ozone is generated on site from oxygen, and introduced to the water directly, without interim storage. Because of its high reactivity, ozone decomposes into oxygen again in the water, with a half-life of several minutes. Therefore all components of an ozone handling system have to be perfectly coordinated to each other and the planned application, to achieve an optimum relationship between ozone generation and its effect.

With every new project, our engineers draw on experience that we have accumulated since 1971 in the following applications:

Potable water supply

- Oxidation of iron, manganese or arsenic
- Refinement and improvement of taste
- Disinfection

Food and beverage industry

- Disinfection of table water
- Disinfection of rinsers in the beverage industry
- Disinfection of process water

Swimming pools

- Reduction of chloramines and trihalomethanes, avoiding typical swimming pool odours
- Crystal clear water, thanks to micro-flocculating action
- Reliable microbiological barriers in therapy pools
- Reduction of investment and operating costs by the possibility of reducing the circulating power and throttling the fresh water inlet

Industry

- Cooling water treatment
- Combating legionella in cooling water circuits
- Disinfection of process water
- Removal of odorous substances in air scrubbers

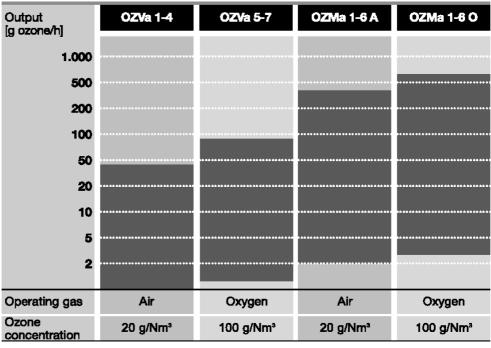
Municipal waste water treatment

- Breakdown of trace substances
- Reduction of clarifier sludge
- COD reduction/breakdown
- Removal of colouring

1.1.2015 Product Catalogue 2015 2-

2.2 Performance Overview of Ozone Systems

ProMaqua® ozone systems operate based on the proven principle of silent electrical discharge. Ozone is produced from oxygen between two electrodes separated by an insulating dielectric by applying a high voltage of several thousands of volts. Depending on the system type, either dried ambient air or concentrated oxygen is used as the source of oxygen. ProMaqua® ozone systems are optimised to ensure maximum return and operating safety. They conform to the German DIN 19627 standard for ozone generation systems and are characterised by low energy and cooling water consumption.


Medium-frequency pressure systems

With the OZONFILT® OZVa and OZMa product range, the air or oxygen operating gas is fed to the ozone generator under pressure. Ozone is generated using medium-frequency high voltages.

The use of an integrated pressure swing dryer and a dielectric with optimum thermal conductivity makes the system extremely compact.

Operating under pressure means that the ozone generated can be introduced directly into water systems with back pressures of up to 2 bar. Additional booster pumps and injectors can therefore be dispensed with in many applications.

ProMaqua offers a wide range of ozone systems for the most diverse applications. The overview below shows the capacity ranges of our type series:

P_PMA_OF_0011

Larger systems available on request

ProMagua provides all the advice needed for the safe operation of an ozone plant:

- Evaluation of the situation on site by trained, expert field sales staff.
- $\blacksquare \quad \text{In our water laboratory, we can measure all the key water parameters required for optimum plant design.}$
- Planning of the plant.
- Commissioning and plant service by our trained service technicians.

2

2 Ozone Systems OZONFILT®

2.3 Questionnaire on the Design of an Ozone System

Use of the ozone syst	em:	
☐ for treatment of		☐ Drinking water
		 Product water in the food and beverages industry, cosmetics or pharmaceutical industry
		☐ Industrial water
		☐ Cooling water
		☐ Swimming pool water
		□ Zoo
☐ for oxidation of		☐ Iron, manganese, nitrite, sulphide etc.
		☐ Organic matter
		☐ Discolouration
Water values:		
Max. water flow rate	m³/h	Maximum water pressure bar
Water flow rate	□ constant	☐ fluctuating from m³/h to m³/h
pH value		Iron (Fe ²⁺) mg/l
Temperature	°C	Manganese (Mn ²⁺) mg/l
Solid fraction	mg/l	Nitrite (NO ₂ -)mg/l
		Sulphide (S ²⁻)mg/l
		TOC (total organic carbon) mg/l
Response time to app	olication:	
m³ volume rea	action tank or	_ minutes residence time in entire system.
Type of metering:		
□ constant		
☐ flow-proportional		
☐ depending on meas	sured value	
Desired amount of me	etering: mg/l	
Other requirements:		

2.4 Ozone System OZONFILT®OZVa

 $\label{thm:compressed} \textbf{Generate ozone from compressed air or oxygen. Environmentally-friendly and cost-effective.}$

Ozone capacity 5 to 90 g ozone/h

The OZONFILT® OZVa is high-performance and compact. For efficient ozone generation in the medium output range of up to 90 g/h from compressed air or oxygen.

Ozone systems OZONFILT $^{\odot}$ OZVa are pressurised systems in which the operating gas – air or oxygen – is fed into the ozone generator under pressure.

Air is used as the operating gas in the ozone system OZONFILT® OZVa type 1 to 4

The ozone is generated from the oxygen in the ambient air and simultaneously metered. The integrated air treatment unit is designed as a pressure swing dryer, ensuring that ozone can be generated operationally safely and reliably even with a high level of ambient air humidity with ozone concentrations of up to 20 g/Nm³. Using the suitable mixing equipment, ozone concentrations of between 3 and 12 ppm can be achieved in the water to be treated, depending on the temperature.

Oxygen is used as the operating gas in the ozone system OZONFILT® OZVa type 5 to 7

Oxygen operation permits ozone generation with ozone concentrations of up to 150 g/Nm³. Depending on the system type, ozone is produced in 1-3 generators from oxygen provided from special oxygen generators or bottles. Using the suitable mixing equipment, ozone concentrations of up to 90 ppm can be achieved in the water to be treated, depending on the temperature.

Your benefits

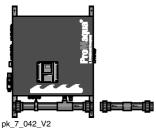
- Simple operation
- Ozone generation independent of pressure and mains voltage
- Direct injection without injector system at up to 2 bar back pressure
- Maximum efficiency with minimal consumption of energy and cooling water
- Complete protection of electrical components (high-voltage transformer and power stage) thanks to PCC technology (primary current-controlled)
- Low maintenance and operating costs
- Infinitely precise output control of between 3% and 100% of the nominal power with display of the ozone volume in "grammes/hour"

Technical details

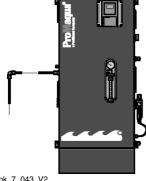
- Compact mounting in painted steel cabinet or optionally in a stainless steel cabinet
- Wall cabinet for OZVa 1, 2 and 5; free-standing cabinet for OZVa 3, 4, 6 and 7
- Special dielectric with outstanding cooling performance: in spite of the low cooling water consumption, heat is quickly and efficiently discharged before the ozone produced can decompose due to excessive heat
- Different designs up to complete equipment including integral mixing unit
- Excellent efficiency: Over 90% of the ozone is dissolved in the water, thanks to the special construction
 of the mixing unit
- Pause input for external switching on/off
- Analogue input 4-20 mA for power control depending on the measured value combined with external measuring and control technology
- Digital inputs for connection of a gas detector or external fault alarm
- Digital alarm signal output
- Air conditioning: With ambient temperature above 40 °C, the system can be equipped with an integral air conditioner. Max. ambient temperature with air conditioning: 50 °C

Field of application

- Potable water supply: Oxidation of iron, manganese and arsenic, refinement and taste enhancement and disinfection
- Waste water treatment: Degradation/reduction of COD and microcontaminants, reduction of sewage sludge
- Food and beverage industry: Oxidation of iron and manganese, disinfection of potable water and rinser water
- Public swimming pools: Degradation of disinfection by-products, reliable microbiological barrier and production of crystal-clear water thanks to its microflocculating effect
- Industry: Legionella prevention and disinfection of cooling water



ProMaqua®


2.4.1

Pro aqua

pk_7_001_1_V2 OZONFILT® OZVa 1; capacity: 5 g/h

OZONFILT® OZVa 2; capacity: 15 g/h

pk_7_043_V2
OZONFILT® OZVa 3; capacity: 35 g/h

OZONFILT® OZVa 1-4 Ozone Production Systems (Operating Gas - Air)

Under nominal conditions, the series OZVa 1-4 produces up to 40 g/h of ozone from oxygen in the ambient air at a concentration of 20 g/Nm³. Using the designated mixing devices, ozone concentrations of between 3 and 12 ppm can be achieved in the water to be treated, depending on the temperature (theoretical value at 30 and/or 0 °C).

Types OZVa 1 and 2 are installed in a control cabinet for wall mounting; types OZVa 3 and 4 are installed in a free-standing cabinet.

Provide an adequate supply of compressed air and a mixing unit designed for the operating conditions for operation of the ozone system.

Mixing equipment

OZVa 1 can be ordered in the following designs:

- Transparent mixing system with flow control mounted on the side of the system (see Fig. pk_7_001_1_V2)
- PVC static helical mixer mounted directly below the system, with 4 helical blades (pressure drop approx. 0.4 bar at maximum throughput) (see Fig. pk_7_042_V2)
- Without mixing system for connection of 12/10 mm stainless steel pipes or 12/9 mm PTFE pipes

OZVa 2 can be ordered in the following designs:

- PVC static helical mixer mounted directly below the system, with 4 helical blades (pressure drop approx. 0.4 bar at maximum throughput) (see Fig. pk_7_042_V2)
- Without mixing system for connection of 12/10 mm stainless steel pipes or 12/9 mm PTFE pipes

OZVa 3 and 4 are delivered, in principle, as designs without mixing system; order a suitable mixing system separately (see Fig. $pk_07_043_V2$).

PVC or Stainless Steel Static Helical Mixer see p. → 2-24

Notes

- The length of ozone gas-transporting pipes and the number of joints should be kept to a minimum. All rooms with a removable joint are to be monitored with a gas detector according to applicable German accident prevention regulations. All OZONFILT® systems are equipped for fitting a gas detector, such as a GMA 36 Ozon (see accessories).
- The ozone generator must be interlocked with the water flow into the metering point on all installations.
- A non-return valve should be installed upstream of the OVZa to prevent any return of ozonised water into the ozone-transporting pipe.

Technical Data

OZONFILT® OZVa 1-4 ozone production systems (operating gas - air)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 °C (with integrated air conditioning system: 50 °C)

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Number of generator modules		1	1	2	2
Ozone capacity, measured in accordance with DIN with air at 20 °C, cooling water at 15 °C	g/h	5	15	35	40
Air consumption (only ozone generation)	Nm³/h	0.25	0.75	1.75	2
Ozone concentration in the gas phase referenced to nominal conditions	g/Nm ³ *	20	20	20	20
Specific energy requirement at nominal capacity	Wh/g	30	30	21	20
Power factor at full capacity	cos φ	0.70	0.98	0.98	0.98
Ozone connection		Integrated in mixing device or G 1/4" internal	Integrated in mixing device or G 1/4" internal	G 1/4" internal	G 1/4" internal

^{*} For air at 20 °C, cooling water at 15 °C

Electrical connection

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Connected load	V/Hz/A	230/50;60/1,2	230/50;60/3	230/50;60/6	230/50;60/6
Enclosure rating		IP 43	IP 43	IP 43	IP 43

Overall dimensions (without mixer)

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Width	mm	840	840	710	710
Height	mm	840	805	1,400	1,400
Depth	mm	310	310	310	310

Weight

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Weight	kg	70	75	121	121

Ozone mixing

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Max. raw water temperature	°C	35	35	35	35
Permissible pressure at ozone outlet	bar	0.8-2.0	0.8-2.0	0.8-2.0	0.8-1.5

Air supply

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Required air volume	NI/min	6.2	17	38	42

Air quality

Oil and dust-free, non-corrosive, constant upstream pressure of 6-10 bar

Cooling water

		OZVa 1	OZVa 2	OZVa 3	OZVa 4
Cooling water requirement	l/h	10–60	20–60	50–100	70–100
Cooling water inlet pressure	bar	1–5	1–5	1–5	1–5
Cooling water inlet, PE pressure hose	mm	6 x 4	6 x 4	6 x 4	6 x 4
Cooling water outlet, open discharge	mm	6 x 4	6 x 4	6 x 4	6 x 4
Cooling water temperature at ambient temp. max. 35 °C	°C	<30	<30	<30	<30
Cooling water temperature at ambient temp. 35-40 °C	°C	<25	<25	<25	<25

Cooling water quality

No tendency to form lime scale; removable substances: < 0.1 ml/l ; iron: < 0.2 mg/l; manganese: < 0.05 mg/l; no corrosive components; conductivity: > $100 \mu S/cm$

^{**} Nm³ = m³ under standard conditions (p = $1.013x10^5$ Pa, T = 273 K)

2.4.2 OZONFILT® OZVa 5-7 Ozone Production Systems (Operating Gas - Oxygen)

The product range OZONFILT® OZVa 5-7 is a new development based on proven PSG technology, which produces ozone concentrations of up to 150 g/Nm^3 using oxygen as the operating gas. Using the designated mixing units, ozone concentrations of up to 90 ppm can be achieved (theoretical value at 0 °C) in the water to be treated.

Depending on the system type, ozone is produced in 1 – 3 generators from oxygen, provided from special oxygen generators or bottles. The nominal capacity of the individual generators is 30 g/h at 100 g/Nm³.

Type 5 is installed in a wall-mounted cabinet, types 6 and 7 are installed in a free-standing cabinet. In all three systems, ozone is transported to the mixing unit through a separate 12/10 mm stainless steel pipe or 12/9 mm PTFE pipe.

Mixing equipment

We recommend using stainless steel mixing systems because of the high ozone concentrations. Mixing systems made of PVC can have a reduced service life, depending on the operating conditions.

Important note

- Keep the length of pipes for conveying ozone and the number of joints to a minimum. Monitor all adjoining rooms with a gas detector, in line with the applicable German accident prevention regulations. All OZONFILT® systems are equipped for the fitting of a gas detector, such as type GMA 36 Ozone.
- Depending on the operating and installation conditions, it might also be necessary to monitor the room air for excessive oxygen content. The gas detector GMA 36 Oxygen can be used for this purpose.
- It is necessary for the ozone generation system to be interlocked with the water flow to the ozone metering on all installations.
- Install a non-return valve upstream of the OZVa to prevent any backflow of ozonised water into the pipe transporting the ozone.
- Ensure that all accessories that transport gas are resistant to ozone and oxygen (e.g. grease-free).
- Only use catalytic residual ozone destructors because of the high ozone concentrations. Activated charcoal-based residual ozone destructors ignite spontaneously if subjected to increased ozone concentrations.

Room Air Monitor see p. → 2-26

Technical Data

OZONFILT® OZVa 5-7 ozone production systems (Operating Gas - Oxygen)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 °C (with integrated air conditioning system: 50 °C)

		OZVa 5	OZVa 6	OZVa 7
Number of generator modules		1	2	3
Nominal ozone capacity at 100 g/Nm ³ ** and cooling water at 15 °C	g/h	30	60	90
Ozone capacity at 150 g/Nm ³ *	g/h	17.5	35.0	52.0
Ozone capacity at 80 g/Nm ³	g/h	35	70	105
Specific energy requirement at nominal capacity	Wh/g	10	10	10
Power factor at full capacity	cos φ	0.98	0.98	0.98
Ozone connection		G 1/4" internal	G 1/4" internal	G 1/4" internal

Electrical connection

		OZVa 5	OZVa 6	OZVa 7
Connected load	V/Hz/A	230/50;60/3	230/50;60/6	230/50;60/10
Enclosure rating		IP 43	IP 43	IP 43

Overall dimensions (without mixer)

		OZVa 5	OZVa 6	OZVa 7
Width	mm	865	705	705
Height	mm	804	1,400	1,400
Depth	mm	310	345	345

Weight

		OZVa 5	OZVa 6	OZVa 7	
Weight	kg	75	109	114	

Ozone mixing

		OZVa 5	OZVa 6	OZVa /	
Max. raw water temperature	°C	35	35	35	
Permissible pressure at ozone outlet	bar	0.8-2.0	0.8-2.0	0.8–2.0	

Specification of operating gas: oxygen

		OZVa 5	OZVa 6	OZVa 7
Gas volume at nominal capacity 100 g/Nm ³	NI/h	300	600	900
Gas volume at capacity 150 g/Nm ³	NI/h	117*	234*	347*
Gas volume at capacity 80 g/Nm ³	NI/h	438	875	1,313
Concentration min.	vol%	90	90	90
Dew point max.	°C	-50	-50	-50
Pressure	bar	3 – 6	3 – 6	3 – 6
Max. particles	μm	5	5	5
Max. hydrocarbons	ppm	20	20	20
Max. temperature	°C	30	30	30

Cooling water

		OZVa 5	OZVa 6	OZVa 7
Cooling water requirement	l/h	30	70	100
Cooling water inlet pressure	bar	1–5	1–5	1–5
Cooling water inlet, PE pressure hose	mm	6 x 4	6 x 4	6 x 4
Cooling water outlet, open discharge	mm	6 x 4	6 x 4	6 x 4
Cooling water temperature at ambient temp. max. 35 °C	°C	<30	<30	<30
Cooling water temperature at ambient temp. 35–40 °C	°C	<25	<25	<25

Cooling water quality

No tendency to form lime scale. ; removable substances: < 0.1 ml/l; iron: < 0.2 mg/l; manganese: < 0.05 mg/l; no corrosive components; conductivity: $> 100 \mu\text{S/cm}$

^{**} $Nm^3 = m^3$ under standard conditions (p = 1.013x10⁵ Pa, T = 273 K)

^{*} Capacity 150 g/Nm³ must be factory set as a special version

2.4.3 Ordering Information for OZONFILT® OZVa Systems

OZONFILT® OZVa 1 capacity 5 g/h

Туре	Control cabinet surface	Order no.
Without mixing system	Grey powder-coated	1004239
Without mixing system	Stainless steel	1026124
With transparent mixing system with flow monitor 0.5–3 m³/h	Grey powder-coated	1026118
With transparent mixing system with flow monitor 0.5–3 m³/h	Stainless steel	1026125
With transparent mixing system with flow monitor, 3-5 m³/h	Grey powder-coated	1004235
With transparent mixing system with flow monitor, 3-5 m³/h	Stainless steel	1026126
With PVC static mixer, DN 40, 5-10 m ³ /h	Grey powder-coated	1026120
With PVC static mixer, DN 40, 5-10 m ³ /h	Stainless steel	1026127
With PVC static mixer, DN 50, 10-15 m ³ /h	Grey powder-coated	1026121
With PVC static mixer, DN 50, 10-15 m ³ /h	Stainless steel	1026128
With PVC static mixer, DN 32, 0.5-2.8 m ³ /h	Grey powder-coated	1026122
With PVC static mixer, DN 32, 0.5-2.8 m ³ /h	Stainless steel	1026129
With PVC static mixer, DN 32, 2.8-5 m ³ /h	Grey powder-coated	1026123
With PVC static mixer, DN 32, 2.8-5 m ³ /h	Stainless steel	1026130

OZONFILT® OZVa 2 capacity 15 g/h

Туре	Control cabinet surface	Order no.
Without mixing system	Grey powder-coated	1005129
Without mixing system	Stainless steel	1026133
With PVC static mixer, DN 40, 5-10 m ³ /h	Grey powder-coated	1005127
With PVC static mixer, DN 40, 5-10 m ³ /h	Stainless steel	1026134
With PVC static mixer, DN 50, 10-15 m ³ /h	Grey powder-coated	1005806
With PVC static mixer, DN 50, 10-15 m ³ /h	Stainless steel	1026135
With PVC static mixer, DN 32, 0.5-2.8 m ³ /h	Grey powder-coated	1026132
With PVC static mixer, DN 32, 0.5-2.8 m ³ /h	Stainless steel	1026144
With PVC static mixer, DN 32, 2.8-5 m ³ /h	Grey powder-coated	1005125
With PVC static mixer, DN 32, 2.8-5 m ³ /h	Stainless steel	1026145

OZONFILT® OZVa 3 capacity 35 g/h

Туре	Control cabinet surface	Order no.	
Without mixing system	Grey powder-coated	1009083	
Without mixing system	Stainless steel	1026146	

OZONFILT® OZVa 4 capacity 40 g/h

Туре	Control cabinet surface	Order no.
Without mixing system	Grey powder-coated	1009105
Without mixing system	Stainless steel	1026147

OZONFILT® OZVa 5 capacity 30 g/h operating gas oxygen

Type	Control cabinet surface	Order no.	
Without mixing system	Grey powder-coated	1026148	
Without mixing system	Stainless steel	1026149	

1.1.2015 Product Catalogue 2015 2-9

OZONFILT® OZVa 6 capacity 60 g/h operating gas oxygen

Туре	Control cabinet surface	Order no.
Without mixing system	Grey powder-coated	1023452
Without mixing system	Stainless steel	1026150

OZONFILT® OZVa 7 capacity 90 g/h operating gas oxygen

Туре	Control cabinet surface	Order no.
Without mixing system	Grey powder-coated	1026151
Without mixing system	Stainless steel	1026152

ProMaqua®

2.4.4

Ozone System OZONFILT® Compact OMVa

Individually adaptable thanks to modular construction

Ozone capacity 5 to 70 g ozone/h

The OZONFILT® Compact OMVa is a complete, ready-to-use ozone system. The components are perfectly coordinated to each other.

The ozone system OZONFILT® Compact OMVa has a modular construction mounted on a stainless steel frame. It can therefore be simply adapted to and integrated in the respective application.

A sufficient quantity and constant concentration of ozonised water is produced in the system's reaction tank. From there it is pumped to where it is needed. The required ozone concentration can be adjusted and is continuously controlled and held constant by a measuring and control circuit. Depending on the application, the ozonised water is pumped by system pressure or with one or more discharge pumps to where it is needed.

With the removal and replenishment of water in the storage tank, the air, which contains ozone, is discharged out via the water phase and via a residual ozone gas destructor. Ensure that no ozone escapes into the ambient air in normal operation.

Your benefits

- Excellent process reliability through the use of a pre-assembled, complete ozone treatment stage with perfectly matched components.
- Well-thought-out installation on a stainless steel frame for plug-and-play connection
 - Modular construction which can still be customised
- Compression-proof ozone generator built in compliance with DIN 19627
- Destruction of residual ozone gas for the removal of traces of ozone gas
- Room air monitoring for traces of ozone gas via a gas detector with a sensor with long-term stability
- Metering ozone, depending on the measured values, ensures a constant ozone concentration in the reaction tank

Technical details

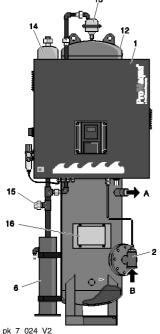
- Ozone metering point with a downstream mixing section made of stainless steel, with a series of static mixing elements for intensive mixing of the ozone/air mix.
- Stainless steel reaction tank.
- Ozone gas is safely converted to oxygen with the integral water separator in the residual ozone gas destruction unit.
- A gas detector alerts you as soon as the limit values ??for ozone in the ambient air are exceeded and ozone production is stopped.
- A central electric control ensures metering of ozone depending on the measured values and the control of all connected peripheral components.
- Clear and simple operation, as well as signal exchange with higher-order control systems

Ozone generation module (1), built in accordance with DIN 19627:

The ozone is produced with an OZONFILT® OZVa in a pressure-resistant ozone generator using an electronically produced and regulated medium-frequency.

Ozone mixing module (2):

This module comprises an ozone metering point and a downstream mixing section made of stainless steel, with a series of static mixing elements for intensive mixing of the ozone/air mix with the water to be treated. The lines carrying the ozone, and the pipework from the raw water connection to the inlet to the reaction tank are made throughout in stainless steel and have been factory-pressure tested.


An injector for sucking out ozone is not needed with back pressures of up to 1.8 bar because the ozone is generated at positive pressure.

Reaction tank module (12):

The stainless steel reaction tank incorporates all the necessary fittings for water distribution and an automatic bleed valve (13). The ozone generation module (1), the residual ozone gas destructor (14) and room air monitor (16) are mounted on this storage tank (12).

Residual ozone gas destruction module (14):

The residual ozone gas destruction module (14) has an integrated water separator (6) to remove any traces of ozone gas in the exhaust air coming from the reaction tank (12). The connection for the exhaust air from any downstream filter system (15) that may be fitted is likewise provided.

A to filtration

B Raw water

Room air monitoring module (16):

The room air is monitored for traces of ozone gas using a calibrated gas detector with a long-term stable electrochemical sensor.

If the alarm threshold is exceeded, ozone generation is stopped and an alarm signalled. A buzzer is activated at the same time.

Field of application

- Food and beverage industry: Oxidation of iron and manganese, disinfection of potable water and rinser water
- **Swimming pools**: Degradation of disinfection by-products, reliable microbiological barrier and production of crystal-clear water thanks to its microflocculating effect

Technical Data

Туре		OMVa 5 – 200	OMVa 15 - 500	OMVa 35-1,000	OMVa 40-1,000	OMVa 70-2,000
Type: ozone generation system		OZVa 1	OZVa 2	OZVa 3	OZVa 4	OZMa 1A
Ozone output at 20 g/Nm ³	g/h	5	15	35	40	70
Cooling water volume (15 ?)	l/h	10–60	20-60	50-100	70–100	90
Nominal throughput	m³/h	1.5 – 5	5 – 15	15 – 30	30 – 45	45 – 60
Enclosure rating		IP 43				
Connected load	V/Hz/A	230/50;60/1.2	230/50;60/3	230/50;60/6	230/50;60/6	230/50;60

2.5

Ozone System OZONFILT® OZMa

Powerful and yet environmentally-friendly. Disinfect and oxidise ecologically and economically. Ozone capacity 70 to 735 g ozone/h

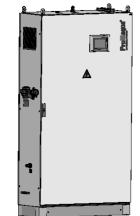
OZONFILT® OZMa represents maximum operational safety with minimal operating costs. The ozone generator is maintenance-free and generates up to 735 g/h of ozone from compressed air or oxygen.

The ozone systems OZONFILT® OZMa have been designed as pressurised systems, in which the operating gas – air or oxygen – is fed into the ozone generator under pressure.

Air is used as the operating gas in the ozone system Ozonfilt® OZMaA types 1 to 6

The ozone is generated from the oxygen in the ambient air and simultaneously metered. A demand-led, self-optimising pressure swing dryer reduces the consumption of compressed air to a minimum. Ozone can therefore be generated operationally safely and reliably even with a high level of ambient air humidity with ozone concentrations of up to 20 g/Nm³. Ozone concentrations of between 3 and 12 ppm can be achieved in the water to be treated with suitable mixing units, depending on the temperature.

Oxygen is used as the operating gas in the ozone system Ozonfilt $^{\scriptsize @}$ OZMaO type 1 to 6

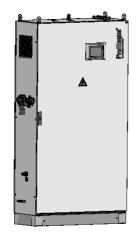

Operation with oxygen permits ozone generation with ozone concentrations of up to 150 g/Nm³. Depending on the system type, ozone is produced in 1-3 generators from oxygen provided from special oxygen generators or bottles. Using the suitable mixing equipment, ozone concentrations of up to 90 ppm can be achieved in the water to be treated, depending on the temperature.

Your benefits

- Economical: maintenance-free generator concept with virtually unlimited service life
- Up to 30% energy savings for air treatment, thanks to demand-led and self-optimising air drying compared with conventional air treatment.
- Automatic control of the operating gas depending on the ozone output, therefore reduced consumption of operating gas produced with intensive use of energy.
- High ozone concentration ensures optimum ozone solubility in water
- Direct injection without injector system at up to 2 bar back pressure
- Automatic ozone generation, virtually independent of fluctuations in main voltage and pressure
- Simple, safe and reliable operation and process visualisation thanks to large, colour and clear 7" touch panel
- Infinite adjustment and precise output control of between 3% and 100% of the nominal power with display of the ozone volume in "grammes/hour"

- Compact mounting, ready-to-use in a painted steel cabinet or optionally in a stainless steel cabinet
- With integrated filter package for the removal of dust and small amounts of residual oil in the compressed air
- Special dielectric with excellent cooling: In spite of the low cooling water consumption, heat is quickly and efficiently discharged before the ozone produced can decompose due to excessive heat.
- PLC with integrated ozone measurement and PID control
- 7" touch panel with data logger and screen recorder
- Multiple communication interfaces (e.g. LAN, PROFIBUS® DP)
- Excellent efficiency: Over 90% of the ozone is dissolved in the water, thanks to the special construction of the mixing unit
- Integration of a dew point sensor to monitor the quality of compressed air
- Integration of an air conditioning unit to adjust the temperature of the ozone system
- Pause input for external switching on/off
- Contact input for locking the system, for example in the absence of flow
- Digital input for connection of a gas detector
- Digital input for control of two power stages
- 0/4-20 mA input for external output control depending on the flow or measured value with a PIC controller
- Second freely configurable 0/ 4-20 mA input
- Contact output for operating status
- Contact output for collective malfunction alert
- Contact output for limit value transgression, ozone concentration in the water too low
- One freely configurable 0/ 4-20 mA output

P_PMA_OF_0010_SW


Field of application

- Potable water supply: Oxidation of iron, manganese and arsenic, refinement and taste enhancement and disinfection
- Waste water treatment: Degradation/reduction of COD and microcontaminants, reduction of sewage sludge
- Food and beverage industry: Oxidation of iron and manganese, disinfection of potable water and rinser water
- Swimming pools: Degradation of disinfection by-products, reliable microbiological barrier and production of crystal-clear water thanks to its microflocculating effect
- Industry: Legionella prevention and disinfection of cooling water

2-14 Product Catalogue 2015 1.1.2015

ProMaqua®

2.5.1

P_PMA_OF_0010_SW

Ozone Generation Systems OZONFILT® OZMa 1-6 A (Operating Gas - Air)

Under nominal conditions, the OZMa 1-6 A range produces up to 420 g/h of ozone from compressed air at a concentration of 20 g/Nm³. Using the designated mixing devices, ozone concentrations of between 3 and 12 ppm can be achieved in the water to be treated, depending on the temperature (theoretical value at 30 or 0 °C).

Different feature options can be achieved by combining different Identity code characteristics.

The plants are pre-mounted ready for connection in a painted steel cabinet (optional stainless steel control cabinet) and need only be connected to a single-phase voltage supply, compressed air, cooling water/waste water and ozone metering point on the customer's site.

An adequate compressed air supply and a mixing device designed for the operating conditions should be integrated for operation of the ozone plant.

Order Information for OZONFILT® OZMa Systems see p. → 2-21, PVC or Stainless Steel Static Helical Mixer see p. → 2-24

Mixing equipment

All OZMa systems are delivered, in principle, without a mixing unit and a suitable mixing system has to be ordered separately. When selecting a suitable mixing system, please note that the mixing of ozone is more efficient the higher the water flow in the mixing system. Accordingly design the mixing system so that the flow of the water to be treated is at the upper range of the flow specification.

PVC or Stainless Steel Static Helical Mixer see p. → 2-24

Notes on installation

Keep the length of ozone gas transporting pipes and the number of joints to a minimum. All rooms with a removable joint should be monitored with a gas detector in line with the applicable German accident prevention regulations. All OZONFILT® systems are equipped for fitting a gas detector such as GMA 36 Ozon.

Ozonisation adds a large amount of gas to the water of which only a small percentage can dissolve. Adequate bleeding should therefore be integrated. Because the gases discharged in this way have a considerable residual ozone concentration, appropriate residual ozone destructors should be installed.

The ozone generator should be interlocked with the water flow into the metering point for all installations.

A non-return valve should be installed between OZMa and the ozone metering point to prevent any return of ozonised water into the ozone-transporting pipe.

Room Air Monitor see p. \rightarrow 2-26, Residual Ozone Gas Destructor see p. \rightarrow 2-25

Technical Data

Ozone Generation Systems OZONFILT® OZMa 1-3 A (Process Gas - Air)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 °C (with integrated air conditioning system: 50 °C)

		OZMa 1A	OZMa 2A	OZMa 3A
Number of generator modules		1	1	1
Ozone capacity, measured in accordance with DIN with air at 20 $^{\circ}\text{C},$ cooling water at 15 $^{\circ}\text{C}$	g/h	70	105	140
Air consumption (only ozone generation)	Nm³/h	3.50	5.25	7.00
Ozone concentration in the gas phase referenced to nominal conditions	g/Nm ³ *	20	20	20
Specific energy requirement at nominal capacity	Wh/g	16.5	16.5	16.5
Power factor at full capacity	cos φ	0.95	0.95	0.95
Ozone connection		Rp 3/8"	Rp 3/8"	Rp 3/8"

^{*} Nm³= m³ at standard conditions (P = 1.013x10⁵Pa, T = 273 K)

Electrical connection

		OZMa 1A	OZMa 2A	OZMa 3A
Connected load	V/Hz/A	230/50;60/10	230/50;60/16	230/50;60/16
Enclosure rating		IP 43	IP 43	IP 43

Overall dimensions (without mixer)

		OZMa 1A	OZMa 2A	OZMa 3A	
Width	mm	1,114	1,114	1,114	
Height	mm	1,961	1,961	1,961	
Depth	mm	405	405	405	

Weight

		OZMa 1A	OZMa 2A	OZMa 3A	
Weight	kg	270	280	300	Ī

Ozone mixing

		OZMa 1A	OZMa 2A	OZMa 3A	
Max. raw water temperature	°C	35	35	35	
Permissible pressure at ozone outlet	bar	0.8–2.0	0.8–2.0	0.8–2.0	

Air supply

		OZMa 1A	OZMa 2A	OZMa 3A
Required air volume	NI/min	73	110	147

Air quality

Oil and dust-free, Non-corrosive, Constant upstream pressure of 4.5 - 10 bar $\,$

Cooling water

		OZMa 1A	OZMa 2A	OZMa 3A
Cooling water consumption (15 °C)	l/h	90	135	180
Cooling water consumption (30 °C)	l/h	200	300	400
Cooling water inlet pressure	bar	2–5	2–5	2–5
Cooling water inlet, PE pressure hose	mm	8 x 5	8 x 5	12 x 9
Cooling water outlet, open discharge	mm	8 x 5	8 x 5	12 x 9

Cooling water quality

No tendency to form lime scale; removable substances: < 0.1 ml/l ; iron: < 0.2 mg/l; manganese: < 0.05 mg/l; no corrosive components; conductivity: > $100 \mu S/cm$

Ozone Generation Systems OZONFILT® OZMa 4-6 A (Process Gas - Air)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 $^{\circ}$ C (with integrated air conditioning system: 50 $^{\circ}$ C)

		OZMa 4A	OZMa 5A	OZMa 6A
Number of generator modules		2	2	3
Ozone capacity, measured in accordance with DIN with air at 20 $^{\circ}\text{C},$ cooling water at 15 $^{\circ}\text{C}$	g/h	210	280	420
Air consumption (only ozone generation)	Nm³/h	10.50	14.00	21.00
Ozone concentration in the gas phase referenced to nominal conditions	g/Nm ³ *	20	20	20
Specific energy requirement at nominal capacity	Wh/g	16.5	16.5	16.5
Power factor at full capacity	cos φ	0.95	0.95	0.95
Ozone connection		Rp 3/8"	Rp 3/8"	Rp 3/8"

^{*} Nm 3 = m 3 at standard conditions (P = 1.013x10 5 Pa, T = 273 K)

Electrical connection

		OZMa 4A	OZMa 5A	OZMa 6A
Connected load	V/Hz/A	400/50;60/16	400/50;60/16	400/50;60/16
Enclosure rating		IP 43	IP 43	IP 43

Overall dimensions (without mixer)

		OZMa 4A	OZMa 5A	OZMa 6A	
Width	mm	1,320	1,320	1,606	
Height	mm	1,961	1,961	1,961	
Depth	mm	605	605	605	

Weight

		OZMa 4A	OZMa 5A	OZMa 6A
Weight	kg	420	445	589

Ozone mixing

		OZMa 4A	OZMa 5A	OZMa 6A	
Max. raw water temperature	°C	35	35	35	
Permissible pressure at ozone outlet	bar	0.8-2.0	0.8–2.0	0.8–2.0	

Air supply

		OZMa 4A	OZMa 5A	OZMa 6A
Required air volume	NI/min	220	293	440

Air quality

Oil and dust-free, non-corrosive, constant upstream pressure of 4.5 - 10 bar $\,$

Cooling water

		OZMa 4A	OZMa 5A	OZMa 6A
Cooling water consumption (15 °C)	l/h	270	360	540
Cooling water consumption (30 °C)	l/h	600	800	1,200
Cooling water inlet pressure	bar	2–5	2–5	2–5
Cooling water inlet, PE pressure hose	mm	12 x 9	12 x 9	12 x 9
Cooling water outlet, open discharge	mm	12 x 9	12 x 9	12 x 9

Cooling water quality

No tendency to form lime scale; removable substances: < 0.1 ml/l ; iron: < 0.2 mg/l; manganese: < 0.05 mg/l; no corrosive components; conductivity: > $100 \mu S/cm$

2.5.2 Ozone Generation Systems OZONFILT® OZMa 1-6 O (Operating Gas - Oxygen)

Under nominal conditions, the OZMa 1-6 O range produces up to 735 g/h of ozone from oxygen at a concentration of up to 150 g/Nm³. Using the designated mixing devices, ozone concentrations in the water to be treated of up to 90 ppm can be achieved (theoretical value at 0 $^{\circ}$ C). Ozone concentration in g/Nm³ and system feed rate in g/h can be varied depending on the operating conditions and can thus be individually matched to the application conditions. Examples for various combinations are listed in the technical data table.

Different feature options can be achieved by combining different Identity code characteristics.

The systems are pre-mounted ready for connection in a painted steel cabinet (optional stainless steel control cabinet) and should only be connected to a single-phase voltage supply, oxygen, cooling water/waste water and ozone metering point on the customer's site.

Order Information for OZONFILT® OZMa Systems see p. \rightarrow 2-21

Mixing equipment

All OZMa systems are delivered, in principle, without a mixing unit and a suitable mixing system has to be ordered separately. When selecting a suitable mixing system, please note that the mixing of ozone is more efficient the higher the water flow in the mixing system. Accordingly design the mixing system so that the flow of the water to be treated is at the upper range of the flow specification.

We recommend using stainless steel mixing systems because of the high ozone concentrations. Mixing systems made of PVC can have a reduced service life, depending on the operating conditions.

PVC or Stainless Steel Static Helical Mixer see p. → 2-24

Notes on installation

Keep the length of ozone gas transporting pipes and the number of joints to a minimum. All rooms with a removable joint should be monitored with a gas detector in line with the applicable German accident prevention regulations. All OZONFILT® systems are equipped for fitting a gas detector such as GMA 36 Ozon.

Depending on the operating and installation conditions, it might be necessary to also monitor the room air for excessive oxygen content. The gas detector GMA 36 Oxygen can be used for this purpose.

All gas-transporting accessories should be resistant to ozone and oxygen (e. g. fat-free).

Ozonisation adds a large amount of gas to the water of which only a small percentage can dissolve. Adequate bleeding should therefore be integrated. Because the gases discharged this way have a considerable residual ozone concentration, appropriate residual ozone destructors should be installed. Because of the high ozone concentrations, only catalytic residual ozone destructors can be used. Activated charcoal-based residual ozone destructors ignite spontaneously if subjected to increased ozone concentrations.

The ozone generator must be interlocked with the water flow into the metering point for all installation.

A non-return valve should be installed between OZMa and ozone metering point to prevent any return of ozonised water into the ozone-transporting pipe.

Room Air Monitor see p. \rightarrow 2-26, Residual Ozone Gas Destructor see p. \rightarrow 2-25

Technical Data

Ozone Generation Systems OZONFILT® OZMa 1-3 O (Operating Gas - Oxygen)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 °C (with integrated air conditioning system: 50 °C)

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Number of generator modules		1	1	1
Nominal ozone capacity at 100 g/Nm ³ ** and cooling water at 15 °C	g/h	105	158	210
Ozone capacity at 150 g/Nm ³ *	g/h	60	90	120
Ozone capacity at 80 g/Nm ³	g/h	123	184	245
Specific energy requirement at nominal capacity	Wh/g	9	9	9
Power factor at full capacity	cos φ	0.95	0.95	0.95
Ozone connection		Rp 3/8"	Rp 3/8"	Rp 3/8"

Electrical connection

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Connected load	V/Hz/A	230/50;60/10	230/50;60/16	230/50;60/16
Enclosure rating		IP 43	IP 43	IP 43

Overall dimensions

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Width	mm	1,114	1,114	1,114
Height	mm	1,961	1,961	1,961
Depth	mm	400	400	400

Weight

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Weight	kg	220	230	250

Ozone mixing

		OZMa 1 O	OZMa 2 O	OZMa 3 O	
Max. raw water temperature	°C	35	35	35	
Permissible pressure at ozone outlet	bar	0.8-2.0	0.8-2.0	0.8-2.0	

Specification of operating gas: oxygen

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Gas volume at nominal capacity 100 g/Nm ³	NI/h	1,050	1,580	2,100
Gas volume at capacity 150 g/Nm ³	NI/h	400*	600*	800*
Gas volume at capacity 80 g/Nm ³	NI/h	1,540	2,300	3,100
Concentration min.	vol%	90	90	90
Dew point max.	°C	-50	-50	-50
Pressure	bar	3 – 6	3 – 6	3 – 6
Max. particles	μm	5	5	5
Max. hydrocarbons	ppm	20	20	20
Max. temperature	°C	30	30	30

Cooling water

		OZMa 1 O	OZMa 2 O	OZMa 3 O
Cooling water consumption (15 °C)	l/h	120	180	240
Cooling water consumption (30 °C)	l/h	200	300	400
Cooling water inlet pressure	bar	1–5	1–5	1–5
Cooling water inlet, PE pressure hose	mm	12 x 9	12 x 9	12 x 9
Cooling water outlet, open discharge	mm	12 x 9	12 x 9	12 x 9

Cooling water quality

No tendency to form lime scale, no corrosive components; sedimentable substances: < 0.1 ml/l; iron: < 0.2mg/l; manganese: < 0.05 mg/l; conductivity: > $100 \mu S/cm$; chloride: < 250 mg/l

^{*} Output 150 g/Nm³as special version must be factory-set

^{**} Nm³= m³at standard conditions (P = 1.013x10⁵Pa, T = 273 K)

Ozone Generation Systems OZONFILT® OZMa 4-6 O (Operating Gas - Oxygen)

Ambient parameters

Max. 85% air humidity of the ambient air, non-condensing, non-corrosive, dust-free, max. ambient temperature: 40 $^{\circ}$ C (with integrated air conditioning system: 50 $^{\circ}$ C)

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Number of generator modules		2	2	3
Nominal ozone capacity at 100 g/Nm3 ** and cooling water at 15 °C	g/h	320	420	630
Ozone capacity at 150 g/Nm ³ *	g/h	180	240	360
Ozone capacity at 80 g/Nm ³	g/h	370	490	735
Specific energy requirement at nominal capacity	Wh/g	9	9	9
Power factor at full capacity	cos φ	0.95	0.95	0.95
Ozone connection		Rp 3/8"	Rp 3/8"	Rp 3/8"

Electrical connection

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Connected load	V/Hz/A	400/50;60/16	400/50;60/16	400/50;60/16
Enclosure rating		IP 43	IP 43	IP 43

Overall dimensions

		OZMa 4 O	OZMa 5 O	OZMa 6 O	
Width	mm	1,320	1,320	1,320	
Height	mm	1,961	1,961	1,961	
Depth	mm	605	605	605	

Weight

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Weight	kg	320	345	415

Ozone mixing

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Max. raw water temperature	°C	35	35	35
Permissible pressure at ozone outlet	bar	0.8–2.0	0.8–2.0	0.8–2.0

Specification of operating gas: oxygen

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Gas volume at nominal capacity 100 g/Nm ³	NI/h	3,200	4,200	6,300
Gas volume at capacity 150 g/Nm ³	NI/h	1,200*	1,600*	2,400*
Gas volume at capacity 80 g/Nm ³	NI/h	4,630	6,130	9,190
Concentration min.	vol%	90	90	90
Dew point max.	°C	-50	-50	-50
Pressure	bar	3 – 6	3 – 6	3 – 6
Max. particles	μm	5	5	5
Max. hydrocarbons	ppm	20	20	20
Max. temperature	°C	30	30	30

Cooling water

		OZMa 4 O	OZMa 5 O	OZMa 6 O
Cooling water consumption (15 °C)	l/h	200	280	420
Cooling water consumption (30 °C)	l/h	330	470	700
Cooling water inlet pressure	bar	1–5	1–5	1–5
Cooling water inlet, PE pressure hose	mm	12 x 9	12 x 9	12 x 9
Cooling water outlet, open discharge	mm	12 x 9	12 x 9	12 x 9

Cooling water quality

No tendency to form lime scale, no corrosive components; sedimentable substances: < 0.1 ml/l; iron: < 0.2mg/l; manganese: < 0.05 mg/l; conductivity: > $100 \mu S/cm$; chloride: < 250 mg/l

^{**} Nm³= m³at standard conditions (P = $1.013x10^5$ Pa, T = 273 K)

^{*} Output 150 g/Nm³as special version must be factory-set

2.5.3 Order Information for OZONFILT® OZMa Systems

alTvpe	ozone	genera	tor										
. , , , ,		peration		en ope	eration								
	g/h		g/h	, - p (
01	70		105										
02	105		158										
03	140		210										
04	210		320										
05	280		420										
06	420		630										
		ating ga											
	Α	Opera	iting gas	s - air									
	0	Opera	iting gas	s - oxyg	en								
		Type											
		Р	ProMa	aqua									
		S	Specia	al versio	n								
		С	ProMa	aqua wit	h air-co	nditionir	ng						
			Mech	anical o	desian								
			0			kaging	for trans	sport by	HGV)				
			1			kaging			,				
			2			eel cabi		_		sport by	HGV)		
			3			eel cabi							
			М	Modifi		00.000.	ioi (pai	J.1.4.9.1.19	.0. 000	u o.g	,		
					ating vo	ltogo							
				A		-phase	330 V T	10% 5	\/60 ⊔ -	(only t	mac 01	03/	
				S		phase 2					•	,	
				5) V ± 107	o, 50/60) HZ (OI	ly types	04-06)	
						eatmer							
					0				-				- oxygen)
					1			_			•	•	ign operating gas - air)
					2			_			_		operating gas - air)
					3				•				version), including gas control valve
					4			_				•	operating gas version), including gas control valve
					5	Gas tre	eatment	t integra	ted with	n filter p	ackage	(air ope	rating gas version), including gas control valve
							t langu						
						DE	germa						
						EN	english	า					
						FR	french						
						IT	italian						
						ES	spanis	h					
							Contro	ol					
							0		ersion	with dic	ital inpu	it to con	trol two power stages
							1						input, data logger
							2						urement and visualisation via screen recorder, 2 freely
							_						ely configurable 0/4-20 mA output
							3						controller for control of the ozone concentration
								indepe	ndent o	of meas	ured va	lue and	flow
								Comn	nunicat	ion inte	erfaces		
								0	None				
								4	PROF	IBUS® I	OP inter	face	
									Additi	onal or	tions		
									0	None			
									1	Dew p	oint ser	sor	
									l			1001	
										Appro 01	vais CE-ma	ark	
										01			
											Hardy		
											0	Standa	
												Softw	
												0	Standard
		•											

Explanation on the Identity code:

Mechanical design: In design 0 and 1, the plant is installed in a standard control cabinet made of powder-

coated steel.

Gas treatment: Without filter package for oil-free generated or de-oiled compressed air.

With filter package for compressed air with residual oil content.

2.6

2 Ozone Systems OZONFILT®

Accessories and Spare Parts for Ozone Systems

2.6.1 Compressors for OZONFILT® OZVa 1-4

Atlas Copco LFX compressors

The outstanding feature of this range of compressors is their outstanding value for money. They are equipped with active start unloading and automatic condensate discharge by solenoid valve. The compressors are not suitable for continuous operation and should only be used in less harsh operating conditions.

Technical Data

Туре		LFX 0.7	LFX 1.5	
Free air delivery rate at 7 bar	l/min	61	124	
Power consumption at 7 bar	W	530	970	
Number of cylinders		1	1	
Sound pressure level	dB(A)	62	64	
Air receiver capacity	I	20	20	
Weight	kg	44	48	
Suitable for OZVa Type		1 + 2	3 + 4	

Туре	Туре	Order no.
LFX 0.7	230 V/50 Hz	1004458
LFX 0.7	230 V/60 Hz	1010719
LFX 1.5	230 V/50 Hz	1006343
LFX 1.5	230 V/60 Hz	1009638

Air filter kit

	Order no.
Air filter kit for Atlas Copco LFX compressors	1005789

Dürr ABK compressors

The outstanding feature of this continuously rated range of compressors is their extremely robust construction, making them ideally suitable for industrial use. They are equipped with active start unloading, automatic condensate discharge by solenoid valve and an hours-run meter. PTFE coated special aluminium pistons lead to the long service life and reliability of these compressor units.

Technical Data

Туре		TA-080	HA-234	
Free air delivery rate at 7 bar	l/min	62	152	
Supply max.	VAC	230	230	
Supply frequency	Hz	50/60	50	
Power consumption at 7 bar	W	800	1,900	
Number of cylinders		1	3	
Sound pressure level	dB(A)	68	78	
Air receiver capacity	I	25	55	
Weight	kg	49	70	
Suitable for OZVa Type		1 + 2	3 + 4	

Туре	Order no.
TA-080	1025398
HA-234	1025399

Air filter kit

	Order no.
Air filter kit for Dürr ABK compressors*	1025400

^{* 1} filter kit is required per cylinder.

Compressors with refrigeration drying for operation in conditions of high humidity, and high-capacity screw compressors for connection to several ozone plants are available on request.

2.6.2 Oxygen Generator for OZONFILT® OZVa 5-7

OXYMAT 020 eco

This compact oxygen generator works on the principle of pressure swing filtration of the ambient air through a molecular sieve. Oxygen is generated with a purity of up to 95% and a dew point of – 70 °C when supplied with suitably dried compressed air. The system generates a pressure of 4 bar at the oxygen outlet and can be connected directly to the OZVa 5-7.

Technical Data

(At 90% oxygen yield):

Туре		OXYMAT 020 eco
Capacity	Nm³/h	1.6
Air requirement (min. 6 bar)	Nm³/min	0.31
Power consumption incl. compressor	kW	2.5
Specific energy requirement	kWh/Nm³	2.1

Required components

	Order no.
OXYMAT 020 eco, 110-240 V / 50-60 Hz	1044799
Pressure tank O ₂ for Oxymat O 020 eco, 90 I, 11 bar, PED with revision opening	1044986
Screw compressor (oil injection), integrated refrigeration drying and 200 I air receiver, 400 V / 3 ph / 50 Hz	On request
Filter set 006	1025387
Hose set DN 19 x 1100 PS 45	On request
Connecting set with connections for 6x4 mm PTFE hose, between OXYMAT and OZVa	1025395

Accessories

	Order no.
PTFE hose 6x4 mm, admissible operating pressure 15 bar, sold in metres	037426
Service kit for Atlas Copco LE 2-10, (recommended after 8,000 running hours)	1025390
Service kit for Atlas Copco GX 2-10 FF, (recommended after 8,000 running hours)	1025391
Service kit filter 006	1025392
Service kit for screw compressor for OXYMAT 020 eco	On request

1.1.2015 Product Catalogue 2015 2-2

2.6.3

pk_7_072 Static Helical Mixer

PVC or Stainless Steel Static Helical Mixer

Designed for intensive mixing of gas with liquid flows. 4 helical blades ensure optimum mixing of the ozone with minimal pressure drop (0.1 bar per blade at maximum flow). The specified flow range of the static helical mixer should be complied with for optimum mixing results.

Version with loose flanges to DIN 2501 and integrated injection point made from stainless steel with couplings for 12 mm diam. stainless steel tube, or 12/9 mm PTFE hose, using stainless steel support inserts. In addition, the injection point is fitted with a non-return valve to protect the ozone plant from reverse flowing water. The mixers are manufactured as grease-free, so they are also suitable for Types OZVa 5-7. The stainless steel version has a G 1/4" pressure gauge tapping at the ozone mixing point.

Flow	Material	Overall length	Connector	Order no.	
m³/h		mm			
5 – 10	PVC-U	718	DN 40	1024324	
10 – 15	PVC-U	718	DN 50	1024325	
15 – 25	PVC-U	718	DN 65	1024326	
25 – 35	PVC-U	1,100	DN 80	1024327	
35 – 50	PVC-U	1,100	DN 100	1024328	
50 – 90	PVC-U	1,300	DN 125	1034641	
95 – 160	PVC-U	1,700	DN 150	1034640	
5 – 10	1.4404	718	DN 40	1022503	
10 – 15	1.4404	718	DN 50	1022514	
15 – 25	1.4404	718	DN 65	1022515	
25 – 35	1.4404	1,100	DN 80	1022516	
35 – 50	1.4404	1,100	DN 100	1024154	

Other sizes on request

Connecting parts for the gas pipeline

	Order no.
Stainless steel pipe 12/10 mm, Sold in metres	015743
Stainless steel pipe 12/10 mm, grease-less, 1.4 m	1022463
PTFE hose 12/9 mm, grease-less, sold in metres	037428
Stainless steel support inserts, 2 No. for 12/9 mm PTFE hose, greaseless	1025397
Stainless steel coupling 12 mm - R 1/4, grease-less	1025755
Stainless steel fitting 12 mm - R 3/8, grease-less	1034642
Stainless steel 90° elbow D 12 - D 12, grease-less	1022462
Stainless steel pressure relief valve, Adjustable pressure range 0.07 – 2 bar, Connection size: 1/4" NPT, 2 additional inputs for connecting 2 pressure gauges.	1029032
Stainless steel back pressure valve for OZMa 1 $-$ 3 A and OZMa 4 $-$ 6 O, adjustable pressure range 0.5 $-$ 10 bar, connector G 3/4" external thread, grease-free	1039408
Spare parts kit for back pressure valve order no. 1039408	1039410
Stainless steel back pressure valve for OZMa 4 – 6 A, adjustable pressure range 0.5 – 10 bar, connector G 1 1/4" external thread, grease-free	1039409
Spare parts kit for back pressure valve order no. 1039409	1039411

2.6.4 Accessories for OZONFILT® OZMa

The remote control module for OZMa systems enables bidirectional communication with the system control. Communication takes place optionally via a LAN, MPI or USB communication interface.

	Order no.
Remote control module for OZMa systems	On request

2.6.5 Bleed Valves

Suitable for types	Connector	Pressure	Order no.
		bar	
OZVa 1 – 7	R 3/4" internal x R 1/2" external	0 – 6.0	302525
OZMa 1 – 30/OZMa 1A	R 1" internal x R 1/2" external	0 - 2.0	302526
OZMa 2-4A / OZMa 4-6O	R 1" internal x R 3/4" external	0 – 2.0	303845

Bleed valves made of stainless steel 1.4571 in ozone-resistant version for mounting on reaction tanks.

2.6.6 Residual Ozone Gas Destructor

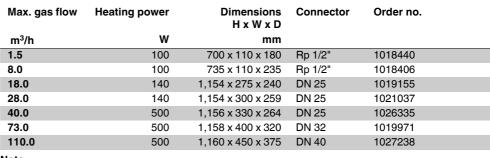
Residual ozone gas destruction is used to remove traces of ozone gas from the exhaust air coming from the reaction tank. Because the exhaust air from the reaction tank still contains water, the pipework should be suitably routed so as to ensure that the water is drained off at the inlet side.

A suitable drainage connection should be provided here too as the exhaust air after the residual ozone gas destructor is still up to 100% saturated with water vapour, and because small temperature fluctuations, even on the outlet side, can lead to flowback of condensate.

The exhaust air from any downstream filter plant that may be fitted can also be routed via this ozone gas destruction unit.

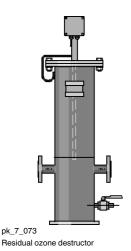
PVC version

Residual ozone destructor based on activated charcoal granules in a PVC housing.


	Type	Ozone quantity	Order no.	
		g/h		
Residual ozone destructor 3 L	10	10	879022	
Residual ozone destructor 14 L	40	40	1004267	
Residual ozone destructor 30 L	100	100	879019	
Residual ozone destructor 60 L	200	200	879018	

Note:

The stated ozone quantities refer to quantities added to the raw water. The residual ozone destructor is designed for the normal residual ozone concentration found in swimming pool applications. It should only be used in plants with air as operating gas and a maximum added quantity of 1.5 g of ozone/m³ treated water.


Stainless steel version

Residual ozone destructor based on a maintenance-free MnO catalytic converter with integrated heating, 230 V, 50-60 Hz. Connections Rp 1/2" or flanges to DIN 2642, PN10. Types 18 to 110 m³/h also fitted with Rp 1/2" ball valve as condensate drain.

The catalytic residual ozone destructor should only be used in chlorine-free gas flows. The PVC version should therefore be used for swimming pool applications.

2.6.7

pk_7_004_1 Gas warning devices GMA 36

Room Air Monitor

Gas warning device GMA 36 - ozone and oxygen

Calibratable gas warning device with digital display of the detected gas concentration. 2 relay outputs for issue of infringements of warning and alarm thresholds, to switch external alarm sounder and for interlocking with the ozone system. The warning message relay is self-resetting, the alarm relay is a latching type and should be acknowledged at the device. 1 self-resetting relay for connection to an alarm horn is switched in the event of fault conditions and when the alarm limit is exceeded.

The ozone sensor responds to all strongly oxidising gases, hence it responds to chlorine gas or chlorine dioxide too.

The GMA 36 oxygen warning device is intended for installations where an unacceptably high oxygen enrichment of the ambient air is possible.

Technical Data

Туре		Ozone	Oxygen
Warning at approx.	ppm/vol%	0.3	23.0
Alarm at approx.	ppm/vol%	0.5	25.0
Permissible ambient temperature	°C	-1545	-1545
Protection class housing		IP 54	IP 54
Dimensions (without PGs, without sensor) H x W x D	mm	247 x 135 x 95	247 x 135 x 95
Supply	V/Hz	85 – 264/50 – 60	85 – 264/50 – 60
Power consumption	W	5	5
Warm-up phase max.	S	150	20
"Warning" relay contact, self-resetting	V/A	230/1	230/1
"Alarm" relay contact, latching	V/A	230/1	230/1
"Horn" relay contact, latching, can be acknowledged	V/A	230/1	230/1
Sensor measuring principle		electrochemical	electrochemical
Sensor service life (depending on environmental cond.)	years	2–3	2–3

	Туре	Order no.	
Gas warning device GMA 36	Ozone	1023155	
Gas warning device GMA 36	Oxygen	1023971	

Spare Parts

	Order no.
Replacement sensor for chlorine, chlorine dioxide, ozone	1023314
Replacement sensor for oxygen	1023851
Replacement sensor for gas warning devices in the Life CGM range	1003009

Mounting kit

	Order no.
Mounting kit for direct mounting of the CGM 1060 and GMA 36 ozone warning devices on the housing of the OZVa plants	1004248
Support bracket for mounting kit for all types of OZVa except OZVa 1/2 with transparent mixing system	1005854

Warning light and horn

Combined horn and red warning lamp. IP 33 enclosure made of impact-resistant ABS. Dome made of clear polycarbonate. Connected load: 230 V AC, 50 mA. Supplied complete with B 15 d / 7 watt bulb.

	Order no.
Warning light and horn	1010508

Gas tracing pump

Hand operated, non-continuously working test tube pump for fast and accurate measurement of ozone gas. Complete with 10 no. ozone gas test tubes 0.05-5 ppm in carrying case.

	Order no.
Gas tracing pump	1025533

Potassium iodide starch paper

Roll with 4.8 m test strip for leak detection on pipelines carrying ozone gas.

	Order no.
Potassium iodide starch paper	1025575

2.6.8 Cooling Water Heat Exchanger

A heat exchanger can be used as an alternative to the use of fresh water as cooling water. The cooling water is fed through the heat exchanger and ozone system in a circuit. The cooling water heat exchanger discharges the heat to the surroundings.

Technical Data

- Single circuit system with tank open to the atmosphere
- Air-cooled refrigeration unit
- Integral evaporator
- Plastic tank with water level display and level switch with alarm contact
- Microprocessor-controlled temperature controller with digital display
- Integral pump
- Manometer
- Powder-coated exterior housing

Order no:		1043847	1043848	1043849	1043850
Refrigerant	CFC-free	R404a	R404a	R134a	R134a
Useful cooling power at 20 °C	kW	2.5	3.6	4.9	6.0
Working range	°C	+10/+25	+10/+25	+5/+25	+5/+25
Pump	Type	P16-YA62D	P16-YA62D	P3-BR11B	P3-BR11B
Pump output	l/min	5.0	5.0	16.7	18.3
Pump pressure	bar	3.0	3.0	2.2	2.1
Content	1	13	13	30	30
Water connectors	Inch	< 1/2 " interna	l thread >	< G 3/4 " inter	nal thread >
Power consumption	kW	1.6	2.2	2.2	1.8
Mains connection	V/Hz	230/50 - 60	230/50 – 60	400/50	400/50
Weight	kg	35	47	123	125
Outside dimensions (WxDxH)	mm	480x745x445	480x745x445	580x650x920	580x650x920

	Suitable for type	Order no.
Cooling water heat exchanger	OZVa 1 – 7, OZMa 1 – 2 A, OZMa 1 – 2 O	1043847
	OZMa 3 A, OZMa 3 O, OZMa 4 O	1043848
	OZMa 4 A, OZMa 5 A, OZMa 5 O	1043849
	OZMa 6 A, OZMa 6 O	1043850

2.6.9 Personal Protection Needs

Gas mask

Ozone-resistant, full-face respiratory protective mask with panoramic window shield to EN 136 Class 3. Medium size with EN 148-1 threaded pipe connection. Complete with combination filter NO-P3 and carrying case.

	Order no.
Gas mask	1025574

1.1.2015 Product Catalogue 2015 2-27

Warning label

Warning label in accordance with the "Guidelines for the use of ozone for water treatment" ZH 1/474, issued by the central office of the industrial safety associations. Version supplied as a combined adhesive label with markings as follows: warning sign, ozone plant room indication and prohibited activity signs.

	Order no.
Warning label	740921

Emergency stop switch

For installation near the door of the ozone plant room. IP 65 PVC enclosure.

	Order no.
Emergency stop switch	700560

2.6.10 Overvoltage Protection

Overvoltage protection for OZONFILT® systems operated at 230 V 50-60 Hz.

The external overvoltage protection is intended for the operating case where the device internal protection is insufficient for surge voltages of 1 kV between the conductors and of 2 kV to earth. To protect the system when the supply mains is prone to power transients an overvoltage trip can be fitted as a low protection surge arrestor to significantly increase the stability of the ozone systems.

Whether the low protection surge arrestor requires further measures such as medium and main protection can only be determined by thorough investigation of the voltage behaviour on site.

	Order no.
Fine protection PT 2-DE IS 230 IAC	733010

2.6.11 Replacement Plug-in Insert After Tripping

	Order no.
Replacement plug-in insert PT 2-DE / S 230 / AC - ST	733011

3 Bello Zon[®] Chlorine Dioxide Systems

3.1 Chlorine Dioxide in Water Treatment

Chlorine dioxide is an exceptionally reactive gas, which is not stored due to its instability but rather must only be manufactured to meet requirements at its place of use in special systems.

Chlorine dioxide has a number of advantages over chlorine, which is predominantly used in the disinfection of water. Thus for instance, the disinfection effect does not reduce with increasing pH-value, as is the case with chlorine, rather it increases slightly. Chlorine dioxide remains stable in pipework systems over long periods of time and provides microbiological protection of the water for many hours and up to several days. Ammonia or ammonium, which cause considerable chlorine loss, do not react with chlorine dioxide so that the metered chlorine dioxide remains fully available for disinfection purposes. Chlorophenols, strongly smelling compounds, which result from the chlorination of water etc., are not formed with chlorine dioxide. Trihalogenmethanes (THMs), a substance class, which, like their main representative, chloroform, is suspected of being carcinogens, result from the reaction of chlorine with dissolved matter naturally found in water (humic acids, fulvic acids, etc.). If chlorine dioxide is used as an alternative disinfectant these substances are not produced.

Advantages of chlorine dioxide:

- Disinfectant effect regardless of the pH value.
- Excellent depositing effect, thanks to long-term stability in the pipework.
- Degradation of biofilms in pipework and tanks, thus reliable protection of entire water systems against legionella attack.
- No reaction with ammonia or ammonium.
- No formation of chlorophenols and other strongly smelling compounds that can be produced during water chlorination.
- No formation of trihalomethanes (THM) or other chlorinated hydrocarbons, no increase in AOX values.

3.1.1 Chlorine Dioxide Applications

With every new project, our engineers draw on experience that we have accumulated since 1976 in the following applications:

Municipal potable water and waste water companies

- Disinfection of potable water
- Disinfection of waste water

Hotels, hospitals, care homes, sports centres etc.

- Combating legionella in cold and hot water systems
- Water disinfection in the cooling towers of air conditioning systems
- Disinfection of swimming pool filters

Food and beverage industry

- Disinfection of product and raw water
- Bottle cleaning, rinsers and pasteurisers
- Cold-sterile bottling systems
- Disinfectant in CIP systems
- Water vapour treatment (condensation) in the milk industry
- Water treatment for fruit, vegetable, seafood, fish and poultry processing

Market gardening

■ Disinfection of irrigation water in plant cultivation

Industry

- Cooling water treatment
- Combating legionella in cooling water circuits
- Disinfection of process water
- Removal of odorous substances in air scrubbers
- Slime control in the paper industry

3.1.2 Bello Zon® System Technology

Bello Zon® chlorine dioxide generation and metering systems use the chlorite/acid process. These systems generate a chlorine-free chlorine dioxide solution through the reaction of sodium chlorite solution with hydrochloric acid.

Decades of experience with Bello Zon® chlorine dioxide systems have shown that using the selected process parameters can achieve an excellent output of up to 99% (relative to the stoichiometric ratio).

In most applications, metering is proportional to the flow, i.e. the flow depends on the signal from an inductive or contact flow meter or is performed in parallel to a feed pump.

In circulation systems, such as bottle washing machines, cooling circuits, etc., where a chlorine dioxide loss need only be made good, the addition can also be controlled based on a measurement of chlorine dioxide.

Features

- Precise and reproducible chlorine dioxide production, thanks to the use of calibratable metering pumps for the starting chemicals.
- Convenient easy operation, thanks to microprocessor control with display of all relevant operating parameters and error messages in plain text.
- Display of the current production quantity as well as the flow rate of the connected flow meters with CDV and CDK.
- Integrated measurement of CIO₂ and chlorite plus control of CIO₂ with CDV and CDK.
- Highest safety level provided as standard, thanks to construction and operation in accordance with DVGW specifications W 224 and W 624.

Bello Zon® CDL

Innovative process control provides excellent long-term stability of the chlorine dioxide produced 0-120 g/h chlorine dioxide/h and for flows of up to 600³/h

Bello Zon® CDE

Bello Zon® CDEa is winning over customers, thanks to its ultra-simple operation and clearly laid out construction with standard components.

5-140 g/h chlorine dioxide. Max. flow at 0.2 ppm ClO₂ metering is 700 m³/h

Bello Zon® CDV

Bello Zon® CDVc is the convenient system for the treatment of average to large volumes of water with chlorine dioxide.

1 to 2,000 g/h chlorine dioxide. Max. flow at 0.2 ppm CIO₂ metering is 10,000 m³/h

Bello Zon® CDK

Bello Zon® CDKc is a deluxe system, persuading customers with its safe handling of chemicals and maximum possible potential savings.

8-12,000 g/h chlorine dioxide. Max. flow at 0.2 ppm CIO₂ metering is 60,000 m³/h

ProMinent provides all the advice needed for the safe operation of a chlorine dioxide system:

- Evaluation of the situation on site by trained, expert field sales staff.
- Interpretation of water analysis.
- Project planning of the system.
- Commissioning and system maintenance by our trained service technicians.

3.2 Performance Overview of Chlorine Dioxide Systems

Type [g/h]	CDLP	CDEa	CDVc	CDKc
15.000				
10.000				8 – 12.000
5.000	• • • • • • • • • • • • • • • • • • • •			6 – 12.000
1.000			1 – 2.000	
500			1 – 2.000	
100	0 – 120	5 – 140		
50	U - 12U	3 – 140		
10				
5				

Manufacturing method

	Chlorite-Acid (depleted) 7,5 % NaCLo2 + 9 % HCl	Chlorite-Acid (depleted) 7,5 % NaCLo2 + 9 % HCl	Chlorite-Acid (depleted) 7,5 % NaCLo2 + 9 % HCl	Chlorite-Acid (concentrated) 24,5 % NaCLo2 + 25-37 % HCI
Application				
Legionella combating				
Food and bewerages industry			•	
Municipal drinking and waste water treatment	•		•	•
Industry (cooling tower, waste/ process water, etc.	•	•	•	•

P_PMA_BEZ_0125_SW

Chlorine dioxide is establishing itself more and more as a universal disinfectant in applications such as the disinfection of drinking water and industrial water, washing food or in the treatment of cooling water and waste water. Its effect independent of the pH value of the water ensures systems remain free of biofilms.

- Efficient disinfection in connection with excellent eco-compatibility
- Safe and reliable plant technology
- $\hfill \blacksquare$ Worldwide availability of know-how and service

3.3 Questionnaire on the Design of a Chlorine Dioxide System

Use of the chlorine di	oxide plant:	
☐ for disinfection of		☐ Drinking water
		☐ Industrial water
		☐ Process water in the food industry
		☐ Waste water
		☐ Cooling water
☐ for oxidation of		☐ Iron, manganese, nitrite, sulphide etc.
		☐ Swimming pool water
		□ Odour
Water values:		
Max. water flow rate	m³/h	Maximum water pressure bar
Water flow rate	□ constant	☐ fluctuating from m³/h to m³/h
pH value		Iron (Fe ²⁺) mg/l
Temperature	°C	Manganese (Mn²+) mg/l
Solid fraction	mg/l	Nitrite (NO ₂ -) mg/l
Alkalinity K _{S4,3}	mmol/l	Sulphide (S ²⁻) mg/l
		TOC (total organic carbon) mg/l
Response time to app	olication:	
m³ volume re	action tank or	minutes residence time in entire system.
Type of metering:		
□ constant		
☐ flow-proportional		
☐ depending on meas	sured value	
Desired amount of mo	etering: mg/l	
Desired concentration	n after chlorine dioxide	e metering: mg/l
Other requirements:		

3.4

Bello Zon® Chlorine Dioxide Systems Type CDLb

Innovative process control provides excellent long-term stability of the chlorine dioxide produced

0-120 g/h chlorine dioxide/h and for flows of up to 6003/h

The chlorine dioxide system Bello Zon® CDLb works in a safe and reliable batch operation. The integral or separate storage module is suitable as a solution for both continuous and intermittent metering tasks.

P PMA BEZ 0077 SW

P PMA BEZ 0122 SW

The chlorine dioxide system Bello Zon® CDLb uses the chlorite/acid process. A chlorine-free chlorine dioxide solution is generated from a sodium chlorite solution using hydrochloric acid in a batch process. Thanks to the innovative reactor design and gradual process flow, the production of chlorine dioxide is exceptionally safe in this manner. Depending on the type, the system can produce up to 120 g chlorine dioxide per hour. This is then buffered in an integral or separate receiver module at a concentration of 1,000 or 2,000 mg/l. Thanks to the 60 g of chlorine dioxide buffered in the separate receiver module, these systems need not be dimensioned according to their peak load but rather based on their mean consumption. This drastically reduces investment costs compared with conventional systems.

The innovative process produces a chlorine dioxide solution of exceptional long-term stability and provides excellent efficiency of over 90% in the chlorine dioxide reaction. No chlorine dioxide can escape from the system due to the closed gas transport system, guaranteeing economical, environmentally friendly operation with minimal use of chemicals. The modular construction of the system means it is suitable for a range of different applications. Possible applications of the chlorine dioxide system Bello Zon® CDLb are primarily in the prevention of legionella and in disinfection in the food and beverage industry. Other applications are in cooling and potable water treatment and in swimming pool filter disinfection.

Your benefits

- Safe process control
- No loss of chlorine dioxide due to closed gas transport system
- Excellent stability of the chlorine dioxide solution
- Minimal investment costs
- Operation of several points of injection
- Filter disinfection
- Complies with the high standards stipulated in W 224 and W 624 DVGW German Association for Gas and Water data sheets

Technical details

Voltage supply

100 - 230 V, 50/60 Hz (16 A)

Inputs

2 freely configurable digital inputs for the functions Pause, High metering, Intermittent metering or Manual metering, as well as an external collective

4 digital inputs for monitoring (warning / empty message) the chemical supply

1 digital input for contact water meter 0.25-20 Hz 1 frequency input for water meter 10-10,000 Hz

Outputs

1 operating signal relay 1 alarm signal relay 1 warning signal relay

1 voltage output +5 V as supply voltage for a water meter with Hall sensor

Operating fluids

Sodium chlorite 7.5%, purity according to EN 938 Hydrochloric acid 9% purity according to EN 939

Potable water

Enclosure rating

Field of application

- Prevention of legionella in hotels, hospitals etc.
- Disinfection in the food and beverage industry (bottle rinsers, CIP (cleaning in place), bottle washing machines, washing of fruit and vegetables)
- Market gardening (irrigation water and sprinkler irrigation water)
- Treatment of cooling water and potable water
- Swimming pools (filter backwashing and prevention of legionella)

3 Bello Zon[®] Chlorine Dioxide Systems

Technical Data

Туре	Generation capacity	Solution concentration	Capacity	Dimensions (approx.) H x W x D (mm)	Weight
	g/h	mg/l	l/h	mm	kg
CDLb 06	6*	1000	8	1,236 x 878 x 306	41
CDLb 12	12*	2000	8	1,236 x 878 x 306	42
CDLb 22	22*	2000	13	1,236 x 878 x 306	46
CDLb 55	55* ¹⁾	2000	30	1,550 x 800 x 345	73
CDLb 120	120** 1)	2000	**	1,300 x 880 x 425	55

- * Option: Integrated receiver tank and integrated metering pump with suitable capacity up to 7 bar back pressure.
- ** With external receiver module and separate metering pump
- 1) Without cover

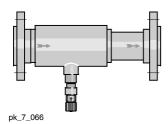
Interfaces

Type CDLb		6 g/h	12 g/h	22 g/h	55 g/h	120 g/h
Water inlet	ProMinent/Neutral	12-9	12-9	12-9	12-9	Di20/DN15
	Swiss	Di20/DN15	Di20/DN15	Di20/DN15	Di20/DN15	Di20/DN15
Connector dimensions of metering pump for acid and chlorite		6x4	6x4	6x4	6x4	6x4
CIO2 outlet	With internal storage/pump/ multifunctional valve	6-4	6-4	12-9	12-9	
	With internal storage tank/pump	6-4	6-4	12-9	12-9	
	With internal storage tank, without pump	6-4	6-4	8-5	12-9	
	With external storage tank, without pump (reactor outlet)	12-9	12-9	12-9	12-9	Di25/DN20
	External storage tank (suction lance connector)	Di25/DN20	Di25/DN20	Di25/DN20	Di25/DN20	Di25/DN20

3.4.1 Identity code ordering system for chlorine dioxide systems Bello Zon® CDLb

CDLb	CIO ₂ p	roducti					
	02	CDLb (CDLb 06 = 6 g/h				
	04	CDLb .	CDLb 12 = 12 g/h				
	06	CDLb 2	CDLb 22 = 22 g/h				
	80	CDLb 55 = 55 g/h, cover not included, see Accessories					
	10	CDLb ·	120 = 12	20 g/h, c	over no	include	d, see Accessories
		Equip		,			
		0		eceiver ta	ank, pur	np and r	nultifunctional valve (not with CDLb 120) *
		1					not with CDLb 120) *
		2					np (not for CDLb 120)
		3			,		out pump
			Desig				
			Р	ProMin			
			S			vater co	nnection, rigid piping
			N	Neutra	I		
				Opera	ting vol	tage	
				0	230 V,	50/60 H	z
				1	115 V, 50/60 Hz		
					Suction lance, suction assembly		
					0 None		
					1		uction lance
					2	With su	uction lance and collecting pan
					3	With su	uction lance, collecting pan, angle valve and PE hose 12x9 (10 m)
			Pre-set language				
			DE german				
						EN	english
						ES	spanish
						FR	french
						IT	italian
						PL	polish
			CZ czech				

* CIO₂ discharge pumps are not equipped with a fault indicating relay. It is available as an accessory.



3.4.2

Accessories and Maintenance Sets for Chlorine Dioxide Systems Bello Zon® CDLb

Point of injection

Corrosion-resistant point of injection made of PVC-U or PVC-C for warm water applications with integrated mixer elements and maintenance-free PVDF metering valve.

	Material	Installation length	Order no.
		mm	
CDL DN 50 point of injection	PVC-U	450	1027611
CDL DN 65 point of injection	PVC-U	400	1026490
CDL DN 80 point of injection	PVC-U	400	1027612
CDL DN 100 point of injection	PVC-U	470	1034693
CDL DN 125 point of injection	PVC-U	550	1047692
CDL DN 150 point of injection	PVC-U	680	1047693
CDL DN 65 point of injection	PVC-C	400	1029326
CDL DN 80 point of injection	PVC-C	400	1029327

Temperature/pressure resistance - metering station CDL

Water temperature (°C)	Maximum permissible operating pressure (bar)		
	PVC-U	PVC-C	
40	12	12	
50	7	9.5	
60	4.5	7.5	
70	-	5	
80	-	3	

Back pressure valve and angle valve

Back pressure valve type MFV with wall bracket and 6 x 4 mm hose connection is ideal for fitting in the chlorine dioxide metering line. Angle valve for the transition from the customer's pipeline to the 12x9 hose connector on the CDLb.

	Order no.
MFV pressure relief valve with wall mounting bracket	1027652
Angle valve D15 G 1/2" brass	1046115

Fault indicating relay for the CIO₂ pump

Fault indicating relay retrofit kit for the CIO₂ discharge pump

	Order no.
Relay 3-pin	1029309

Hood for CDLb

	Order no.
Hood for CDLb 55 PE black	1045889
Hood for CDLb 120 PE black	1045890

Safety collecting pan for chemical containers

Collecting pan with two separate compartments - 1 No. 25 l Bello Zon® acid and 1 No. 10 l Bello Zon® chlorite chemical container.

Dimensions (HxWxD): 290 x 700 x 350 mm

	Order no.
Safety collecting pan CDLa	1026744
cuitty compouning pain of the	.020

Smart Disinfection

1.1.2015 Product Catalogue 2015 3-7

ProMinent Brand

3 Bello Zon® Chlorine Dioxide Systems

Safety collecting pan for chemical tanks (CDLb)

Collecting pan for a 25 I Bello Zon® acid or Bello Zon® chlorite chemical canister.

Dimensions (HxWxD): 266 x 400 x 500 mm

Safety collecting pan CDLb 791726

Service kits for CDLa

The kits contain all parts subject to wear and tear that need to be replaced at regular service intervals. The 1-year kit should be used every year and the 3-year kit in addition every 3 years.

	Order no.
1-year service kit for pressure relief valve	1029442

For CDLa with CIO₂ pump

	Туре	Order no.
1-yearly maintenance set	CDL 5	1027263
3-yearly maintenance set, 230 V	CDL 5	1049659
1-yearly maintenance set	CDL 10	1031549
3-yearly maintenance set, 230 V	CDL 10	1049665
3-yearly maintenance set, 100 V	CDLa 5	1049655
3-yearly maintenance set, 115 V	CDLa 5	1049657
3-yearly maintenance set, 100 V	CDLa 10	1049661
3-yearly maintenance set, 115 V	CDLa 10	1049663

For CDLa without CIO₂ pump

	Туре	Order no.
1-yearly maintenance set	CDL5	1042829
3-yearly maintenance set, 230 V	CDL5	1049660
1-yearly maintenance set	CDL10	1042830
3-yearly maintenance set, 230 V	CDL10	1049666
3-yearly maintenance set, 100 V	CDLa 5	1049656
3-yearly maintenance set, 115 V	CDLa 5	1049658
3-yearly maintenance set, 100 V	CDLa 10	1049662
3-yearly maintenance set, 115 V	CDLa 10	1049664

Maintenance sets for Bello Zon® CDLb

For CDLb with receiver tank, pump and multifunctional valve

	Туре	Order no.
Annual maintenance set	CDLb 06, CDLb 12	1044484
Annual maintenance set	CDLb 22	1044501
Annual maintenance set	CDLb 55	1044509
3-yearly maintenance set, 230 V	CDLb 06, CDLb 12	1044494
3-yearly maintenance set, 230 V	CDLb 22	1044502
3-yearly maintenance set, 230 V	CDLb 55	1044510
3-yearly maintenance set, 115 V	CDLb 06, CDLb 12	1045212
3-yearly maintenance set, 115 V	CDLb 22	1045216
3-yearly maintenance set, 115 V	CDLb 55	1045220

For CDLb with receiver tank and pump

	Type	Order no.
Annual maintenance set	CDLb 06, CDLb 12	1044495
Annual maintenance set	CDLb 22	1044503
Annual maintenance set	CDLb 55	1044511
3-yearly maintenance set, 230 V	CDLb 06, CDLb 12	1044496
3-yearly maintenance set, 230 V	CDLb 22	1044504
3-yearly maintenance set, 230 V	CDLb 55	1044512
3-yearly maintenance set, 115 V	CDLb 06, CDLb 12	1045213
3-yearly maintenance set, 115 V	CDLb 22	1045217
3-yearly maintenance set, 115 V	CDLb 55	1045221

For CDLb with receiver tank without pump

	Type	Order no.
Annual maintenance set	CDLb 06, CDLb 12	1044497
Annual maintenance set	CDLb 22	1044505
Annual maintenance set	CDLb 55	1044513
3-yearly maintenance set, 230 V	CDLb 06, CDLb 12	1044498
3-yearly maintenance set, 230 V	CDLb 22	1044506
3-yearly maintenance set, 230 V	CDLb 55	1044514
3-yearly maintenance set, 115 V	CDLb 06, CDLb 12	1045214
3-yearly maintenance set, 115 V	CDLb 22	1045218
3-yearly maintenance set, 115 V	CDLb 55	1045222

For CDLb with 30 I receiver module without pump

	Туре	Order no.
Annual maintenance set	CDLb 06, CDLb 12	1044499
Annual maintenance set	CDLb 22	1044507
Annual maintenance set	CDLb 55	1044515
Annual maintenance set	CDLb 120	1044517
3-yearly maintenance set, 230 V	CDLb 06, CDLb 12	1044500
3-yearly maintenance set, 230 V	CDLb 22	1044508
3-yearly maintenance set, 230 V	CDLb 55	1044516
3-yearly maintenance set, 230 V	CDLb 120	1044519
3-yearly maintenance set, 115 V	CDLb 06, CDLb 12	1045215
3-yearly maintenance set, 115 V	CDLb 22	1045219
3-yearly maintenance set, 115 V	CDLb 55	1045223
3-yearly maintenance set, 115 V	CDLb 120	1044519

1.1.2015 Product Catalogue 2015 3-9

3.5 Chlorine Dioxide Systems Bello Zon® CDLb with Multiple Points of Injection

The modular customised solution for several ${\rm CIO}_2$ points of injection with only one generation system.

0-120 g/h preparation capacity with storage of up to 60 g of chlorine dioxide for peak metering. Max. flow at 0.2 ppm CIO_2 metering is 600 m³/h

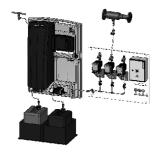
Flexible solutions for the production and metering of ${\rm ClO_2}$ adapted to the tasks, requirements and expected pricing by our customers. Perfectly coordinated modular chlorine dioxide system, which can operate up to 6 points of injection.

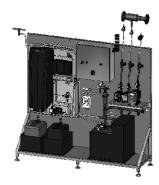
Chlorine dioxide systems Bello Zon® CDLb for multiple metering are divided into three different concepts, enabling them to respond perfectly to our customers' demands.

The "Modular, loose components" concept consists of a system and all components that are needed for metering. They are provided as a kit for assembly on site. The second concept, "Modular, metering components pre-assembled on a panel" consists of a system and a metering panel on which all the metering components are mechanically and, optionally, electrically pre-assembled. The third concept, "Plug and Play on a stainless steel frame" consists of a stainless steel frame, on which the system and the metering components are mechanically and electrically assembled.

Your benefits

- Up to 6 points of injection can be mapped as standard The simplest provision of several points of injection according to requirements
- Cost-effective provision of several points of injection
- Outstanding operating safety and reliability, thanks to intrinsic process control
- Ultra-simple process integration


- External storage module
- Internal storage tank (only with the "Modular, loose components" and "Modular, metering components pre-assembled on a panel" concepts)
- Terminal box with optional main switch (only with the "Modular, metering components pre-assembled on a panel" concept)
- Stainless steel cabinet with main switch and emergency relay (only with the "Plug and Play on stainless steel frame" concept)


- All applications which require more than one point of injection
- Disinfection in the food and beverage industry. Especially with bottle rinsers, CIP (cleaning in place), bottle washing machine and in fruit / vegetable washing
- Legionella control and prevention, e.g. in hotels or hospitals (cold and hot water metering)
- Market gardening: germ-free irrigation and sprinkler irrigation water
- Treatment of cooling water and potable water
- Filter disinfection, e.g. in swimming pools

P_PMA_BEZ_0022_SW1 Concept 1

P_PMA_BEZ_0021_SW1 Concept 2

P_PMA_BEZ_0020_SW1 Concept 3

3.6

P_PMA_BEZ_0126_SW1

Chlorine Dioxide System Bello Zon® CDEa

Bello Zon® CDEa is winning over customers, thanks to its ultra-simple operation and clearly laid out construction with standard components.

5-140 g/h chlorine dioxide. Max. flow at 0.2 ppm CIO₂ metering is 700 m³/h

Chlorine dioxide system, which continuously produces ClO₂ according to the acid/chlorite method with diluted chemicals. Extremely simple operation, clear construction, analogue control, manual control or via contacts

A ready-to-use chlorine dioxide system for the continuous production and metering of chlorine dioxide with diluted chemicals. The emphasis is on ultra-simple operation and clearly laid out system design with standard components.

The stroke lengths of the metering pumps are continuously monitored. This rules out inadmissible operating statuses arising from incorrect pump stroke length adjustments.

The system is extremely easy to operate and, alongside a central Start-Stop key, also has colour-differentiated LEDs to display all the operating statuses.

The system can be controlled in an analogue or manual manner or via contacts

Your benefits

- Minimal training required thanks to extremely simple operation
- Minimal investment costs
- Short lead times
- Excellent operating safety
- Simple process integration

Technical details Power supply

■ 100-230 V, 50/60 Hz

Inputs

- 1 digital input for the Pause function
- 1 digital input for contact water meter 0.25-20 Hz
- 1 analogue input 0/4-20mA

Outnute

- 1 alarm signal relay
- 1 warning signal relay

Operating substances

- Sodium chlorite 7.5%, purity according to EN 938
- Hydrochloric acid 9% purity according to EN 939
- Particle-free water

Degree of protection

■ IP 54

Bypass pipework

■ DN 20

Field of application

- Municipal potable water and waste water treatment
- Industrial process and cooling water
- Disinfection in the food and beverage industry

Technical Data

Туре	Chlorine dioxide capacity*		Max. operating pressure **	Operating temp.	Connector size, chlorite and acid metering pumps	Dimensions H x W x D	Dimensions of the bypass connector	Weigth
	minmax./ hour	min./ day						
	g/h	g/d		°C		mm	DN	kg
CDEa 45	5–45	16	7/8**	15–40	6x4	958 x 700 x 195	20	21
CDEa 80	8–80	30	7 / 8 **	15–40	6x4	958 x 700 x 195	20	22
CDEa 140	14–140	50	7 / 8 **	15–40	8x5	1,200 x 700 x 195	20	24

- * The metering figures relate to 5 bar back pressure and an ambient temperature of 20 °C. The minimum capacity/per hour is based on the fact that when the system is operating at below 10 % of the nominal capacity, continuous metering is no longer possible, due to the then low pumping frequency of the metering pumps. Where systems are operating continuously, change the reactor content at least 2 x daily. Do not operate at below the specific minimal output/day.
- ** 8 bar at maximum 35 °C ambient temperature

Subject to technical and design changes

Туре	Order no.
CDEa 45	1047456
CDEa 80	1047457
CDEa 140	1047458

Scope of supply:

Bello Zon® CDEa systems are supplied connection-ready on a wall panel. Connection to the site bypass line is via DN 20 PVC threaded connectors with straight solvent unions. Order suction lances for the chemical pumps, safety collecting pans for the chemical drums and other accessories, like flushing equipment with a vacuum relief valve separately.

3 Bello Zon[®] Chlorine Dioxide Systems

3.7

Chlorine Dioxide System Bello Zon® CDVc

Bello Zon® CDVc is the convenient system for the treatment of average to large volumes of water with chlorine dioxide.

1 to 2,000 g/h chlorine dioxide. Max. flow at 0.2 ppm CIO₂ metering is 10,000 m³/h

Chlorine dioxide system for monitoring and metering chlorine dioxide and diluted chemicals. Maximum output and safety due to special reactor concept. Bello Zon® CDVc can be easily and safely integrated into any water treatment process.

Continuous water treatment using the chlorine dioxide system Bello Zon® CDVc can be simply and safely integrated into any process. The special reactor concept generates chlorine dioxide safely and simply with maximum output.

Food-compatible PVDF is used instead of PVC generally used in the industry. This results in improved operating safety and reliability and improved purity of the chlorine dioxide generated. The central system controller manages the precise production of the chlorine dioxide. All parameters relevant for water treatment are recorded and logged.

The stroke lengths of ProMinent[®] metering pumps are monitored online. This rules out hazardous operating statuses arising from incorrect pump stroke length adjustments.

The precise production of chlorine dioxide is managed by the central system control. Chlorine dioxide, chlorite, pH or redox potential sensors DULCOTEST® are directly connected to the two mA inputs. The chlorine dioxide in the treated water, as well as its main by-product chlorite, is thus monitored and documented online. The chlorine dioxide concentrations in the water can be adjusted automatically depending on the measurement by the integrated PID controller.

The integrated data logger documents all status messages and measured values, which the screen writer then visualises on the clear colour display.

The systems meet all the requirements of the DVGW specifications W 224 and W 624 with regard to construction and operation and are designed for operation with diluted chemicals Bello Zon® chlorite (7.5% NaClO₂) and acid (9% HCl).

Your benefits

- Efficient operation, thanks to production, metering and monitoring of ClO₂ with just one system
- Maximum operating safety and purity of the CIO₂ produced through the use of PVDF reactors and stroke length-monitored pumps
- No need for external control due to integrated measuring and control technology
- Perfect quality management, thanks to integrated storage of all operating parameters and measured values
- Automatic monitoring of operating parameters and maintenance intervals
- Simple and safe operation, thanks to clear navigation in plain text

Technical details

Power supply

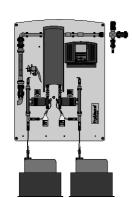
■ 100-230 V, 50/60 Hz

Inputs

- 2 freely configurable analogue inputs (0/4-20 mA)
- 7 digital inputs for monitoring
- 1 digital input for contact water meter 0.25-20 Hz
- 1 frequency input for water meter 10-10,000 Hz

Outputs

- 1 operating signal relay
- 1 alarm signal relay 1 warning signal relay
- Mains output for controlling the bypass pump
- 1 freely configurable analogue output (0/4-20 mA)
- 1 voltage output +5 V as supply voltage for water meter with Hall sensor


Operating substances

- Sodium chlorite 7.5%, purity according to EN 938
- Hydrochloric acid 9% purity according to EN 939
- Particle-free water

Degree of protection

■ IP 65

P_PMA_BEZ_0009_SW
CDVc 20-120 (figure shows optional configuration)

1.1.2015

Field of application

- Municipal potable water and waste water treatment
- Industrial process and cooling water
- Disinfection in the food and beverage industry, above all with inlet water treatment.
- Market gardening: Germ-free irrigation water and sprinkler irrigation water

Technical Data

Туре	Chlorine dioxide dosing capacity*		•		•		•		•		•		•		•		•		•		•		•		•		•				Max. operating pressure**	Operating temp.	Dimensions*** H x W x D (mm)	Weight***	Power cons (n	umption nax.) ****
	minmax./hour	min./day					230 V	115 V																												
	g/h	g/d	bar	°C	mm	kg	Α	Α																												
CDVc 20	1–20	6.4	8	10–40	1,344 x 1,002 x 200	26	2.7	0.9																												
CDVc 45	2–45	16.0	8	10–40	1,344 x 1,002 x 200	27	2.7	0.9																												
CDVc 120	6–120	40.0	8	10–40	1,344 x 1,002 x 200	28	2.7	0.9																												
CDVc 240	12-240	80.0	8	10–40	1,342 x 1,000 x 248	45	2.7	1.2																												
CDVc 600	30–600	140.0	8	15–40	1,711 x 1,200 x 273	75	2.8	1.4																												
CDVc 2000	100-2,000	468.0	5	15–40	1,900 x 1,400 x 370	120	4.1	3.2																												

- * The metering figures relate to 5 bar back pressure and an ambient temperature of 20 °C. The minimum capacity/per hour is based on the fact that when the system is operating at below 5% of the nominal power, continuous metering is no longer possible because of the correspondingly low pumping frequency of the metering pumps. When systems are not operating continuously, the reactor contents should be changed at least twice daily. The system should not, therefore, be operated below the stated minimum capacity/day.
- ** At 35 °C ambient temperature
- *** Without bypass pump, flushing valve and water supply line
- **** 230 V values with bypass pump, 115 V values without bypass pump

Interfaces

Туре	Chlorine diox	ide dosing capacity*	Hose connection dimensions of metering pumps	Dimensions of the bypass connector
	minmax./hour	min./day		
	g/h	g/d		DN
CDVc 20	1–20	6.4	6x4	25
CDVc 45	2–45	16.0	6x4	25
CDVc 120	6–120	40.0	6x4	25
CDVc 240	12-240	80.0	8x5	25
CDVc 600	30–600	140.0	8x5	25
CDVc 2000	100–2,000	468.0	DN 10	40

3.7.1 Identity Code Ordering System for CDVc Systems

CDVc				ng outp	ut CIO ₂								
	02	CDVc 2	20= 2	20 g/h	_								
	04		45= 4										
	06		CDVc 120= 120 g/h CDVc 240= 240 g/h										
	08			_									
	10		500= 6										
	14		2000= 2	2,000 g/h	1								
		Type	ProMa	าดเมล									
				r supply	,								
			U			0%, 50/6	0 Hz						
			Α	230 V	± 10%, 5	50/60 Hz	:						
			В	100-11	5 V ± 10	0%, 50/6	0 Hz (r	ot avail	able for	version v	with "by	pass" 0	4)
					s versi								
				02		bypass							DV 0000)
				04		mains fre				a bypas	s pump	(not CL	DVc 2000), only selectable with operating voltage A and
				08		bypass				nit gpm			
						ation de				<u> </u>			
					0					with me	asuring	cylinde	er
					1			n device					
								, suctio	n fitting	g, chem	icals		
						0	None	a lanaa f	or E 60	l contain	or (only	CDV	0, 600)
						2				containe	, ,		,
						3					, ,		se level switch (only CDV 20-600 g/h)
						4			_	•			I without leakage sensor (only CDV 20-600 g/h)
							Mecha	nical d	esign				
							0	Standa					
									langua				
								DE EN	Germa				
								FR	English French				
								IT	Italian				
								ES	Spanis	h			
									Contro	ol			
									0		ersion *		
									1				ontrol properties (only in connection with version inputs and
									2		s 1 or 3) easurin		ontrol properties, data logger and screen recorder (only in
									_				on inputs and outputs 1 or 3)
												uts and	d outputs
										0	None		
										1			puts, freely configurable for controller output and flow rate at the street street in the street street street in the street street in the street street in the street street street in the street street street in the street street street in the street street street in the street street street in the street street street street in the street str
										3		_	outs and 1 analogue output, freely configurable
										Ü			ion interfaces
											0	Standa	
												Appro	ovals
												01	CE-mark
													Temperature monitoring
													0 Without temperature monitoring
													Hardware 0 Standard
													Software
													0 Standard

 ⁴ contact inputs for leakage, external fault, high dosage and pause plus 3 contact outputs for operating, warning and alarm messages.

¹ digital and 1 frequency input for connection of flow meters.

3.7.2 Maintenance Sets for Bello Zon® CDV Chlorine Dioxide Systems

The maintenance kits contain all of the wear parts that may need to be replaced during regular system maintenance.

Maintenance sets for CDVc systems

	Order no.
Maintenance set, complete CDVc 20	1034758
Maintenance set, complete CDVc 45	1034759
Maintenance set, complete CDVc 120	1034760
Maintenance set, complete CDVc 240	1034761
Maintenance set, complete CDVc 600	1034762
Maintenance kit, complete CDVc 2000 up to delivery date 03/2011	1034763
Maintenance kit, complete CDVc 2000 from delivery date 04/2011	1048801

Maintenance sets for CDVb systems

	Order no.
Maintenance set, complete CDVb 15	1022252
Maintenance set, complete CDVb 35	1022253
Maintenance set, complete CDVb 60	1022264
Maintenance set, complete CDVb 120	1022265
Maintenance set, complete CDVb 220	1024614

Maintenance sets for CDVa systems

	Order no.
Maintenance set, complete 230 V CDVa 35	791842
Maintenance set, complete 230 V CDVa 60	791913
Maintenance set, complete 230 V CDVa 120	791915
Maintenance set, complete 230 V CDVa 220	740824
Maintenance set, complete 230 V CDVa 400	740765
Maintenance set, complete 230 V CDVa 600	740826
Maintenance set, complete 230 V CDVa 2000	1005333
Maintenance set, complete 115 V CDVa 35	791860
Maintenance set, complete 115 V CDVa 60	791914
Maintenance set, complete 115 V CDVa 120	791916
Maintenance set, complete 115 V CDVa 220	740825
Maintenance set, complete 115 V CDVa 400	740819
Maintenance set, complete 115 V CDVa 600	740827
Maintenance set, complete 115 V CDVa 2000	1005344

Additional spare parts are listed in the operation instructions for the systems.

3 Bello Zon[®] Chlorine Dioxide Systems

3.8

Chlorine Dioxide System Bello Zon® CDKc

Bello Zon® CDKc is a deluxe system, persuading customers with its safe handling of chemicals and maximum possible potential savings.

8-12,000 g/h chlorine dioxide. Max. flow at 0.2 ppm ClO₂ metering is 60,000 m³/h



Chlorine dioxide system for continuous production, metering and monitoring of chlorine dioxide with concentrated chemicals. Bello Zon® CDKc is a ready-to-use convenient system with integrated intrinsically safe pre-dilution station.

This chlorine dioxide system includes an intrinsically safe pre-dilution station for concentrated hydrochloric acid. The consumption of hydrochloric acid can therefore be adapted on site to the individual operating conditions. Savings of up to a quarter of the hydrochloric acid volume are possible. The special reactor concept generates chlorine dioxide safely and simply with maximum output. Food-compatible PVDF is used instead of PVC generally used in the industry. This results in improved operating safety and reliability and improved purity of the chlorine dioxide generated. The central system controller manages the precise production of the chlorine dioxide. All parameters relevant for water treatment are recorded and logged. The stroke lengths of ProMinent® metering pumps are monitored online. This rules out hazardous operating statuses owing to incorrect operation with regard to pump stroke length adjustment. The precise production of chlorine dioxide is managed by the central system control. Chlorine dioxide, chlorite, pH or redox potential sensors DULCOTEST® are directly connected to the two mA inputs. The chlorine dioxide in the treated water, as well as its main by-product chlorite, is thus monitored and documented online. The chlorine dioxide concentrations in the water can be adjusted automatically depending on the measurement using the integrated PID controller. The integrated data logger documents all status messages and measured values, which the screen writer then visualises on the clear colour display. The systems meet all the requirements of DVGW data sheets W 224 and W 624, with regard to construction and operation, and are intended for operation with concentrated chemicals (24.5% NaClO₂) and acid (25-36% HCl).

Your benefits

- Cost saving through minimal acid consumption
- Cost-effective operation by the use of inexpensive concentrated output chemicals
- Efficient operation, thanks to production, metering and monitoring of ClO₂ with just one system
- Maximum operating safety and purity of the CIO₂ produced through the use of PVDF reactors
- Integrated measuring and control technology
- Perfect quality management, thanks to integrated storage of all operating parameters and measured values

P_PMA_BEZ_0096_SW
CDKc 420 (figure shows optional configura-

Technical details

Power supply

■ 100-230 V, 50/60 Hz

Innute

- 2 freely configurable analogue inputs (0/4-20 mA)
- 7 digital inputs for monitoring
- 1 digital input for contact water meter 0.25-20 Hz
- 1 frequency input for water meter 10-10,000 Hz

Outputs

- 1 operating signal relay
- 1 alarm signal relay
- 1 warning signal relay
- Mains output for controlling the bypass pump
- 1 freely configurable analogue output (0/4-20 mA)
- 1 voltage output +5 V as supply voltage for water meter with Hall sensor

Operating substances

- Sodium chlorite 7.5%, purity according to EN 938
- Hydrochloric acid 9% purity according to EN 939
- Particle-free water

Degree of protection

■ IP 65

Field of application

- Municipal potable water and waste water treatment
- Industrial process and cooling water

Technical Data

Type 1)	Chlorine dioxide dosing capacity* 1)		Max. operating pressure**	Operating temp.	Connection dimensions of chlorite and acid metering	Dimensions of the bypass connector
	minmax./hour	min./day			pumps	
	g/h	g/d	bar	°C		DN
CDKc 150	8-150	56	8	10–40	6x4	25
CDKc 400	20-400	140	8	10–40	8x5	25
CDKc 900	45-900	300	8	10–40	8x5	32
CDKc 2000	100-2,000	700	5	10–40	8x5	40
CDKc 2800	140-2,800	700	5	15–40	8x5	40
CDKc 7300	365-7,300	1,750	3	15–40	DN 10	40
CDKc 12000	600-12,000	1,750	2	18–40	DN 10	40

Type 1)	Dimensions*** H x W x D (mm)	Weight***	Power	r consumption (max.) ****	Power uptake
			230 V	115 V	
	mm	kg	Α	Α	W
CDKc 150	1,380 x 880 x 320	55	0.7	1.2	130
CDKc 400	1,650 x 880 x 445	80	0.9	1.2	180
CDKc 900	1,920 x 920 x 510	95	1.4	2.5	250
CDKc 2000	1,880 x 1,320 x 570	160	2.2	3.5	410
CDKc 2800	1,880 x 1,320 x 570	160	2.2	3.5	410
CDKc 7300	2,250 x 1,850 x 460	175	5.5	6.4	640
CDKc 12000	2,250 x 1,850 x 460	180	5.5	6.4	640

- * The metering figures relate to 5 or 2 bar back pressure and an ambient temperature of 20 °C. The minimum capacity/per hour is based on the fact that when the system is operating at below 5% of the nominal power, continuous metering is no longer possible, due to the correspondingly low pumping frequency of the metering pumps. When systems are not operating continuously, the reactor contents must be changed at least twice daily. The system should not, therefore, be operated below the stated minimum capacity/day.
- ** At 35 °C ambient temperature
- *** Without bypass pump, flushing valve and water supply line
- **** 230 V figure with bypass pump (CDKc 150-900), 115 V figures without bypass pump
- 1) Subject to technical and design changes.

Dimensions of the pre-dilution unit (H x W x D) for CDKc 150 - 12,000: 1,200 x 900 x 300 mm

3.8.1 Identity Code Ordering System for CDKc Systems

CDKc	Capac	itv of C	IO _o incl	ludina F	HCI pre-	dilution	and flu	ıshina	assemh	lv						
JDIC	20		150 =		.o.p.e	anution	. and m	.cimig (40001110	.,						
	21	CDKc 400 = 400 q/h														
	22	CDKc 900 = 900 q/h														
	23			2,000 g	/h											
	24			2,800 g												
	25			7,300 g												
	26			7,300 g, = 12,000												
	20	Versio		- 12,000	<i>y</i> y/11											
		P	n ProMa	ana												
				•	laa a a											
			Opera A	ting vol	ι τage ±10%, 5	0/60 Hz	(for ye	sion wit	h hynae	s 04)						
			В		115 V ±1					,	with by	nass 04)			
					s version		,			* C1 G1011	With Dy	pa00 04	,			
				02			J with flo									
				04	, , ,					d numn	(VA) or	nly with	230 V o	nerating	voltage	(only with CDKc 150-900 g/h)
] .		ating de		a. 110 W		- pamp	(77.) 01		_50 • 0	p or a uring	·onage	(c, obite for ede g/ii)
					1		alibrating	device								
					1		n lance			ı for ch	emicale					
						0	None	, Suction		, .01 0110	cimedis					
						2		n lance f	or 200 l	containe	er, not a	vailable	for CDk	Cc 7300	and CD	Kc 12000
						3									nd CDK	
								nical d		, ,						
							0	Standa								
									langua	ae						
								DE	Germa							
								EN	English							
								FR	French							
								IT	Italian							
								ES	Spanis	h						
									Contro	ol						
									0	Basic v	ersion *)				
									1			g and co	ontrol pro	operties	(only in	connection with version inputs and
									l_		1 or 3)					
									2							gger and screen recorder (only in
											tion witi led inpi				puts 1 o	1 3)
										0	i ea inp i None	นเจ สกต	Juiput	3		
										1		aue inn	uts free	ely confi	nurahle f	or controller output and flow rate
										2					gurable i gurable	or controller output and now rate
										3						out, freely configurable
										ľ		• .	on inte		gao outp	,
											0	Standa		luces		
												Appro				
												01	l CE ma	rk		
												-			monito	ring
													0			rature monitoring
													ľ	Hardw		accidentify
														0	IStanda	rd
														ľ	Softwa	· ·
															0	Standard
																- Canada

⁴ contact inputs for leakage, external fault, high dosage and pause plus 3 contact outputs for operating, warning and alarm messages.

¹ digital and 1 frequency input for connection of flow meters.

3.8.2

3 Bello Zon® Chlorine Dioxide Systems

Maintenance Kits for Bello Zon® Type CDK Chlorine Dioxide Systems

The spare parts kits include all wearing parts that need replacing in the course of regular maintenance.

	Order no.
Maintenance kit, complete 230 V CDKa 150	740740
Maintenance kit, complete 230 V CDKa 420	740743
Maintenance kit, complete 230 V CDKa 750	1000172
Maintenance kit, complete 230 V CDKa 1500	1000856
Maintenance kit, complete 230 V CDKa 6000	1004814
Maintenance kit, complete 230 V CDKa 10000	1006647
Maintenance kit, complete 115 V CDKa 150	740741
Maintenance kit, complete 115 V CDKa 420	740744
Maintenance kit, complete 115 V CDKa 750	1000173
Maintenance kit, complete 115 V CDKa 1500	1000855
Maintenance kit, complete 115 V CDKa 6000	1004815
Maintenance kit, complete CDKc 150 (type 20)	1043841
Maintenance kit, complete CDKc 170 (type 02)	1036454
Maintenance kit, complete CDKc 400 (type 21)	1043842
Maintenance kit, complete CDKc 420 (type 04)	1036455
Maintenance kit, complete CDKc 900 (type 22)	1043843
Maintenance kit, complete CDKc 900 (type 06)	1036456
Maintenance kit, complete CDKc 2000 (type 23)	1043864
Maintenance kit, complete CDKc 2100 (type 08)	1036457
Maintenance kit, complete CDKc 2800 (type 24)	1043865
Maintenance kit, complete CDKc 3000 (type 10)	1036458
Maintenance kit, complete CDKc 7500 (type 25)	1043866
Maintenance kit, complete CDKc 7500 (type 12)	1036459
Maintenance kit, complete CDKc 12000 (type 26)	1043867
Maintenance kit, complete CDKc 12000 (type 14)	1040079

Additional spare parts are listed in the operating instructions for the systems.

3.9 Bypass Line Accessories

Premixers Made of PVC

CDVb 15-120 premixers are fully integrated in the plant, provided they are ordered with the Identity Code. The premixer on the CDVb 220 can also be ordered by Identity Code but is supplied loose with the plant. On all other plants, the premixer can be ordered partly by Identity Code or partly as a separate order. The standard delivery package of the premixer includes all PVC couplings, screw hose clips and other fixing materials. On the CDVa 2000 and CDKa 1500–10000, the pre-mixer is in two parts.

Plant	Volume	Length	Connection nominal diameter	Order no.
	- 1	mm		
CDVb 220, CDKa 150	1.5	594	DN 25	740649
CDVa 400, CDKa 420	4.5	756	DN 25	740650
CDVa 600, CDKa 750	7.0	1,306	DN 32	740832
CDVa 2000, CDKa 1500	13.4	2x1,316	DN 40	1001000
CDKa 6000/10000	13.4	2x1,330	DN 50	1003121

Bypass Pump

Booster pumps made of cast iron (GG) or stainless steel (SS) for operation in the bypass line. Electrical version 220-230 V, 50 Hz, with integrated overload protection.

The required bypass flow should be considered when selecting a suitable bypass pump. The following flow data is recommended for the different plants:

Plant type	Bypass line	Diameter (mm)	Flow rate (m3/h)
CDV 15 – 600	DN 25	32	0.5 - 2
CDV 2,000	DN 40	50	2 - 10
CDKa 150 – 420	DN 25	32	0.5 - 2
CDKa 750	DN 32	40	1 - 3.5
CDKa 1,500	DN 40	50	1.5 - 10
CDKa 6,000 - 10,000	DN 50	63	6 - 10
CDKc 150 - 900	DN 25	32	0.5 - 2
CDKc 2,000 - 2,800	DN 40	50	2 - 10
CDKc 7,300	DN 40	50	6 - 10
CDKc 12,000	DN 40	50	10 - 15

PVC should be used as the material for the bypass. The thickness should at least correspond to the pressure range PN 10, or even better PN 16 (bar).

Technical Data

Туре	Material	Connection suction/ discharge side	Pump capacity at 2 bar	Nominal rating	Nominal current	Order no.
		inch	m³/h	W	Α	
ZHM 3	SS	RP 1"/1"	1.2	500	2.3	1051081

Caution: Do not allow pump to come into contact with ${
m CIO}_2!$

Accessories

	Order no.
Bracket for bypass pump	791474
Angle-seat valve PVC DN 25 for throttling the bypass pump	1001877

1.1.2015 Product Catalogue 2015 3-21

Flushing Assembly

Install a flushing valve downstream of the chlorine dioxide system so that the reactor and pre-mixer can be flushed through, either for maintenance purposes or after a long system shut-down. The complete flushing equipment kit comprises a DN 20 or DN 25 PVC stopcock and a DN 15 PVC flushing valve with a hose nozzle and a DN 25 vacuum relief valve. It is already included as standard in the scope of supply of all new

	Order no.	
Flushing equipment PVC-U, EPDM, DN 20 for CDE	1047718	
Flushing equipment PVC-U, EPDM, DN 25 for CDV, CDK	1033405	

P PMA AC 0257 SW Flushing assembly

Bypass Pressure Gauge CDVc/CDKc

The fitting is used during commissioning to adjust the water pressure in the bypass. It is connected to the flushing valve on the flushing assembly for this purpose. The pressure measurement bypass consists of a PVC stopcock DN 15 and a diaphragm seal with manometer.

	Order no.
Bypass pressure measurement DN 20 for CDEa, CDVc, CDKc	1050092

P_PMA_AC_0258_SW1

Ball-check Valve

A back pressure-resistant ball-check valve should be fitted on installations with long bypass lines, especially if the pipe slopes downwards and the point of injection is below the Bello Zon® system, as well as on installations with fluctuating back pressure.

Туре	Nominal diameter	Connector	Material	Order no.
DHV-U	DN 20	G 1 1/4"	PCB	1037775
DHV-U	DN 25	G 1 1/2"	PCB	1037774
DHV 712-R	DN 40	G 2 1/4"	PCB	1000052

PVC-U Chlorine Dioxide Point of Injection

Injection pipe to DN 80

Use an immersion pipe for homogeneous distribution of the chlorine dioxide enriched bypass water in the main water supply pipe, to optimise the mixing and distribution of the chlorine dioxide. Shorten the immersion pipe on site to the required length. The scope of delivery includes a ball valve DN 25 as a shutoff valve for this purpose. The immersion pipe is installed using a DN 50 DIN flange supplied by others.

	Order no.
Injection pipe for pipe diameters up to DN 80	1018754
Injection pipe for pipe diameters from DN 100	1018753

Contact Water Meter

For direct connection to Bello Zon® systems.

Nominal diameter	Rated flow	Max. flow rate	Pulse rate	Order no.
	m³/h	m³/h	1	
DN 40	10	20	0.3	1041357
DN 50	15	30	1	1041358
DN 80	40	110	1	1041359

Inductive Magnetic Flow Meters

The flow meter with transducer MAG $5100\,\mathrm{W}$ is especially suitable for water flow measurement in the fields of ground water, potable water, waste water and sludge.

Connector nominal diameter	Order no.
DN 50	1034685
DN 65	1034686
DN 80	1034687
DN 100	1034688
	diameter DN 50 DN 65 DN 80

3 Bello Zon[®] Chlorine Dioxide Systems

3.10 Chemical Supply Accessories

Suction Lances and Accessories

Suction lances have a rigid construction that can be precisely matched to the chemical tank. Suction assemblies consist of flexible suction pipes. All suction lances and suction assemblies are made of PVC with FKM seals and are fitted with foot valves and two-stage level switches including cable and round plug. Relevant parts should be selected from the ProMinent motor-driven pump accessories range for system types not listed here.

	Suitable for system types	Order no.
Suction lance for connection to 5-60 litre non-reusable tank with 2 m long suction hose (6/4 mm)	CDVc 20-120, CDEa 45-80, CDLb	802077
Suction lance for connection to 5-60 litre non-reusable tank with 2 m long suction hose (8/5 mm)	CDVc 240-600, CDEa 140	802078
Suction lance for connection to 200 litre drums with 3 m long suction hose (6/4 mm)	CDVc 20-120, CDEa 45-80, CDLb	802079
Suction lance for connection to 200 litre drums with 3 m long suction hose (8/5 mm)	CDVc 240-600, CDEa 140	802080
Flexible suction fitting with D55 screw cap and 5 m suction hose (6/4mm)	CDVc 20-120, CDEa 45-80, CDLb	1034602
Flexible suction fitting with D55 screw cap and 5 m suction hose (8/5 mm)	CDVc 240-600, CDEa 140	1034644
Suction lance DN 25 PP for connection to 200 litre drums, excluding cable	CDVc 2000	1039397
Suction lance DN 25 PP for connection to 1,000 litre IBC container, excluding cable	CDVc 2000	1039399
Gas-tight suction lance for 200 litre drums with bleed valve, connection for 6/4 and 8/5 mm suction lines and connector for 6/4 mm return line	CDKc 150-2800	1036371
Gas-tight suction lance for 60-litre canister with bleed valve, connector for 6/4 and 8/5 mm suction line and connector for 6/4 mm return line	CDKc 150-2800	1030891
Flexible suction assembly with 5 m suction hose (6/4 mm) and gas-tight D55 screw cap with opening for a return line	CDKc 150-2800	1036174
Flexible suction assembly with 5 m suction hose (8/5 mm) and gas-tight D55 screw cap with opening for a return line	CDKc 150-2800	1036175

Safety Collecting Pans for Chemical Tanks

Usable capacity I	Туре	Order no.
40	Without leakage monitor	791726
40	With leakage monitor	791728
70	Without leakage monitor	740309
70	With leakage monitor	740308
140	Without leakage monitor	740723
140	With leakage monitor	1003190

Scope of delivery:

- Without leakage monitor: one pan
- With leakage monitor: two pans + level switch + electronics card for Bello Zon®control (CDVa, CDVb, CDKa)

Extension cable, 3-core

For 2-stage level switches, with round plug and round plug coupling.

	Cable length	fig.	Order no.	
	m			
Extension cable, 3-core	3	pk_1_126	1005559	

Calibration Free-standing Cylinder for Bello Zon® CDEa

	Order no.
Measuring cylinder, tall, 500 ml PP	790661

Leakage Monitor for CDVc and CDKc Systems

Order no.
1003191

Consisting of 1 level switch to be fitted in the 40, 70 or 140 I safety drip pans without leakage monitor and connected to the control of the Bello Zon® CDVc and CDKc.

Drip Pan with Grating to Install Two 200 I Barrels

Material	Weight	External dimension WxDxH	Effective area WxD	Collecting volume
	kg	mm	mm	1
Polyethylene	ca. 22	1,230 x 820 x 435	1,160 x 750	220

Meets the requirements of the German Water Resources Act (WHG) and possesses a general building supervision approval from DIBt, Berlin.

Name of the item	Order no.
Drip pan with grating	1027211

Bello Zon® Acid

Component 1 for Bello Zon® chlorine dioxide production system.

Name of the item	Order no.
Bello Zon [®] Acid 25 I	1027594
Bello Zon® Acid 200 I	950131

Bello Zon® Chlorite

Component 2 for Bello Zon® chlorine dioxide production system.

Name of the item	Order no.
Bello Zon® Chlorite 10 I	1026422
Bello Zon® Chlorite 25 I	1027595
Bello Zon® Chlorite 200 I	950136

1.1.2015 Product Catalogue 2015 3-2

3 Bello Zon[®] Chlorine Dioxide Systems

3.11 Safety Accessories and Analysis

AUTOLIA SERVICIO DE LA COLO DE LA

pk_7_004_1 Gas warning devices GMA 36

Gas Warning Device GMA 36 - chlorine dioxide

The gas warning device GMA 36 for chlorine dioxide is designed as a compact measuring and switching unit for monitoring the surrounding air for dangerous concentrations of chlorine dioxide.

Chlorine dioxide

Technical Data

Warning at approx. 0.1 ppm/vol% Alarm at approx. 0.3 ppm/vol% Permissible ambient temperature -15...45°C IP 54 Protection class housing Dimensions (without PGs, without sensor) H x W x D 247 x 135 x 95 mm 85 - 264 / 50 - 60 V/Hz **Power consumption** 5 W Warm-up phase max. 150 s "Warning" relay contact, self-resetting 230 / 1 V/A "Alarm" relay contact, latching 230 / 1 V/A "Horn" relay contact, latching, can be acknowledged 230 / 1 V/A Sensor measuring principle Electrochemical Sensor service life (depending on environmental cond.) 2-3 years

Note: The sensor responds to all oxidising gases

	Order no.
Gas warning device GMA 36 – chlorine dioxide	1023156

Spare Parts

		Order no.
Replacement sensor	For chlorine, chlorine dioxide, ozone	1023314
Replacement sensor	For gas warning devices in the Life CGM range	1003009

Warning Label for Chlorine Dioxide System

Soft PVC film, yellow/black, 300 x 200 mm, self-adhesive.

Text	Language	Order no.
"Behälter und Geräte nicht wechselweise benutzen"	German	607320
"Never mix up chemical containers"	English	607318
"Non usare serbatoi e apparecchi alternativamente"	Italian	791886

Warning Label for Chlorine Dioxide Room

PVC film yellow/black, 200 x 80 mm

Text	Language	Order no.
"Zutritt nur für unterwiesene Personen"	German	607322
"Entry for authorised persons only"	English	607319
"Vietato l'accesso ai non addetti ai lavori"	Italian	791885

Acid Fume Separator

Acid fume separator SDA-90 filled with 0.7 I of acid-absorbing granules for absorption of hydrochloric acid fumes. Connection: DN 25 PP coupling withG 1 1/2" union nut.

	Order no.
Acid fume separator	1009987
Replacement pack of absorbent material 0.7 I	1010500

Photometers DT1, DT2 and DT4

- Portable, compact photometer
- Simple operation with text support
- Safe, simple measurement of chlorine, chlorine dioxide, fluoride, chlorite, H₂O₂, bromine, ozone, pH and cyanuric acid
- Calibratable

Technical Data

Measuring ranges of the DT1B 0.05 ... 6.0 mg/l free chlorine (DPD1) +total chlorine (DPD1+3)

> 5 ... 200 mg/l free chlorine (high range) 0.1 ... 13.0 mg/l bromine (DPD1) 0.05 ... 11 mg/l chlorine dioxide (DPD1) 0.03 ... 4.0 mg/l ozone (DPD4) 6.5 ... 8.4 pH (phenol red)

1 ... 80 mg/l cyanuric acid

0.05 ... 2.0 mg/l fluoride Measuring ranges of the DT2C

0.05 ... 6.0 mg/l free chlorine and total chlorine

0.05 ... 11.0 mg/l chlorine dioxide

DT4 ranges 0.03 ... 2.5 mg/l chlorite

0.05 ... 11 mg/l chlorine dioxide

0.05 ... 6 mg/l chlorine Dependent upon measured value and measuring method

Measuring tolerance Battery 4 AA/LR6 batteries

Permissible ambient temperature 5...40 °C

Relative humidity 30 ... 90% (non-condensing) Material Housing material: ABS Keypad: Polycarbonate

Dimensions L x W x H (mm) 190 x 110 x 55

Weight 0.4 kg

|--|

P_DT_0074_SW Photometer

		Order no.	
Photometer DT1B	Complete with carrying case	1039315	
Photometer DT2C	Complete with carrying case	1039316	
Photometer DT4B	Complete with carrying case	1039318	

The standard delivery package for the photometers includes accessories, cuvettes and reagents

Measuring kit for chlorine dioxide depletion tests

The case contains the equipment needed for a CIO₂ depletion test. A photometer and the starting chemicals are also needed.

Important: Only allow trained personnel to use the case!

	Order no.
Measuring case	1042890

1.1.2015 Product Catalogue 2015

Consumables for Analysis

	Order no.
DPD 1 buffer, 15 ml	1002857
DPD 1 reagent, 15 ml	1002858
DPD 3 solution, 15 ml	1002859
Phenol red tablets R 175 (100 in each)	305532
Cyanuric acid tablets (100 in each)	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer during fluoride determination	1010382
3 spare cells: round cells with covers for DPD phenol red and cyanuric acid detection (DT1 and DT2B)	1007566
3 spare cells for fluoride detection (DT2A and B)	1010396
DPD reagent set, 15 ml each: 3 x DPD 1 buffer, 1 x DPD 1 reagent, 2 x DPD 3 solution	1007567
Chlorine dioxide tablets no. 1	1039732
Chlorine dioxide tablets no. 2	1039733
Chlorine HR tablets (100 off)	Chlorine_tablets
ACiDiTYiNG tablets (100 off)	AC_tablets

DPD reagents for measurement of excess chlorine, ozone or chlorine dioxide in the water, in conjunction with a Lovibond comparator.

	Amount	Order no.
DPD tablets no. 1	100	501319
DPD tablets no. 2	100	501320
DPD tablets no. 3	100	501321
DPD tablets no. 4	100	501322

4.1 Electrolysis Systems CHLORINSITU®

Chlorine and sodium hydroxide are produced in-situ in electrolysis by passing an electric current through salt water.

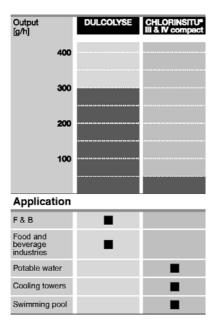
In open or tubular cell electrolysis (type CHLORINSITU® II), the electrochemical reaction takes place in a flow chamber, so that the freshly produced active chlorine immediately reacts with the sodium hydroxide to form sodium hypochlorite. A saturated brine is used as a salt solution, which is produced in a separate salt dissolving tank from salt of a defined quality. The advantage of tubular cell electrolysis lies in the simple construction of the equipment, its ease of maintenance and low investment compared with diaphragm electrolysis systems. The disadvantage is the relatively poor output (50%) of brine, higher entrainment of chloride into the water to be treated, higher power consumption and relatively low chlorine concentrations (5 g/l FAC) in the end product.

In **diaphragm electrolysis**, the electrochemical reaction takes place in two electrode chambers separated by a diaphragm, so that the formation of the freshly produced active chlorine and sodium hydroxide is physically separated. Systems of type CHLORINSITU® III and CHLORINSITU® III Compact bring the reaction mixtures of both electrode chambers together again after the electrochemical reaction to produce a stock solution of sodium hypochlorite (25 g/l FAC), which can be stored temporarily and metered as needed.

With systems of type CHLORINSITU® IV Compact and CHLORINSITU®, the highly pure active chlorine is fed into the water to be treated through an injector and under constant vacuum, where it dissolves as hypochlorous acid. In systems of type CHLORINSITU® V plus, any excess active chlorine gas produced is combined with the sodium hydroxide, as in the CHLORINSITU® III system, to form sodium hypochlorite and is then stored temporarily. The systems therefore only need to be designed for average chlorine demand, as peaks of capacity can be compensated for from the sodium hypochlorite temporary storage tank. In all systems of types CHLORINSITU® IV Compact, CHLORINSITU® V and CHLORINSITU® V Plus, the sodium hydroxide produced during electrolysis is stored temporarily and metered in, as required, to correct the pH value.

The advantage of diaphragm systems lies in their excellent efficiency (85% brine output) and minimal entrainment of chloride compared with open tubular cell systems. With systems of type CHLORINSITU® V and CHLORINSITU® V Plus, the entrainment of chloride and chlorate from the electrolysis cell into the water to be treated can be avoided completely. In diaphragm cell electrolysis system for producing sodium hypochlorite, the higher output results in solutions with a significantly higher chlorine content than is the case with tubular cell electrolysis.

- Disinfection from natural sodium chloride
- No handling of hazardous chemicals
- Economical method thanks to low salt and energy consumption
- Ultra-pure active chlorine thanks to production in-situ and short temporary storage periods
- The fresh active chlorine is generated under a constant vacuum, absolutely reliably and with maximum operating safety, thanks to the units being designed as vacuum systems
- Chlorine generation and pH correction with one system (CHLORINSITU® IV Compact, CHLORINSITU® V and CHLORINSITU® V Plus)
- The extremely pure active chlorine is produced to meet demand and is available at atmospheric pressure
- Improved working conditions for operating personnel
- No risk of confusing dangerous chemical tanks



4.2 Performance Overview

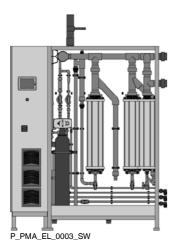
Output [g/h]	CHLORINSITU®	CHLORINSTTU*	CHLORINSITU®	CHLORINSITU®
[g/h]	ll l	III	V	V Plus
10.000			st	st
10.000			anb	anb
9.000			ē .	
9.000			e 01	- O
8.000			labl	ap
0.000			Higher capacity ratings available on request	Higher capacity ratings available on request
7.000			gs (gs 8
			atin	atin
6.000			Ę,	₹
			oaci	oaci
5.000			cal	Cag
			her	Ē
4.000			High	<u>5</u>
3.000				
2.000				
1.000				
Production of				
Production of HOCI Production of	_	_	-	
Application	_			
Drinking water	-	-	-	
Waste water				
Process water				_
Swimming pool				
water			-	_
Cooling towers				

P_PMA_EL_0008_SW

P_PMA_EL_0035_SW

Note: larger systems available on request

4.3 Questionnaire on the Design of an Electrolysis System


Use of the electrolysi	s plant				
☐ for disinfection of		☐ Drinking water			
		☐ Industrial water			
		☐ Cooling water			
		☐ Swimming pool water			
		o			
W-4					
Water values: Max. water flow rate	m³∕h	Maximum water pressure _	ber		
Water flow rate		☐ fluctuating from		m3/h	
	□ Constant			_ 111-711	
pH value	°C		mg/l		
Temperature			mg/l		
Solid fraction	mg/l	- - -	mg/l		
Acid capacity K _{84,3}			mg/l		
Total hardness	mmol/l	TOC (total organic carbon)	_		
Total hardness	°dH	Ammonia	mg/l		
Response time to app	plication:				
m³ volume re	eaction tank or r	minutes residence time in entire	system.		
Type of metering:					
□ constant					
☐ flow-proportional					
☐ depending on mea	sured value				
Desired dosing rate:	mg/l				
Disinfection method	used up to now:				
Consumption of disinfe	ectant up to now:	kg/week			
Other requirements:					

P_PMA_EL_0001_SW

4.4 Electrolysis System CHLORINSITU® II

Electrolysis systems of the type CHLORINSITU® II generate sodium-calcium hypochlorite with a concentration of 5 g/l. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which, after appropriate dilution, is electrolysed in an open tubular cell. The resulting solution is collected in a storage tank and, from there, metered according to requirements using separate metering pumps. Due to its moderate pH value of 8.5-9, it affects the pH of the treated water significantly less than if conventional sodium-calcium hypochlorite with a pH of 12-13.5 were used. Much less acid is used to adjust the pH value, enabling savings of up to 80%. The hydrogen always produced during electrolysis is diluted with fresh air through an ATEX 95-approved fan and discharged safely. Both the salt-dissolving and diluting water comes from a softener unit integrated in the system, preventing the formation of lime deposits and ensuring the long service life of the electrolytic cell. There is therefore no need for acid purification. The systems are controlled using a modern PLC with a large, illuminated display and integrated Remote Control Engineer for remote diagnosis and troubleshooting. Electrolysis systems of type CHLORINSITU® II are especially suitable for applications where a robust and clearly laid out technology is required and where the entrainment of residual sodium chloride into the water being treated is not a problem.

- Robust, simple technology
- Safe system control with remote diagnosis by Remote Control Engineer
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and lower chemical consumption for pH adjustment
- Compact, space-saving design
- Improved working conditions for operating personnel
- No risk of confusing dangerous chemical tanks

Technical Data

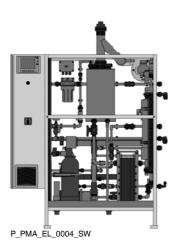
Power supply 1 x 230 V (50 – 150 g/h) (VAC/1P/N/PE/50 Hz) Power supply 3 x 400 V (> 200 g/h) (VAC/3P/N/PE/50 Hz)

Type/ output	Fuse	Power uptake	Max. salt consumption	Max. consumption of process water	Product outlet H	Dimensions L x W x H (mm)	Brine tank	Recommended capacity storage tank
g/h	Α	kW	kg/d	l/h	mm		- 1	I
50	16	0.78	4	10	1,188	1,050 x 600 x 1,550	130	300
100	16	1.15	8	20	1,589	1,250 x 600 x 2,000	130	500
150	16	1.53	12	30	1,589	1,250 x 600 x 2,000	200	700
200	3 x 16	1.90	16	40	1,589	1,250 x 600 x 2,000	200	1,000
300	3 x 16	2.65	24	60	1,589	1,250 x 600 x 2,000	200	1,500
400	3 x 16	3.40	32	80	1,589	1,250 x 600 x 2,000	200	2,000
500	3 x 20	4.15	40	100	1,589	1,250 x 600 x 2,000	380	2,500
600	3 x 25	4.90	48	120	1,589	1,250 x 600 x 2,000	380	3,000
800	3 x 35	6.40	65	160	1,589	1,250 x 600 x 2,000	380	3,500
1,000	3 x 35	7.90	80	200	1,589	1,250 x 600 x 2,000	520	4,500
1,200	3 x 50	9.40	95	240	1,589	1,250 x 600 x 2,000	520	5,500
1,400	3 x 50	10.90	110	280	1,589	1,250 x 600 x 2,000	520	6,000
1,600	3 x 63	12.40	130	320	1,589	1,250 x 600 x 2,000	760	7,000
1,800	3 x 63	13.90	155	360	1,589	1,650 x 600 x 2,000	760	8,000
2,000	3 x 63	15.40	175	400	1,589	1,650 x 600 x 2,000	760	9,000
2,200	3 x 80	16.90	190	440	1,589	1,650 x 600 x 2,000	760	10,000
2,400	3 x 80	18.40	210	480	1,589	1,650 x 600 x 2,000	760	11,000

Scope of delivery:

Electrolysis systems of type Chlorinsitu[®] II are mounted ready-wired with a PLC on a powder-coated stainless steel frame in the control cabinet. They include a Remote Control Engineer for remote diagnosis and troubleshooting, integrated water softener system, open tubular cells, ATEX 95-compliant bleed system and separate salt dissolving tanks and level monitoring unit. The system also includes liquid level sensors for monitoring the storage tank to be set up on site for sodium-calcium hypochlorite. A duplex water softener is fitted as standard for systems producing more than 1,800 g/h. Automatic monitoring of water hardness downstream of the softening system can be offered as an option.

Note


Electrolysis systems of type CHLORINSITU® II, III, V and V Plus are offered and planned to meet customer specifications. This is true both for the system documentation and the subsequent supply of spare parts and maintenance.

4.5

Electrolysis System CHLORINSITU® III

Electrolysis systems of type CHLORINSITU® III generate sodium hypochlorite with a higher concentration of approximately 25 g/l with minimal entrainment of sodium chloride (85% output) from the diaphragm cell into the finished product. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Sodium hydroxide and hydrogen are produced in the cathode chamber while ultra-pure active chlorine and a diluted residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The resulting active chlorine is bound to the sodium hydroxide through an injector under a constant vacuum and is collected as sodium hypochlorite in a storage tank. The vacuum is kept constant by a frequencycontrolled circulation pump. This creates less mechanical stress on the diaphragm in the electrolysis cell and in other parts of the system. The complete sodium hypochlorite solution can be metered, as required, by separate metering pumps. Due to its moderate pH value of 9.5 – 10, it affects the pH of the treated water significantly less than if conventional sodium-calcium hypochlorite with a pH of 12 - 13.5 were used. Much less acid is used to adjust the pH value, enabling savings of up to 70%. The hydrogen always produced during electrolysis is diluted with fresh air through an ATEX 95-approved fan and discharged safely. The salt-dissolving water comes from a softener integrated in the system, thereby preventing the formation of lime deposits and ensuring the long service life of the diaphragm cell. The efficiency of the electrolysis is constantly monitored by various flow meters, the addition of water depending on the sodium hydroxide production and a dynamic level control in the storage tanks.

The systems are controlled using a modern PLC Programmable Logic Controller with a large, illuminated display and integrated Remote Control Engineer for remote diagnosis and troubleshooting.

Electrolysis systems of type CHLORINSITU® III are especially suitable for applications in which sodium hypochlorite solution low in chloride and chlorate is required.

- Sodium hypochlorite solution low in chloride and chlorate with a high chlorine concentration (25 g/l FAC)
- Minimal acid consumption for pH correction; savings of up to 70% are possible
- Safe system control with remote diagnosis by Remote Control Engineer
- Excellent service life of the diaphragm cells, thanks to constant vacuum
- A frequency-controlled circulation pump maintains the vacuum constant in the enclosed anode area
- Maximum operating safety due to their design as negative pressure systems
- Dynamic level control in the storage tank ensures optimised chlorine production
- Active process control of production by largely internal measuring and control technology
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and lower chemical consumption for pH adjustment
- Robust, simple technology
- Compact, space-saving design

Technical Data

Power supply 3 x 400 V (VAC/3P/N/PE/50 Hz)

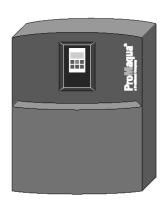
Type/ output	Fuse	Power uptake	Max. salt consumption	Max. consumption of process water	Max. consumption of cooling water	Dimensions L x W x H (mm)	Brine tank	Recommended capacity storage tank
g/h	Α	kW	kg/d	l/h	l/h		ı	I
100	3 x 16	1.10	5	4	80	1,250 x 600 x 1,550	130	200
200	3 x 16	1.50	10	8	80	1,250 x 600 x 1,550	130	300
300	3 x 16	1.90	15	12	100	1,250 x 600 x 1,550	200	400
400	3 x 16	2.30	20	16	100	1,250 x 600 x 1,550	200	500
500	3 x 16	2.70	25	20	125	1,250 x 600 x 1,550	200	600
600	3 x 20	3.10	30	24	125	1,650 x 600 x 2,000	380	700
750	3 x 25	3.70	35	30	150	1,650 x 600 x 2,000	380	800
1,000	3 x 25	4.70	50	40	150	1,650 x 600 x 2,000	380	1,200
1,250	3 x 35	5.70	60	50	150	1,650 x 600 x 2,000	380	1,500
1,500	3 x 35	6.70	70	60	180	1,650 x 600 x 2,000	380	1,700
1,750	3 x 35	7.70	80	70	180	1,650 x 600 x 2,000	380	2,000
2,000	3 x 50	8.70	100	80	200	1,750 x 1,200 x 2,000	520	2,200
2,500	3 x 63	10.70	125	100	250	1,750 x 1,200 x 2,000	520	3,000
3,000	3 x 63	12.70	150	120	300	1,750 x 1,200 x 2,000	520	3,300
3,500	3 x 80	14.70	175	140	350	1,750 x 1,200 x 2,000	520	4,000
5,000	3 x 90	20.70	250	200	500	3,100 x 1,800 x 2,070	1,180	5,800
7,000	3 x 100	29.40	350	280	700	3,100 x 1,800 x 2,070	1,180	6,000
8,500	3 x 130	35.70	425	340	850	4,300 x 1,800 x 2,070	1,180	7,500
10,000	3 x 160	40.70	500	400	1,000	4,300 x 1,800 x 2,070	1,180	11,000

Scope of delivery:

Electrolysis systems of type Chlorinsitu[®] III are mounted ready-wired with a PLC on a powder-coated stainless steel frame in the control cabinet. They include a Remote Control Engineer for remote diagnosis and troubleshooting, integrated water softener system, diaphragm electrolysis cells, ATEX 95-compliant bleed system and separate salt dissolving tanks and level monitoring unit. Dynamic level control to monitor the storage tank to be provided on site for sodium hypochlorite. A chlorine gas warning unit and automatic monitoring of water hardness downstream of the softening system come as standard with systems producing more than 600 g/h.

Note

Electrolysis systems of type CHLORINSITU® II, III, V and V Plus are offered and planned to meet customer specifications. This is true both for the system documentation and the subsequent supply of spare parts and maintenance.



4.6

Electrolysis Systems CHLORINSITU® III Compact and IV Compact

4.6.1

Electrolysis System CHLORINSITU® III Compact

P PMA EL 0007 SW

Electrolysis systems of type CHLORINSITU® III Compact produce a disinfectant based on active chlorine. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Sodium hydroxide and hydrogen are produced in the cathode chamber while ultra-pure active chlorine and a diluted residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The active chlorine produced reacts in the reactor with the sodium hydroxide produced to form sodium hypochlorite with a concentration of approx. 25 g/l FAC. The hydrogen generated is discharged to the fresh air through a bleed line. The salt-dissolving water comes from a softener integrated in the system, thereby preventing the formation of lime deposits and ensuring the long service life of the electrolytic cell.

The microprocessor controller integrated in the system digitally indicates the current output and monitors all key functions. All operating and error messages are shown in plain text on the clear display. The output can be controlled manually, automatically (controller option) or externally.

Electrolysis systems of type CHLORINSITU® III Compact are especially suitable for use with smaller swimming pools in residential properties and hotels (indoor pools with a total circulation capacity of up to 40 m³/hour, chlorinated in accordance with the DIN standard).

Benefits

- Sodium hypochlorite solution low in chloride and chlorate with a high chlorine concentration (25 g/l FAC)
- Minimal acid consumption for pH correction, making savings of up to 70% possible
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and minimal chemical consumption for pH adjustment
- Optional integrated chlorine and pH control
- Robust, simple technology
- Compact space-saving design, ready mounted on a wall panel

Technical Data

Power supply 1 x 230 Volt (VAC/1P/N/PE/50 Hz)

Type/output	Power uptake	Max. salt consumption	Max. consumption of process water	Dimensions L x W x H (mm)	Brine tank
g/h	kW	g/h	l/h		1
25	0.11	65	1.5	590 x 355 x 650	130
50	0.22	130	3	590 x 355 x 650	130

Scope of delivery:

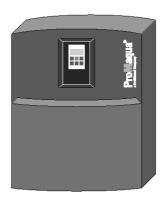
Electrolysis systems of type CHLORINSITU® III Compact are ready mounted and wired for use on a wall panel. Chlorine electrolysis system with integrated microprocessor control and softener system. They include a diaphragm electrolysis cell, separate salt dissolving tank with level monitor and a level control for a storage tank (tank not included with the scope of delivery). A storage tank is also required as well as a metering pump for each point of injection (pump not included in the scope of delivery). Only a chlorine and pH control can be integrated as an option. The measuring and control technology then has to be offered separately for several pools.

	Order no.
CHLORINSITU® III Compact 25	1041399
CHLORINSITU® III Compact 50	1041401
CHLORINSITU® III Compact 25 with integrated chlorine and pH controller	1041400
CHLORINSITU® III Compact 50 with integrated chlorine and pH controller	1041402

Spare parts and maintenance kits

Important note: Both the sensors and the metering pump(s) have to be maintained on systems with pH and/or chlorine control.

	Туре	Order no.
Annual maintenance set	CHLORINSITU® III Compact 25	1041407
Annual maintenance set	CHLORINSITU® III Compact 50	1041409
3-yearly maintenance set	CHLORINSITU® III Compact 25	1041408
3-yearly maintenance set	CHLORINSITU® III Compact 50	1041410
Membrane cell	CHLORINSITU® III Compact 25	1041419
Membrane cell	CHLORINSITU® III Compact 50	1041420
Spare parts kit	CHLORINSITU® III Compact 25/50	1045233



1.1.2015 Product Catalogue 2015 4-7

Electrolysis Systems CHLORINSITU[®] and Dulco[®]Lyse

4.6.2

P_PMA_EL_0007_SW

Electrolysis System CHLORINSITU® IV Compact

Electrolysis system of type CHLORINSITU® IV generate ultra-pure active chlorine in a vacuum process. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Sodium hydroxide and hydrogen are produced in the cathode chamber while ultra-pure active chlorine and dilute residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The resulting active chlorine is suctioned off through an injector integrated in the system and dissolved as hypochlorous acid in the water being treated. The hydrogen generated is discharged to the fresh air through a bleed line. The sodium hydroxide is disposed of or optionally used by a metering pump integrated in the system to correct the pH of the water being treated. The salt-dissolving water comes from a softener integrated in the system, thereby preventing the formation of lime deposits and ensuring the long service life of the electrolytic cell.

The microprocessor controller integrated in the system digitally indicates the current output and monitors all key functions. All operating and error messages are shown in plain text on the clear display. The output can be controlled manually, automatically (controller option) or externally.

Electrolysis systems of type CHLORINSITU® IV Compact are especially suitable for use with smaller swimming pools in residential properties and hotels (indoor pools with a total circulation capacity of up to 25 m³/hour, chlorinated in accordance with the DIN standard).

- Production and metering of ultra-pure hypochlorous acid
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and no consumption of chemicals for pH correction
- Water disinfection and pH correction with a single system
- Safe vacuum system technology
- Optional integrated chlorine and pH control
- Robust, simple technology
- Compact space-saving design, ready mounted on a wall panel

Technical Data

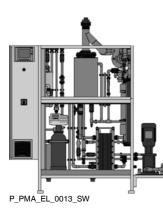
Power supply 1 x 230 Volt (VAC/1P/N/PE/50 Hz)

Type/output	Power uptake	Max. salt consumption	Max. consumption of process water	Dimensions L x W x H (mm)	Brine tank
g/h	kW	g/h	I/h		I
25	0.11	65	1.5	590 x 355 x 650	130
50	0.22	130	3	590 x 355 x 650	130

Scope of delivery:

Electrolysis systems of type CHLORINSITU® IV Compact are ready mounted and wired for use on a wall panel. Chlorine electrolysis system with integrated microprocessor control and water softening system, diaphragm electrolysis cell with negative pressure monitoring, separate salt dissolving tanks with level control, integrated injector and integral feeder assembly for sodium hydroxide (optional). A booster pump is also needed (not included in the scope of delivery) for the single possible point of injection. A chlorine and pH control can be integrated as an option. Several pools cannot be fed from one Chlorinsitu® IV Compact system.

	Order no.
CHLORINSITU® IV Compact 25	1036461
CHLORINSITU® IV compact 25 with pH correction	1036462
CHLORINSITU® IV Compact 25 with integrated chlorine and pH controller	1041405
CHLORINSITU® IV Compact 25 with integral pH and chlorine controller and pH correction	1041403
CHLORINSITU® IV Compact 50	1036463
CHLORINSITU® IV Compact 50 with pH correction	1036464
CHLORINSITU® IV Compact 50 with integrated chlorine and pH controller	1041406
CHLORINSITU® IV Compact 50 with integral pH and chlorine controller and pH correction	1041404


Spare parts and maintenance kits

Important note: Both the sensors and the metering pump(s) have to be maintained on systems with pH and/or chlorine control.

	Туре	Order no.
Annual maintenance set	CHLORINSITU® IV Compact 25	1041415
Annual maintenance set	CHLORINSITU® IV Compact 25 with pH correction	1043267
Annual maintenance set	CHLORINSITU® IV Compact 50	1041417
Annual maintenance set	CHLORINSITU® IV Compact 50 with pH correction	1043269
3-yearly maintenance set	CHLORINSITU® IV Compact 25	1041416
3-yearly maintenance set	CHLORINSITU® IV Compact 25 with pH correction	1043268
3-yearly maintenance set	CHLORINSITU® IV Compact 50	1041418
3-yearly maintenance set	CHLORINSITU® IV Compact 50 with pH correction	1043270
Membrane cell	CHLORINSITU® IV Compact 25	1041419
Membrane cell	CHLORINSITU® IV Compact 50	1041420
Spare parts set	CHLORINSITU® IV Compact 25/50	1045232

4.7 Electrolysis System CHLORINSITU® V

Electrolysis systems of type CHLORINSITU® V generate ultra-pure active chlorine in a vacuum process. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Chloride-free sodium hydroxide and hydrogen are produced in the cathode chamber, while ultra-pure chlorine gas and dilute residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The active chlorine produced is suctioned off through an injector (contained in the scope of delivery) and fully dissolved as hypochlorous acid in the water being treated (through a bypass). The superchlorinated water is then distributed throughout the various pools via one of more proportionately controllable motor-driven ball valves. The vacuum is kept stable by a single frequency-controlled booster pump. This permits significant savings in terms of energy. The chloride-free sodium hydroxide is stored temporarily and can be used for pH value correction. A standard diaphragm metering pump is first used to correct the base pH (pH 6.8 - 7) of the superchlorinated water. The fine correction of the pH value is fed via additional alkali metering pumps per circuit or point of injection. To achieve this, an external pH value controller is connected directly to the system's control. The hydrogen produced is diluted with fresh air through an ATEX 95-approved fan and discharged safely. The diluted residual brine is fully discarded. To this end, the diluted brine is seriously diluted with softened water, neutralised by the addition of sodium hydroxide and disposed off in the sewer. All residual chloride and chlorate are thus disposed of and are fundamentally not mixed with the process water. Electrolysis systems of type Chlorinsitu® V can thus be compared with pure chlorine gas in terms of their oxidation strength, chloride and chlorate content in the process water. The salt-dissolving water comes from a softener integrated in the system, thereby preventing the formation of lime deposits and ensuring the long service life of the diaphragm cell. The efficiency of electrolysis is constantly monitored by various flow meters, the addition of water depending on the sodium hydroxide production and the base pH

The systems are controlled using a modern PLC with a large, illuminated display and integrated Remote Control Engineer for remote diagnosis and troubleshooting. Chlorine metering control and pH value correction are provided as standard via contact inputs.

Options (always customer-specific and project-managed):

- Analogue input
- MOD-bus or PROFIBUS®
- Several points of injection
- Several booster pumps are possible with differing water qualities (e.g. brine and fresh water pools)

Electrolysis systems of type CHLORINSITU® V are suitable for all applications that require the simultaneous metering of hypochlorous acid and pH value correction.

- Production and metering of ultra-pure hypochlorous acid without temporary storage
- Chlorination and pH adjustment with a single system
- Safe system control with remote diagnosis by Remote Control Engineer
- Excellent service life of the diaphragm cells, thanks to constant vacuum
- A frequency-controlled circulation pump maintains the vacuum constant in the enclosed anode area
- Maximum operating safety due to their design as negative pressure systems
- Active process control of production by largely internal measuring and control technology
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and no consumption of chemicals for pH correction
- Complete disposal of the diluted brine, nothing is fed back into the process water to be treated
- Comparable with pure chlorine gas in terms of oxidation strength, chloride and chlorate content in the process water
- Robust technology
- Compact, space-saving design

Technical Data

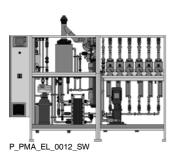
Power supply 3 x 400 V (VAC/3P/N/PE/50 Hz)

Type/output	Fuse	Power uptake	Max. salt consumption	Max. consumption of process water	(External) consumption of cooling water	Dimensions L x W x H (mm)	Brine tank
g/h	Α	kW	kg/d	l/h	l/h		I
100	3 x 16	1.10	5	60	-	1,655 x 600 x 1,550	130
200	3 x 16	1.50	10	60	_	1,655 x 600 x 1,550	130
300	3 x 16	1.90	15	60	-	1,655 x 600 x 1,550	200
400	3 x 16	2.30	20	60	-	1,655 x 600 x 1,550	200
500	3 x 16	2.70	25	60	-	1,655 x 600 x 1,550	200
600	3 x 20	3.10	30	90	-	1,950 x 600 x 2,000	380
750	3 x 25	3.70	35	90	-	1,950 x 600 x 2,000	380
1,000	3 x 25	4.70	50	90	_	1,950 x 600 x 2,000	380
1,250	3 x 35	5.70	60	90	-	1,950 x 600 x 2,000	380
1,500	3 x 35	6.70	70	90	_	1,950 x 600 x 2,000	380
1,750	3 x 35	7.70	80	90	-	1,950 x 600 x 2,000	380
2,000	3 x 50	8.70	100	175	200	1,750 x 1,200 x 2,000	520
2,500	3 x 63	10.70	150	175	250	1,750 x 1,200 x 2,000	520
3,000	3 x 63	12.70	175	175	300	1,750 x 1,200 x 2,000	520
3,500	3 x 80	14.70	175	175	350	1,750 x 1,200 x 2,000	520

Capacities > 3,500 g/h upon request

Scope of delivery:

Electrolysis systems of type Chlorinsitu® V are ready mounted, wired for use, on a powder coated stainless steel frame with a Programmable Logic Controller (PLC) in the control cabinet, Remote Control Engineer for remote diagnosis and troubleshooting, integral water softening unit, diaphragm electrolysis cells, ATEX-95-compliant bleed system and separate salt dissolving tank with level monitoring. The scope of delivery also includes a frequency-controlled central injector system matched to the system to meter active chlorine and sodium hydroxide for pH correction and a single booster pump. A chlorine gas warning unit and automatic monitoring of water hardness downstream of the softening system come as standard with systems producing more than 600 g/h.


Note:

Electrolysis systems of type CHLORINSITU® II, III, V and V Plus are offered and planned to meet customer specifications. This is true both for the system documentation and the subsequent supply of spare parts and maintenance

4.8 Electrolysis System CHLORINSITU® V Plus

Electrolysis systems of type CHLORINSITU® V Plus generate ultra-pure active chlorine combined with a sodium hypochlorite solution in a vacuum process. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Chloride-free sodium hydroxide and hydrogen are produced in the cathode chamber, while ultra-pure active chlorine and diluted residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The resulting ultra-pure active chlorine is further processed in two ways. Firstly, as with CHLORINSITU® V systems, the gas is suctioned off through an injector that forms part of the scope of delivery (vacuum system) and dissolved as hypochlorous acid in the water being treated (via a bypass). The superchlorinated water is then distributed throughout the various pools via one of more proportionately controllable motor-driven ball valves. The vacuum is kept stable by a single frequency-controlled booster pump. This permits significant savings in terms of energy. If the complete production output is not needed, excess active chlorine can also be combined with the sodium hydroxide produced and then temporarily stored as sodium hypochlorite, as is the case with CHLORINSITU® III type systems. The system thus does not have to be dimensioned according to the maximum active chlorine demand, rather according to the average daily demand. Peaks in demand are met by the additional metering of sodium hypochlorite from the temporary storage, which, as with hypochlorous acid, is fed through a central injector system.

The chloride-free sodium hydroxide is stored temporarily and can be used for pH value correction. A standard diaphragm metering pump or the addition of sodium hypochlorite is first used to correct the base pH (pH 6.8 – 7) of the superchlorinated water. The fine correction of the pH value is fed via additional alkali metering pumps per circuit or point of injection. To achieve this, an external pH value controller is connected directly to the system's control. The hydrogen produced is diluted with fresh air through an ATEX 95-approved fan and discharged safely. The diluted residual brine is fully discarded. To this end, the diluted brine is seriously diluted with softened water, neutralised by the addition of sodium hydroxide and disposed off in the sewer. Any residual chloride and chlorate are thus disposed of and are fundamentally not mixed with the process water. Electrolysis systems of type Chlorinsitu® V Plus can thus be compared with pure chlorine gas in terms of their oxidation strength, chloride and chlorate content in the process water. The salt-dissolving water comes from a softener integrated in the system, thereby preventing the formation of lime deposits and ensuring the long service life of the diaphragm cell. The efficiency of the electrolysis is constantly monitored by various flow meters, the addition of water depending on the sodium hydroxide production and the base pH correction.

The systems are controlled using a modern PLC with a large, illuminated display and integrated Remote Control Engineer for remote diagnosis and troubleshooting. Chlorine metering control and pH value correction are provided as standard via contact inputs.

Options (always customer-specific and project-managed):

- Simultaneous production and metering of ultra-pure hypochlorous acid and sodium-calcium hypochlorite
- Analogue input
- MOD-bus or PROFIBUS®
- Several points of injection
- Several injector systems (sodium hypochlorite and active chlorine)
- Several booster pumps with differing water qualities (e.g. brine and fresh water pools)

Electrolysis systems of type CHLORINSITU® V Plus are suitable for all applications that require simultaneous hypochlorous acid metering, combined with sodium hypochlorite metering to cover peak demand and simultaneous pH value correction.

- Production and metering of ultra-pure hypochlorous acid combined with sodium hypochlorite production
- Chlorination and pH adjustment with a single system
- Safe system control with remote diagnosis by Remote Control Engineer
- Excellent service life of the diaphragm cells, thanks to constant vacuum
- A frequency-controlled circulation pump maintains the vacuum constant in the enclosed anode area
- Maximum operating safety due to their design as negative pressure systems
- Active process control of production by largely internal measuring and control technology
- Cost-effective operation thanks to the use of sodium chloride as an inexpensive raw material and no consumption of chemicals for pH adjustment
- Peak demand can be met by the presence of a daily supply of sodium hypochlorite
- Complete disposal of the diluted brine, nothing is fed back into the process water to be treated
- Comparable with pure chlorine gas in terms of oxidation strength, chloride and chlorate content in the process water
- Robust technology
- Compact, space-saving design

Technical Data

Power supply 3 x 400 V (VAC/3P/N/PE/50 Hz)

Type/ output	Fuse	Power uptake	Max. salt consumption	Max. consumption of process water*	(External) consumption of cooling water	Dimensions L x W x H (mm)	Brine tank	Recommended capacity storage tank
g/h	Α	kW	kg/d	l/h	I/h		I	I
100	3 x 16	1.10	5	60	-	1,655 x 600 x 1,550	130	50
200	3 x 16	1.50	10	60	-	1,655 x 600 x 1,550	130	100
300	3 x 16	1.90	15	60	-	1,655 x 600 x 1,550	200	150
400	3 x 16	2.30	20	60	_	1,655 x 600 x 1,550	200	200
500	3 x 16	2.70	25	60	-	1,655 x 600 x 2,000	200	250
600	3 x 20	3.10	30	90	_	1,950 x 600 x 2,000	380	300
750	3 x 25	3.70	40	90	-	1,950 x 600 x 2,000	380	400
1,000	3 x 25	4.70	55	90	_	1,950 x 600 x 2,000	380	500
1,250	3 x 35	5.70	60	90	-	1,950 x 600 x 2,000	380	600
1,500	3 x 35	6.70	75	90	_	1,950 x 600 x 2,000	380	750
1,750	3 x 35	7.70	85	90	-	1,950 x 600 x 2,000	380	850
2,000	3 x 50	8.70	100	175	200	1,750 x 1,200 x 2,000	520	1,000
2,500	3 x 63	10.70	125	175	250	1,750 x 1,200 x 2,000	520	1,250
3,000	3 x 63	12.70	150	175	300	1,750 x 1,200 x 2,000	520	1,500
3,500	3 x 80	14.70	175	175	350	1,750 x 1,200 x 2,000	520	1,750

^{*} The consumption of process water depends on the ratio of chlorine gas to stock production. The value is given here for a ratio of 70%: 30%.

Capacities > 3,500 g/h upon request

Scope of delivery:

Electrolysis systems of type Chlorinsitu® V Plus are ready mounted, wired for use, on a powder-coated stainless steel frame with a PLC Programmable Logic Controller in the control cabinet, Remote Control Engineer for remote diagnosis and troubleshooting, integral water softening unit, diaphragm electrolysis cells, ATEX-95-compliant bleed system and separate salt dissolving tank with level monitoring. The scope of delivery also includes a frequency-controlled central injector system matched to the system to meter active chlorine and sodium hydroxide for pH correction and a single booster pump. A level control to monitor the storage tank to be provided on site for sodium hypochlorite. A chlorine gas warning unit and automatic monitoring of water hardness downstream of the softening system come as standard with systems producing more than 600 g/h.

Note:

Electrolysis systems of type CHLORINSITU® II, III, V and V Plus are offered and planned to meet customer specifications. This is true both for the system documentation and the subsequent supply of spare parts and maintenance.

4.9	Questionnaire on the Design of an ECA Water System
Application	
☐ Bottler flushing	
☐ CIP	
☐ Other	
Applicational details	
Number of bottlers:	
Flushing duration:	
Required volume to be added to b	ottler: Recommendation with material SS 316 L 2-4 ppm
Number of CIP points of injection:	
Duration of CIP:	
Required volume to be added for 0	IP: Recommendation 10-15 ppm
Water data:	
Max. volume of water to be treated	n³/h maximum water pressure bar
Water flow ☐ consta	nt
pH value	(iron (Fe ²⁺) mg/l)
Temperature	C (manganese (Mn²+) mg/l)
Proportion of solids	ng/I (nitrite (NO ₂ ⁻) mg/l)
Acid capacity K _{S4,3}	nmol/I (sulphide (S²-) mg/l)
Total hardness	nmol/I (TOC (total organic carbon) mg/l)
Total hardness	dH (ammonium mg/l)
Reaction time to application:	
	k or minutes dwell time in the total system.
Disinfection method used to date	
Disinfectant consumed to date:	kg/week
Other requirements:	

P_PMA_ECA_0001_SW

4.10

Electrolysis System Dulco®Lyse

© ■

Dulcolyse 100-300gram SW1

Dulcolyt (Electro-Chemically Activated water) from the Dulco®Lyse is used where reliable disinfection is required, at the same time protecting the system technology from corrosion.

Electrolysis systems of type Dulco®Lyse generate ultra-pure hypochlorous acid in a vacuum process. A saturated solution of sodium chloride is produced in a salt dissolving tank, included in the scope of delivery for this purpose, which is then electrolysed in a diaphragm cell. Chloride-free sodium hydroxide and hydrogen are produced in the cathode chamber, while ultra-pure chlorine gas and dilute residual brine are produced in the anode chamber, separated by the diaphragm from the cathode chamber. The active chlorine produced is immediately separated from the residual brine and dissolved as hypochlorous acid. The sodium hydroxide is temporarily stored and added to hypochlorous acid through a metering pump. The result is a neutral, highly-effective and extremely low-chloride and low-chlorate disinfection solution, temporarily stored in the product tank until metered through separate metering stations. The hydrogen produced is diluted with fresh air through an ATEX-approved fan and discharged safely. The diluted residual brine is fully discarded. To this end, the diluted brine is seriously diluted with softened water, neutralised by the addition of sodium hydroxide and disposed off in the sewer. Any residual chloride and chlorate are thus disposed of and are fundamentally not mixed with the process water. Dulcolyse systems can thus be compared with pure chlorine gas in terms of their oxidation strength, chloride and chlorate content in the process water. The salt-dissolving water comes from a softening system integrated in the Dulco®Lyse system, thereby preventing the formation of lime deposits and ensuring the long service life of the electrolysis cell.

The systems are controlled by a modern PLC with a large, illuminated display and integrated Remote Control Engineer for remote diagnosis and troubleshooting.

Advantages of the Dulco®Lyse system for the production and provision of pure, low-chlorine ECA water:

- Handling of chemicals is reduced (only sodium chloride is required)
- Compact, space-saving design
 - Cost-effective operation, thanks to use of inexpensive sodium chloride as a raw material
- Safe system control with remote diagnosis by integral Remote Control Engineer

Technical Data

Power supply 1 x 230 Volt (VAC/1P/N/PE/50 Hz)

	Type/ output	Dulcolyt production at 400 ppm	Power uptake	Dimensions H x W x D	Salt solution tank volume
	g/h	I/h	kW	mm	1
Dulco®Lyse 100	100	250	1.10	2,100 x 1,200 x 600	130
Dulco®Lyse 200	200	500	1.50	2,100 x 1,200 x 600	130
Dulco®Lyse 300	300	750	1.90	2,100 x 1,200 x 600	200

Scope of delivery:

Dulco®Lyse electrolysis systems are assembled ready-wired in a stainless steel housing

- PLC (programmable logic controller) in attached control cabinet
- Integrated softening system
- Electrolysis cell(s)
- ATEX-certified bleeding system
- Integrated salt tank with level monitoring

	Order no.
Dulco®Lyse 100	1041424
Dulco®Lyse 200	1043987
Dulco®Lyse 300	1043988

Spare parts and maintenance sets

	Туре	Order no.	
Annual maintenance set	Dulco®Lyse 100 – 300	1041427	
3-yearly maintenance set	Dulco®Lyse 100 – 300	1041430	
Spare parts set	Dulco®Lyse 100 – 300	1044366	

4.11 Accessories

Water hardness measuring kit

For manual determination of the overall hardness

	Order no.
Water hardness measuring kit for overall hardness	505505

5.1 DULCODOS® Pool Swimming Pool Metering Systems

The metering systems DULCODOS® Pool ensure the best water quality. The systems are available in four different designs. It is easy to work out which type is best suited to your requirements.

Chlorine or active oxygen?

Historically, swimming pool water has always been treated with chlorine. Because it is an effective disinfectant and is highly oxidising, chlorine is also the chemical of choice for public pools. Clear and hygienically safe water is guaranteed.

The metering systems DULCODOS® Pool reliably keep the operating parameters in an optimum range and unpleasant side-effects, such as the smell of chlorine or burning eyes, are very rare.

Active oxygen is less effective than chlorine. It can be used for very gentle and environmentally-sound water treatment in pools with fewer users.

■ Soft

DULCODOS® Pool Soft is especially suited to private pools used by a small number of people. It works with active oxygen substances, which are less effective than chlorine. Water treatment with active oxygen is a good alternative for ecologically-minded pool owners or if users are allergic to chlorine. DULCODOS® Pool Soft uses no chlorine chemicals.

■ Basic

DULCODOS® Pool Basic regulates the pH and chlorine content using the redox potential. This is the direct measurement of effective oxidation in the water and is therefore an indication of the disinfectant effect and concentration of the metered chlorine. The concentration of chlorine cannot be determined with accuracy with this process. ORP measurements allow a particular range of chlorine to be set. DULCODOS® Pool Basic is robust and requires little maintenance.

■ Comfort

DULCODOS® Pool Comfort uses highly specific chlorine sensors to measure the chlorine content. The concentration of chlorine in the water can be determined and set with accuracy. The effectiveness of the pool filter is boosted by an integrated feeder assembly for flocculant, resulting in crystal-clear water! Numerous features to enhance operating convenience, such as measured values being mapped by a screen plotter or remote control from your PC, iPad or other tablet device using an integrated web server, make the metering system very popular with customers.

Professional

In addition to the features described above, DULCODOS® Pool Professional also measures the combined chlorine. This is an important parameter in public pools. It can be incorporated in the building management system via OPC and KNX and alarm messages can be sent by text or e-mail. Eco!Mode operating mode reduces the energy consumption of the filter pumps. The integrated soft PLC control can be used to operate several peripheral devices and functions. The swimming pool controller becomes the central control unit for all the swimming pool technology.

Choice of pumps

The metering systems DULCODOS® Pool allow you to choose which metering pump to fit on your complete system. The choice of pump depends entirely on the size of your pool and how often it is used.

Peristaltic pumps DULCO®flex are suited to applications requiring few chemicals, such as small pools or those used infrequently. The pump reliably eliminates bubbles of gas formed during periods of non-use. Depending on the amount of use, the metering hose has to be replaced once or twice a year. Motor-driven metering pumps alpha have a higher capacity and longer maintenance intervals. Like peristaltic pumps, they are silent.

Solenoid metering pumps Beta® are not controlled by switching them on and off, like DULCO®flex or alpha, instead, their metering frequency is adjusted continuously, enabling the pump to have an extremely precise control action.

Pumps with **CAN bus system** can be used in the DULCODOS® Pool Professional series. They communicate all operating messages, such as two-stage monitoring of the chemical reservoir, to the control.

Accessories

Whether you are looking for collecting pans for chemical tanks or portable test devices for measurement parameters – or even software for digital control: optional accessories make it even easier for you to operate the system.

Service

Installation, commissioning, training in how the system works, operation and maintenance: When you buy a DULCODOS® Pool system, it comes with service you can rely on – even if your pool is already quite old.

5.2

Metering System DULCODOS® Pool Soft

Ecologically convincing: chlorine-free water treatment with active oxygen in private swimming pools – fully automatically and correctly.

For swimming pools with volumes up to 100 m³

Chlorine-free water treatment system for environmentally operated private pools. Safe water disinfection with active oxygen as a turnkey complete solution.

Complete system DULCODOS® Pool Soft for pH adjustment and chlorine-free disinfection with active oxygen. To prevent any germs in the pool from building up resistance to active oxygen, it is not metered continuously, but injected at intervals controlled by a timer.

Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoid metering pumps type Beta® are used, depending on demand and the circulation volume.

Sensors, controllers and metering pumps form a unit with the chemical storage tanks, which can get to work without a lot of installation effort on your part.

The control device performs numerous functions to enhance operating convenience, such as mapping measured values using a screen plotter and an SD memory card or remote access via the integral WEB server and LAN interface (optional).

Your benefits

- Simple, quick assembly
- Simple, menu-driven operation
- Chlorine-free
- Constantly good water quality
- Versatile monitoring functions

- 2-channel controller DULCOMETER® diaLog DACa with measurement/control of the pH value and metering of active oxygen using an integrated timer function, mounted on a wall plate ready for use.
- In-line probe housing with sample water monitoring, sample water filter and measuring probe for pH value
- Monitoring of the chemical reservoir
- Dosing monitor to protect against over-metering
- Screen plotter for graphic mapping of measured values, data logger with SD card
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and active oxygen content.
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 VAC, 50/60 Hz
- Dimensions with metering pumps alpha or Beta®:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - $595 \times 400 \times 150 \text{ mm}$ (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCO®flex: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application

Private swimming pool

P_DD_0042_SW1

Identity Code Ordering System for DULCODOS® Pool Soft

DSPa		pH/T	imer co vare-ad Standa	are-ado	I functi ditional	function	easured		ackup ir	ncluding	SD car	rd			
				0	None	nication interfaces lone Embedded web server, LAN (available from mid-2015)									
				3	Electr	ical co	nnectio	n	`			10)			
					A B		50/60 I 50/60 I		opean s ss plug	tandard	plug				
						Senso 0	or equip	oment ensors							
						1	Withou	ut sens	ors						
							Version 0	With F	ProMine	_					
							1	Lang			Logo				
								A D	Swedi						
								E F	Englis	h					
								F G	Frencl						
								I N	Italian Dutch						
								P R	Polish Russia						
								S	Spani	panish					
										ering pumps for acids/alkalis Without metering pumps					
									1 2		•		DF2a 02 DF2a 02	,	
									3 4		•		DF2a 02 002 PVT	,	
									5 6	3.5 l/h	(alpha	ALPc 1	004 PVT 0401 PV	r)	
									7	2.8 l/h	(Beta®	BT4b 0	402 PV	T)	
									8				0404 PV ve for ac	⊺) ⊵id/alkali pump	
										0	Witho	ut		pha and Beta [®])	
											Meter	ing pu	mps for	disinfection	
											0 1 2	0.8 l/h	(DULC	ing pumps O [®] flex DF2a for 0208) for pools up to a volume of 20 m ^o O [®] flex DF2a for 0216) for pools up to a volume of 40 m ^o	
											3	2.4 l/h	(DULC	O [®] flex DF2a for 0224) for pools up to a volume of 60 m ³ ALPc 1002 PVT) for pools up to a volume of 45 m ³	
											5 6			ALPc 1004 PVT) for pools up to a volume of 90 m ³ BT4b 0401 PVT) for pools up to a volume of 25 m ³	
											7	2.8 l/h	(Beta®	BT4b 0402 PVT) for pools up to a volume of 50 m ³ BT4b 0404 PVT) for pools up to a volume of 100 m ³	
											0	Multif	function	nal valve for disinfection pump	
												0	Withou With M	ut MFV (only for alpha and Beta®)	
													Install 0 1	lation Supplied loose without mounting plate Assembled on a base plate	
														Approvals 0 With CE certification	
DCD-	DOG	0	1		^	0		P		0	1	0	1	O Identity and a consequentation	
DSPa	DO2	U	1	0	Α	0	0	D	2	0	2	0	1	0 Identity code as a representative example	

5.3

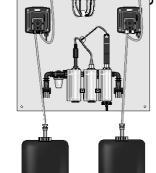
Metering System DULCODOS® Pool Basic

Convenient and simple: pure water in private swimming pools – fully automatically and correctly. For swimming pools with a circulation capacity of up to 200 $\rm m^3/h$

The chlorine metering system DULCODOS® Pool Basic is a complete solution for private swimming pools where the chlorine content is controlled using the low-maintenance measurement of the redox potential.

Complete system for the fully automatic adjustment of pH and chlorine content (using the measured variable redox potential) in swimming pool water. Peristaltic pumps of the product range DULCO®flex or motor-driven metering pumps type alpha are used, depending on demand and the circulation volume. Sensors, controllers and metering pumps form a single perfectly coordinated unit with the chemical storage tanks, which can reliably get to work without a lot of installation effort on your part.

Your benefits


- Simple, quick assembly
- Simple, menu-driven operation
- Constantly good water quality
- Versatile monitoring functions

- 2 -channel swimming pool controller Splash Control PPCa with measurement, control and metering functions for pH and redox potential (chlorine metering)
- In-line probe housing with sample water monitoring, sample water filter and measuring probe for pH value and redox potential, fitted on a wall panel.
- 2 metering pumps alpha or DULCO®flex
- Monitoring of the chemical reservoir
- Dosing monitor to protect against over-metering
- Connectors for points of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 VAC, 50/60 Hz
- Dimensions: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application

Private swimming pool

pk_7_100_SW1

Identity Code Ordering System for DULCODOS® Pool Basic

PR	easured	varia 1 / ORF														
				litional	functio											
					tunctio	ons										
	0		Standard Software-additional functions													
					litional	functio	ns									
		C)	None												
				Comm	ommunication interfaces None											
				0												
					Electr	ical cor	nection	1								
					A		50/60 H		pean sta	ndard p	lua					
					В		50/60 H				9					
							or equip		o plug							
						0										
						-	With sensors Without sensors									
						Α			rs							
							Versio									
							0		roMiner							
							1	Withou	ut ProMii	ProMinent® Logo						
							1	Langu	lage							
								D	German							
								E	English							
								F	French							
								G	Czech							
								ı	Italian							
								1.								
							N	Dutch								
								R		Russian						
								S	Spanis Meter	h						
										ng pun	ps for	acids/a	lkalis			
									0			ing pum				
									1	0.8 l/h	DULC	O®flex E	F2a 02	(80		
									2				F2a 02			
									3)F2a 02			
									4	,	`		02 PVT	,		
									5							
									5				04 PVT			
													e for ac	id/alkali	i pump	
										0	Withou					
										1	With N	1FV (alp	oha only	r)		
											Meter	ing pun	nps for	disinfe	ction	
											0	Withou	ut meter	ing pum	ps	
											1				r up to 45/10 m ³ /h circulation HB/FB*	
											2				r up to 90/20 m ³ /h circulation HB/FB*	
											3				r up to 140/30 m ³ /h circulation HB/FB*	
											4					
											5			Ipha for up to 100/20 m³/h circulation HB/FB*		
											5		a alpha for up to 200/40 m³/h circulation HB/FB* functional valve for disinfection pump			
															e for disinfection pump	
												0	Withou			
												0	With N	/IFV (alp	ha only)	
													Instal	lation		
													0	Suppli	ed loose without mounting plate	
							1	1				1	1		abled on a base plate	
													1	Appro		
														Appro 0	With CE certification	
														U	with GE certification	
	20 0)	0	Α	0	0	D	2	0	2	0	1	0	Identity code as a representative	
Pa PF	3O 0													()		

* Calculated for 12 percent sodium-calcium hypochlorite

HB = Indoor swimming pool

FB = Outdoor swimming pool

5.4

Metering System DULCODOS® Pool Comfort

Convenient and simple: crystal-clear water in private swimming pools – fully automatically and correctly.

For swimming pools with a circulation capacity of up to 225 m³/h

The chlorine metering system DULCODOS® Pool Comfort is the convenient solution for pH adjustment and disinfection of swimming pools with liquid chlorine products. Remote access is possible via LAN interface.

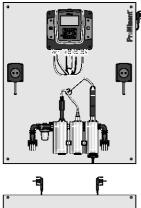
Your benefits

Complete system DULCODOS® Pool Comfort for pH adjustment and disinfection with liquid chlorine products. Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoid metering pumps type Beta® are used, depending on demand and the circulation volume.

An integrated flocculant metering station (optional) ensures crystal-clear water.

Sensors, controllers and metering pumps form a unit with the chemical storage tanks, which can get to work without a lot of installation effort on your part.

The control device performs numerous functions to enhance operating convenience, such as mapping measured values using a screen plotter and an SD memory card or remote access via the integral WEB server and LAN interface (optional).


- Simple, quick assembly
- Simple, menu-driven operation
- Brilliant water quality
- Versatile monitoring functions

Technical details

- 2-channel controller DULCOMETER® diaLog DACa with measurement/control and metering functions for pH and chlorine concentration, mounted on a wall plate ready for use
- Integrated flocculant metering station (optional)
- In-line probe housing with sample water monitoring, sample water filter and measuring probes for pH and chlorine content (DC2 for free chlorine, DC4 for free chlorine in the presence of isocyanuric acid stabiliser)
- Monitoring of the chemical reservoir
- Dosing monitor to protect against over-metering
- Screen plotter for graphic mapping of measured values, data logger with SD card
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and chlorine content, DULCO®flex for metering flocculant (optional).
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 VAC, 50/60 Hz
- Dimensions with metering pumps alpha or Beta[®] and/or with "flocculant metering" option:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- $\,\blacksquare\,$ Dimensions with metering pumps DULCO@flex: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application

High-end private pool

P DD 0037 SW1

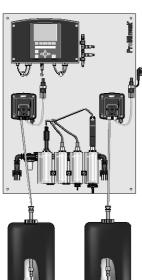
P_DD_0045_SW1

Identity Code Ordering System for DULCODOS® Pool Comfort

0 N	:		^r d re-addi Screen	tional to plotter unication None Embed	function with medion interest deed we ical co 230 V 230 V	easured erfaces eb serve nnectio 7, 50/60 I 7, 50/60 I or equip With s Meas	er, LAN (n Hz, Euro Hz, Swis pment sensors ured var ured var on	iable DC iable DC ProMiner ut ProMi Jage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	e from m andard p 22 withou 4 withou nt® logo nent® L sh an h	olug ut senso ut senso	ors				
		1	Screen Comm 0	plotter unicati None Embed Electri A	with medion intended we ical co 230 V 230 V Sense 0 B	easured erfaces eb serve nnectio (, 50/60 l (, 50/60 l or equil With s Meas Meas Versi	er, LAN (n hz, Euro Hz, Swis pment sensors ured var on With F Witho Lange A D E F G I N P R	available pean stass plug iable DC iable DC roMiner ut ProMi Jage Swedi Germa Englis French Czech Italian Dutch Polish Russia	e from m andard p 22 withou 4 withou nt® logo nent® L sh an h	olug ut senso ut senso	ors				
			Comm 0	unicati None Embed Electri A	ion inte	eb serve nnectio 7, 50/60 I 7, 50/60 I 7, 50/60 I 90 Or equip With s Meas Meas Versi	er, LAN (n hz, Euro Hz, Swis pment sensors ured var on With F Witho Lange A D E F G I N P R	available pean stass plug iable DC iable DC roMiner ut ProMi Jage Swedi Germa Englis French Czech Italian Dutch Polish Russia	e from m andard p 22 withou 4 withou nt® logo nent® L sh an h	olug ut senso ut senso	ors				
		- 1	0	None Embed Electri	ical co 230 V 230 V Sense 0 B	eb serve nnectio ', 50/60 l ', 50/60 l or equip With s Meas Meas Versi	Hz, Euro Hz, Swis pment sensors ured var ured var on With F Witho Langu A D E F G I N P R	ppean stass plug iable DC iable DC roMiner ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	andard p 22 withou 44 withou at® logo nent® L sh an h	olug ut senso ut senso	ors				
			-	Embed Electri A	230 V 230 V 230 V Sense 0 B	nnectio 7, 50/60 I 7, 50/60 I or equip With s Meas Meas Versi 0	Hz, Euro Hz, Swis pment sensors ured var ured var on With F Witho Langu A D E F G I N P R	ppean stass plug iable DC iable DC roMiner ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	andard p 22 withou 44 withou at® logo nent® L sh an h	olug ut senso ut senso	ors				
				Electri A	230 V 230 V 230 V Sense 0 B	nnectio 7, 50/60 I 7, 50/60 I or equip With s Meas Meas Versi 0	Hz, Euro Hz, Swis pment sensors ured var ured var on With F Witho Langu A D E F G I N P R	ppean stass plug iable DC iable DC roMiner ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	andard p 22 withou 44 withou at® logo nent® L sh an h	olug ut senso ut senso	ors				
					230 V Sense 0 B	V, 50/60 I or equip With s Meas Meas Versi	Hz, Swispment sensors ured varured varon With F Without A D E F G I N P R	iable DC iable DC ProMiner ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	c2 withou c4 withou at® logo nent® L sh an h	ut senso ut senso					
				В	Senso 0 B	With s Meas Meas Versi	pment sensors ured var on With F Without A D E F G I N P R	iable DC iable DC ProMiner ut ProMi Jage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	4 withou nt® logo nent® L sh an h	ut senso					
					0 B	With s Meas Meas Versi	sensors ured var ured var on With F Witho Langu A D E F G I N P R	ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut Promin	4 withou nt® logo nent® L sh an h	ut senso					
					В	Meas Meas Versi	ured var ured var on With F Witho Langu A D E F G I N P	ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut ProMiner ut Promin	4 withou nt® logo nent® L sh an h	ut senso					
					С	Versi	With F Without Language F G I N P R	ProMiner ut ProMi Jage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	nt® logo nent® L sh an h		ors				
						0	With F Witho Langu A D E F G I N P R	ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	nent® L sh an h						
						-	Witho Langu A D E F G I N P R	ut ProMi uage Swedi Germa Englisi French Czech Italian Dutch Polish Russia	nent® L sh an h						
							Langu A D E F G I N P	Swedi Germa Englis French Czech Italian Dutch Polish Russia	sh an h	Jogo					
							A D E F G I N P R	Swedi Germa Englisi French Czech Italian Dutch Polish Russia	an h						
							E F G I N P R	Englisi French Czech Italian Dutch Polish Russia	h n						
							F G I N P R	French Czech Italian Dutch Polish Russia	1						
							G I N P R	Czech Italian Dutch Polish Russia							
							N P R	Dutch Polish Russia							
							P R	Polish Russia							
							R	Russia							
									ussian panish						
							1		ing pum	nps for	acids/a	alkalis			
											ing pum				
												DF2a 0208) DF2a 0216)			
	ļ							3				DF2a 0224)			
								4		•		002 PVT)			
								5				004 PVT)			
								6 7				401 PVT) 402 PVT)			
								8				402 PVT) 404 PVT)			
										•		e for acid/alkali pump			
									0	Withou	ut				
									1		,	nly for alpha and Beta®)			
												mps for disinfection			
										0		ut metering pumps I DULCO®flex for up to 45/10 m³/h circulation HB/FB			
										2		DULCO®flex for up to 90/20 m³/h circulation HB/FB			
										3		DULCO®flex for up to 140/30 m³/h circulation HB/F			
										4 5		alpha for up to 100/20 m ³ /h circulation HB/FB* alpha for up to 200/40 m ³ /h circulation HB/FB*			
										6		Beta® for up to 85/20 m³/h circulation HB/FB*			
										7	2.8 l/h	Beta [®] for up to 160/35 m ³ /h circulation HB/FB*			
										8		h Beta [®] for up to 260/55 m ³ /h circulation HB/FB*			
												functional valve for disinfection pump			
											0	Without With MFV (only for alpha and Beta®)			
											Ι΄	Installation			
												Supplied loose without mounting plate			
												1 Assembled on a base plate			
												B Base plate with flocculant pump DF4a fitte			
												Approvals 0 With CE certification			
				i e											
a DC4 0															

Calculated for 12 percent sodium-calcium hypochlorite HB = Indoor swimming pool FB = Outdoor swimming pool

5.5


Metering System DULCODOS® Pool Professional

Professional and demanding: crystal-clear water in public swimming pools - fully automatically and correctly, with minimal energy consumption, thanks to Eco!Mode.

For swimming pools with a circulation capacity of up to 1,130 m³/h

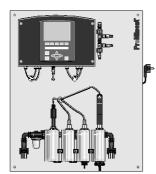
Chlorine metering system for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools. DULCODOS® Pool Professional ensures crystal-clear water quality and lowers operating costs thanks to Eco!Mode.

P DD 0035 SW1

Complete system DULCODOS® Pool Professional for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools, such as pH, redox potential and free and combined chlorine. Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoid metering pumps type Beta® are used, depending on demand and the circulation volume.

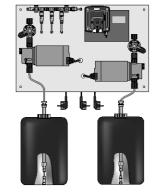
An integrated flocculant metering station (optional) ensures crystal-clear water.

In Eco!Mode, the circulating volume of the swimming pool pumps is optimised depending on the water quality, enabling you to efficiently save energy.


The integrated SoftPLC allows the system to control optional peripheral devices and functions, such as UV systems, water attractions, lighting, heating and water top-up.

The system has many different communication interfaces that enable it to be integrated in networks or a building management system and it can also be remotely monitored and controlled with an Apple® iPad or tablet PC.

Sensors, controllers, metering pumps and the process chemical storage tanks form a single unit with the other peripheral swimming pool technology used, which can handle your work without a lot of installation effort on your part.


Your benefits

- Simple, quick assembly
- Brilliant water quality
- Eco!Mode helps cut operating costs
- Versatile communication interfaces
- Central control of peripheral devices and functions too

Technical details

- Multi-channel, multi-parameter controller DULCOMETER® DULCOMARIN® II with measuring, control and metering functions for pH, redox potential, free and combined chlorine in various combinations depending on the type, ready-wired for use and mounted on a wall panel
- Optional integrated flocculant metering station
- In-line probe housing with sample water monitoring, sample water filter and all sensors
- Monitoring of the chemical reservoir with a pre-alarm (options A and F)
- Dosing monitor to protect against over-metering
- Screen plotter for graphic mapping of measured values, data logger with SD card
- Embedded web server with LAN interface (optional)
- OPC and KNX for integration in building management systems, alarm functionby text or e-mail
- Integrated SoftPLC for control of peripheral devices (option F)
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and chlorine content, DULCO®flex for metering flocculant (optional)
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm.
- Digital pause input
- 3 contact inputs, freely configurable (option A)
- 5 contact inputs, freely configurable (option F)
- CAN bus for connection of chlorine measuring cells and metering pumps $Beta^{\tiny \circledR}$ and DULCO $^{\tiny \circledR} flex$ DF4a
- Temperature measuring input Pt 100/Pt 1000
- Alarm relay output
- 3 output relay outputs, freely configurable
- 3 relay outputs for the control of metering pumps (option A)
- 6 output relay outputs, freely configurable (option F)
- 4 analogue outputs 0/4-20 mA, freely configurable (option A)
- 2 analogue outputs 0/4-20 mA, freely configurable (option F)
- Electrical connection: 230 VAC, 50/60 Hz.

pk_7_105_SW1

- Dimensions with metering pumps alpha, Beta® or DULCO®flex DF4a and/or with "flocculant metering" option:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCO®flex DF2a: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 12 kg or 7 kg (without pumps)

Field of application

- High-end private pool
- Public swimming pool
- Therapy pool

			Measured variables:		
Туре	рН	ORP	Chlorine	Chlorine/isocyanuric acid	Combined chlorine
PC5	x	x			
PC6	x		X		
PC7	х	x	Х		
PC8	х	x	Х		х
PC9	х			Х	
PCA	х	x		Х	
PCD	x	Χ		Х	Х

Type PC5: pH and redox potential (chlorine metering)

Type PC6: pH and free chlorine

Type PC7: pH, redox potential and free chlorine

Type PC8: pH, redox potential, free chlorine and combined chlorine

Type PC9: pH and free chlorine in the presence of the stabiliser isocyanuric acid

Type PCA: pH, redox potential and free chlorine in the presence of the stabiliser isocyanuric acid

 $\label{thm:problem} \mbox{Type PCD: pH, redox potential, free chlorine in the presence of the stabiliser isocyanuric acid and } \\$

combined chlorine

5 Measuring, Control and Metering Systems for Swimming Pool Water Treatment

Identity Code Ordering System for DULCODOS® Pool Professional

-			variabl	le											
	PC5						C: -								
			ree chl							.NI\					
			ORP / fi								E 3 1.0	`AN and	1 CTE	1-CAN)	
			otal chl							ous UL	L J. I-C	min all	.015	i-CAN)	
			ORP / to		•				,	N)					
						•					E 2-C	AN and	CTE 1	-CAN)	
			ware-a					,							
		0	Standa												
		A			•			mA m	easure	d value	(A mod	dule)			
		F				(F-mod									
			Softwa			al fund			ta hack	up inclu	ıdina S	D card			
			•			ation ir			ta baon	ир шог	aning C	Doard			
				0	None		nonac	,,,,							
				5	Embe	edded v	veb se	rver, L	AΝ						
				6	OPC	server	+ Emb	edded	web se	rver + k	(NX fu	nction +	alarm	by text	or e-mail
						rical c									000 // 50/00 // 0 /
					Α					n stand	ard plu	g		В	230 V, 50/60 Hz, Swiss plug
						Sens 0		lipmer sensor						G	Measured variable PC8 without sensors
						A				PC5 wi	thout s	ensors		H	Measured variable PC9 without sensors
						Е				PC6 wi				1	Measured variable PCA without sensors
						F	Meas	sured v	ariable	PC7 wi	thout s	ensors		L	Measured variable PCD without sensors
							Vers		.					\ A **··	. D. M.
							0			ent® lo	go		1	Withou	ut ProMinent® Logo
								Lang D	juage Germ	an			1	Italian	
								E	Engli				Р	Polish	
								F	Frenc				S	Spanis	sh
									Mete			or acid		lis	
									0			ering pu			
									1		•	CO®flex		,	
									2		•	CO®flex CO®flex		,	
									4		,	a ALPc			
									5	3,5 l/h	ı (alpha	ALPc	1004 F	PVT)	
									Α		•			T4a 040	,
									В		•			T4a 040	,
									C D		,	_	•	T4a 040	OS PVT) CAN Bus)
									E						CAN Bus)
									F		,			T4a 040	
										Multi	functio	nal val	ve fo	acid/a	lkali pump
										0	Witho				
										1					nd Beta®)
											Mete 0			or disir ering pu	nfection
											1				Imps DF2a for up to 45/10 m ³ /h circulation HB/FB*
											2				DF2a for up to 90/20 m³/h circulation HB/FB*
											3				DF2a for up to 140/30 m ³ /h circulation HB/FB*
											4				o 100/20 m ³ /h circulation HB/FB*
											5				o 200/40 m³/h circulation HB/FB*
											A B				pen for up to 85/20 m³/h circulation HB/FB* pen for up to 160/35 m³/h circulation HB/FB*
											С				pen for up to 300/65 m³/h circulation HB/FB*
											D				DF4a CANopen for up to 85/20 m ³ /h circulation HB/I
											E				DF4a CANopen for up to 340/70 m ³ /h circulation HB
											F				open for up to 1050/225 m ³ /h circulation HB/FB*
															ve for disinfection pump
												0	With		phyfor alpha and Data®)
												1		,	nly for alpha and Beta®)
													Insta 0	I llation ISuppli	ed loose without mounting plate
													1		nbled on a base plate
													В		plate with flocculant pump DF4a fitted
														Appro	ovals
														0	With CE certification

Calculated for 12 percent sodium-calcium hypochlorite HB = Indoor swimming pool FB = Outdoor swimming pool

Measuring, Control and Metering Systems for Swimming Pool Water Treatment

5.6 Maintenance Kits

The following are needed for the maintenance of a measuring, control and metering system DULCODOS® Pool:

- 2 no. maintenance kits for metering pumps
- 1 no. maintenance kit for the measured variable

5.6.1 Maintenance Kits for Metering Pumps

The following table shows the assignment of the maintenance kits to the types of metering pumps used.

	Product range	Туре	Order no.
Hose, complete 4.8 x 8.0 PharMed	DF2a	0208, 0216, 0224	1009480
Hose, complete 1.6 x 4.8 PharMed	DF4a	04015	1030722
Hose, complete 3.2 x 6.4 PharMed	DF4a	03060	1030723
Spare parts kit 1005-2/1605-2 PVT	ALPc, BT4a	1002PVT/1004PVT (ALPc), 0405PVT (BT4a)	1023110
Spare parts kits 1601 – 2 PVT, PPT, NPT	BT4a, BT4b	0401PVT (BT4a), 0401PVT (BT4b)	1023108
Spare parts kits 1602 – 2 PVT, PPT, NPT	BT4a, BT4b	0402PVT (BT4a), 0402PVT (BT4b)	1023109
Spare parts kits 0708 – 2/1008 – 2 PVT, PPT, NPT	BT4a	0408PVT	1023111
Spare parts kit 9.2/33.5/12 x 9 PVT	BT4a	0220PVT	1023113
Spare parts kits 1604 – 2 PVT, PPT, NPT	BT4b	0404PVT	1035332

5.6.2 Maintenance Kits for Measured Variables

Maintenance kits are put together for the measured variables of the DSPa. Depending on the measured variable, the maintenance kits consist of:

- Buffer solutions
- Electrolytes
- Diaphragm caps
- 1 stainless steel screen 300 μm for the water filter
- 1 NBR flat seal for the water filter

The following table shows the assignment of the maintenance kits to the types of DULCODOS® Pool.

	Туре	Order no.
DSPA maintenance kit PR0, PC5, 333, 335, 735, 736	Basic, Professional PC5	1050631
DSPA maintenance kit DO2	Soft	1050632
DSPA maintenance kit DC2, PC6, 640, 645, 745	Comfort DC2, Professional PC6	1050633
DSPA maintenance kit DC4, PC9	Comfort DC4, Professional PC9	1050644
DSPA maintenance kit PC7, PCB, 781, 785, 786	Professional PC7	1050645
DSPA maintenance kit PC8	Professional PC8	1050646
DSPA maintenance kit PCA	Professional PCA	1050647
DSPA maintenance kit PCD	Professional PCD	1050648

5.6.3 Buffer Solutions

Quality buffer solutions are provided for calibration of pH and ORP sensors.

The following table shows the assignment of the buffer solutions to the sensors.

	Measured variable	Order no.
Buffer solution pH 4, 50 ml, red	рН	506251
Buffer solution pH 7, 50 ml, green	рН	506253
Buffer solution ORP 465 mV, 50 ml	ORP	506240

5 Measuring, Control and Metering Systems for Swimming Pool Water Treatment

5.7 Test Equipment

5.7.1

Portable Meter Portamess® Measured Variable pH/ORP

Robust manual measuring instrument to withstand the most severe mechanical and chemical loading.

Measuring range pH -2.00 to + 16.00, ORP -1,300 ... +1,300 mV

pH and ORP measurement with Portamess $^{\oplus}$ pH/ORP - battery-powered, hand-held meter with automatic or manual temperature compensation.

The Portamess® pH/ORP is used to measure the pH and ORP value in the industrial, environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, pre-selectable buffer sets.

Your benefits

- Robust and leak-tight
- Long lifespan: Over 2,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display

Technical details

- Measuring ranges pH: -2.00 ... +16.00, ORP: -1,300 ... +1,300 mV
- Measuring errors pH: < 0.01, ORP: < 0.1% of the measured value ±0.3 mV</p>
- Sensor adaptation: 8 buffer sets to choose from
- Temperature compensation: Manual
- Degree of protection: IP 66
 - Operating time: 2,000 hours with 3 no. AA cells
- **Dimensions:** H x W x D 160 x 133 x 30
- Weight: 560 g with batteries
- Scope of delivery: Measuring instrument, field case, operating instructions in German, English and French.
- Caution: Order the pH sensor separately.

Field of application

- Industry
- Environmental protection
- Food production
- Water or waste water inspection
- Hard-wearing membrane keypad
- Large, easy-to-read LCD display
- Integrated sensor quiver to protect the sensor
- Sturdy housing (IP 66 degree of protection)
- Robust, watertight, gold-plated sockets

Accessories

	Capacity	Order no.
	ml	
PHEKT-014F	_	1036537
Coaxial cable Ø 5 mm, 0.8 m - SD*	-	305098
Buffer pH 7.0	50	506253
Buffer pH 4.0	50	506251

* Fitting for all ProMinent® pH sensors with SN6 connection

Measuring, Control and Metering Systems for Swimming Pool Water Treatment

5.7.2

Photometer

Precise measurement results through high-quality interference filters

Photometers measure nearly all disinfectants and the pH value based on the photometric principle. They are portable, compact and make safe, simple measurement possible.

P_DT_0074_SW

The photometers DT1B, DT2C, DT3B and DT4B are used, among other things, as a reference method for calibrating the electrochemical sensors for chlorine, chlorine dioxide, fluoride, chlorite, H_2O_2 , bromine and ozone. They have been adapted to today's requirements and can be used in almost all areas of water analysis. High-quality interference filters and long-term stable LEDs are used as the light source in the high-precision optics. The entire measuring unit is maintenance-free. Precise and reproducible analysis results are achieved with minimum time and effort. The units are winning customers over with their excellent operating convenience, ergonomic design, compact dimensions and ease of use.

Your benefits

- Portable and compact
- Simple to operate with text support
- Safe, simple measurement of chlorine, chlorine dioxide, fluoride, chlorite, H₂O₂, bromine, ozone, pH and trichloroisocyanuric acid
- Can be calibrated
- Memory function for the last measurements
- Backlit display
- Real-time clock
- Countdown
- Watertight, degree of protection IP 68

Technical details

Measuring ranges of the DT1B:

- 0.05... 6.0 mg/l free chlorine (DPD1) + total chlorine (DPD1+3)
- 5 ... 200 mg/l free chlorine (high range)
- 0.1 ... 13.0 mg/l bromine (DPD1)
- 0.05 ... 11 mg/l chlorine dioxide (DPD1)
- 0.03 ... 4.0 mg/l ozone (DPD4)
- 6.5 ... 8.4 pH (phenol red)
- 1 ... 80 mg/l cyanuric acid

Measuring ranges of the DT2C:

- 0.05 ... 2.0 mg/l fluoride
- 0.05... 6.0 mg/l free chlorine and total chlorine
- 0.05 ... 11.0 mg/l chlorine dioxide

Measuring ranges of the DT3B:

 \blacksquare 1 ... 50 / 40 ... 500 mg/l hydrogen peroxide (H₂O₂)

Measuring ranges of the DT4B:

- 0.03 ... 2.5 mg/l chlorite
- 0.05 ... 11 mg/l chlorine dioxide
- 0.05 ... 6 mg/l chlorine

Measuring tolerance: depending on the measured value and measuring method

Battery: 4 no. AA/LR6 batteries

Permissible ambient temperature range: 5...40 °C Relative humidity: 30 ... 90% (non-condensing)

Degree of protection: IP 68 Housing material: ABS Keypad: polycarbonate film

Dimensions: 190 x 110 x 55 mm (L x W x H)

Weight: 0.4 kg

Field of application

- Swimming pools
- Potable water
- Process water

5 Measuring, Control and Metering Systems for Swimming Pool Water Treatment

	Order no.
Photometer DT1B	1039315
Photometer DT2C	1039316
Photometer DT3B	1039317
Photometer DT4B	1039318

Photometers supplied with accessories, container vessels and reagents.

Consumable items

	Order no.
DPD 1 buffer, 15 ml	1002857
DPD 1 reagent, 15 ml	1002858
DPD 3 solution, 15 ml	1002859
Phenol red tablets R 175 (100 in each)	305532
Cyanuric acid tablets (100 in each)	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer during fluoride determination	1010382
3 spare cells: round cells with covers for DPD phenol red and cyanuric acid detection (DT1 and DT2B)	1007566
3 spare cells for fluoride detection (DT2A and B)	1010396
DPD reagent set, 15 ml each: 3 x DPD 1 buffer, 1 x DPD 1 reagent, 2 x DPD 3 solution	1007567
Chlorine dioxide tablets no. 1	1039732
Chlorine dioxide tablets no. 2	1039733
Chlorine HR tablets (100 off)	Chlorine_tablets
ACiDiTYiNG tablets (100 off)	AC_tablets

Spare parts

Chlorite Photometer

	Order no.
Stirrer for purging of chlorine dioxide (DT4)	1022754
3 spare cells: round cells with covers for DPD phenol red and cyanuric acid detection (DT1 and DT2B)	1007566

H_2O_2 measurement

	Order no.
Reagent for H ₂ O ₂ (DT3), 15 ml	1023636
Spare cell, 5x , for H ₂ O ₂ (DT3)	1024072

6.1 Overview of Membrane Technology

Systems for membrane filtration

In water treatment, membrane filtration is the process for removing particles and salts in the water ensuring the lowest operating costs. ProMaqua offers versatile and high-quality system technology in this field. This is complemented by the extensive ProMaqua® product range to produce customer-specific complete solutions.

Membrane filtration is a physical process to separate substances with the help of semi-permeable membranes. There are four types of processes, depending on the size of the particles/molecules to be removed:

- Microfiltration
- Ultrafiltration
- Nanofiltration
- Reverse osmosis

The following table shows the separation limits of the individual processes:

	Microfiltration	Ultrafiltration	Nanofiltration	Reverse osmosis
Particle size	> 0.1 µm	0.1 – 0.01 μm	0.01 – 0.001 μm	< 0.001 µm
Particle type	Suspended particles, colloidal turbidity, oil emulsions	Macromolecules, bacteria, cells, viruses, proteins	Low-molecular organic compounds, ions	lons

ProMaqua experts, with their detailed industry knowledge, are not only able to put together the optimum system for the relevant application but also deliver complete water treatment solutions from one source, supported by the extensive ProMinent product range.

6.2 Performance Overview of Ultrafiltration

Ultrafiltration is a membrane process which is increasingly used in water treatment to separate undesired water components. Parasites, bacteria, viruses and high-molecular organic substances as well as other particles are retained.

The applications of ultrafiltration are widespread and may include different types of water.

Typical applications include drinking water, river water, process water, swimming pool water, salt water and waste water

The tasks range from potable water purification to meet physical and microbiological limit values in accordance with the German Drinking Water Ordinance up to the pre-treatment of seawater for desalination by reverse osmosis.

The systems are matched to a specific task by individually selecting the membrane type and the operating mode. ProMaqua® uses extremely robust and resistant UF membranes and the dead-end principle to ensure optimisation with regard to investment costs, required space and operating costs. With this selection, all raw waters with the exception of waste water can be filtered largely without using chemicals.

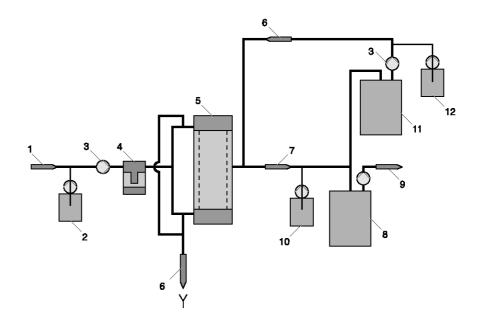
The dead-end operation represents the standard operating mode. The raw water flows into the capillaries. The pure water (filtrate) passes through the membrane while the other constituents are retained on the surface of the membrane.

The constituents form a layer on the membrane. The membrane is backwashed fully automatically in regular intervals to remove the filter cake.

Ultrafiltration systems basically consist of:

- Stainless steel or high-grade coated steel rack
- Pre-filter to protect the membranes, if required. This filter can optionally be designed as a backwashing filter.
- UF membrane modules
- Pneumatically controlled valves made of high-quality materials
- Electronic pressure measurement
- Filtration pump and backwash pump with frequency converter made of suitable high-quality materials
- Magnetically inductive flow metering to control the flow rates for filtration and backwashing.
- Integrated filling system for the backwash water tank. The backwash water tank is also integral to small systems. With larger systems, tanks from our product range can be integrated or an application-specific solution found depending on the customer's requirements.
- PLC control with touch screen panel or microprocessor control unit.
 The PLC control simultaneously monitors all important parameters, such as pressure, pressure difference and flow rates. This ensures that the membranes are optimally protected. The control of preand post-treatment processes can be integrated, if required.

Advantages of ultrafiltration systems


- Filtrate values of less than 0.1 NTU independent of the turbidity of the raw water.
- Molecular weight cut off of the diaphragms (MWCO) approx. 100 kDa (kilodalton).
- Best possible retention rates for bacteria (99.9999 %) and viruses (99.99 % based on MS2 phages).
- Very easy to use and simple to combine with other systems owing to PLC Programmable Logic Controller with touch screen.
- Optimum operating processes due to modern measuring and control technology.
- Complete solutions with perfectly coordinated pre- and post-treatment are available on request.

Areas of application of ultrafiltration systems

Typical areas of application include the removal of particles, turbidity and pathogens in public or private potable water supplies. Ultrafiltration is predominantly used for the treatment of fresh water, in particular surface water, spring water or well water. In principle, brackish water and salt water can also be treated, e.g. as pre-treatment for subsequent desalination by nanofiltration or reverse osmosis. Further areas of application include the treatment of swimming pool water, process water from the food and beverage industry.

A typical general system layout is shown below:

P_PMA_UO_0008_SW

Our engineers use their wide experience in water treatment to determine the ultrafiltration system to meet the specific raw water requirements. If desired and/or required, the best-suited pre- and post-treatment is also defined. Numerous further ProMinent® and ProMaqua® products are available for this purpose. Thus, customers are offered a complete package of solutions from one single source.

The filtration capacity of ultrafiltration systems ranges from 1 to 80 m³/h. Other capacities are available on request. Please contact us, we will be glad to assist you.

Smart Disinfection

Raw water Optional pre-treatment

3 Pump
4 Filter
5 Module(s)
6 Backwash water
7 Filtrate
8 Filtrate tank
9 Consumer
10 Post-treatment
11 Backwash water tank
12 Metering

6

Membrane Technology and Membrane Filtration

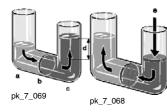
Performance Overview of Nanofiltration

Partial desalination for industrial applications - compact and cost-effective Permeate outputs from 1 to 50 m³/ h, higher outputs possible on request

As a nanofiltration system, the Dulcosmose® NF, a compact and value-for-money unit, can take over partial desalination in industrial applications. Maximum permeate output at low operating pressures ensures low investment and operating costs thanks to the latest "ultra low pressure" diaphragm.

Equipped with the latest generation of "ultra low-pressure" diaphragms, this system achieves maximum permeate performance with low operating pressures and high outputs, thereby lowering investment and operating costs.

As the system runs with low operating pressures, the entire system can be fitted with inexpensive PVC pipework. This system is also available with an integral, semi-automated cleaning system and permeate and/or raw water flushing option.


The system can easily be adapted to meet specific customer requirements. Pipework material, other types of diaphragm for enhanced salt retention or discolouration, integration of measuring and control technology (such as conductivity, redox potential or pH measurement) and metering technology (in pre - and post-treatment) to visualisation of the entire process with peripheral components on a PLC.

Your benefits

- Efficient operation with a low pressure diaphragm with outputs of up to 85% and high salt retention rates of up to 90% (depending on the type of diaphragm used).
- Reduced maintenance and service costs, as well as long diaphragm service lives, thanks to integrated cleaning concepts and flushing options.
- Optional permeate flushing of the entire system, including the diaphragms, after switching off to avoid deposits and extend the life of the diaphragms.
- Best ProMinent manufacturing quality: High proportion of in-house manufacturing.
- Pure quality: Use of long-life, high-quality components.
- Service-friendly construction of systems on a corrosion-resistant powder-coated steel or stainless steel frame.
- Simple and safe to operate: Microprocessor control with direct connection option for peripheral system components and integrated conductivity measurement with plain text display in the graphic display.
- One-stop shop: no interface problems, smooth running with short times between definition of the task to joint commissioning and on-site system supervision with our global subsidiaries.

Technical details

- Turnkey systems constructed on a high-quality, double powder-coated steel or stainless steel frame.
- Highly efficient low-pressure diaphragms with maximum output and system retention rates, built into epoxy-glass resin or stainless steel pressure pipes
- Pre-filter 5 μm with manometer for determining differential pressure
- Pressure switch to protect the high-pressure pump
- Flow meter to display permeate, concentrate and concentrate return volume
- Semi-automatic cleaning system for chemical module cleaning for long module service lives
- Central control for the entire system and peripheral components by the company's own microprocessor controller with graphic display and integrated temperature-compensated conductivity measurement.
- Optional permeate flushing of the entire system, including the diaphragms, after switching off
 - 2 switching inputs for level control of the cleaning tank
 - 2 switching inputs for level control of the permeate tank
 - Pause switching input for external On/Off
 - External fault switching input
 - Temperature measuring input (PT 100)
 - Active permeate valve output (filling of cleaning tank)
 - Active output for flushing valve for initial permeate disposal (depending on conductivity), raw water, permeate and interval flushing (idle time management)
 - Active output for controlling a metering pump (anti-scalant)
 - Analogue output 0/4...20 mA conductance
- Optional industrial PLC with touch panel and process visualisation

- a Diluted solution (permeate)
- b Semi-permeable membrane
- c Concentrated solution (concentrate)d Hydrostatic head corresponding to
- the osmotic product
- e Pressure

0-----

Nanofiltration

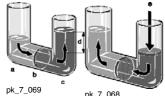
Field of application

- Low-cost alternative to reverse osmosis systems for special desalination tasks, such as the elimination of multiple charged ions or the removal of dyes
- Partial water softening or water softening in public drinking water
- Partial desalination in the chemical and pharmaceutical industry, food and beverage industry, metal processing industry and in electroplating

Nanofiltration is based on the same principle as reverse osmosis. The difference: The separation limit is slightly lower. Admittedly this type of membrane filtration retains ions dissolved in water, but to a significantly lesser extent than with reverse osmosis. Ultimately that saves operating costs.

Typical salt retention rates are around 80 – 90%. Multi-value ions (e.g. Ca and Mg) are retained better than single-value ions (e.g. Na, K) so that nanofiltration systems are often also used as an alternative to traditional water softening.

In principle with nanofiltration, the raw water to be softened is introduced into a chamber, separated by a semi-permeable diaphragm. An artificial pressure is generated in the chamber against the osmotic pressure gradient. The diaphragm is permeable to pure water and smaller ions. All other components of the water are retained. This produces partially softened water (permeate) and a concentrated solution (concentrate). ProMaqua uses high-quality nanofiltration diaphragms for this process.


6.4 Performance Overview of Reverse Osmosis

Reverse osmosis is a sub-sector within membrane filtration. It is the process with the highest separation limit and represents the reversal of the natural process of osmosis. It is therefore used as a method for desalinating aqueous solutions. With suitable high-performance diaphragms, it is possible today to remove over 99% of all salts from an aqueous solution.

In principle with reverse osmosis, the raw water to be softened is introduced into a chamber, separated by a semi-permeable diaphragm. An artificial pressure is generated in the chamber against the osmotic pressure gradient. As the diaphragm is only permeable to pure water, not to the ions and other particles dissolved in it, a proportion of pure desalinated water (permeate) and a proportion of concentrated solution (concentrate) is produced from the raw water. ProMaqua uses high-quality low-pressure diaphragms for this process.

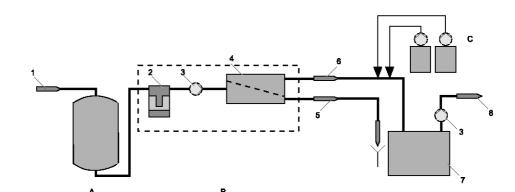
Basically, Dulcosmose® Reverse Osmosis Systems Consist of:

- Stainless steel, PP or powder-coated steel frame
 Pre-filter 5 μm
 - High-quality inlet valve, made of appropriate materials, depending on the salt content of the raw water
 - Pressure switch to protect the high-pressure pump
 - High-pressure pump, made of suitable high-grade materials, depending on the salt content of the raw water
 - Low-pressure diaphragms, designed as spiral winding modules, integrated into epoxy-glass resin pressure pipes
 - Float flow meter and manometer
 - Stainless steel control and regulating valves to regulate pressure and concentrate
 - ProMaqua's own conductivity measuring cell and reverse osmosis control with diverse programming options also for controlling external pre- or post-treatment components
 - Semi-automatic chemical cleaning system

- a Diluted solution (permeate)
- Semi-permeable membrane
- c Concentrated solution (concentrate)
- Hydrostatic head corresponding to the osmotic product
- e Pressure

Osmosis Reverse Osmosis

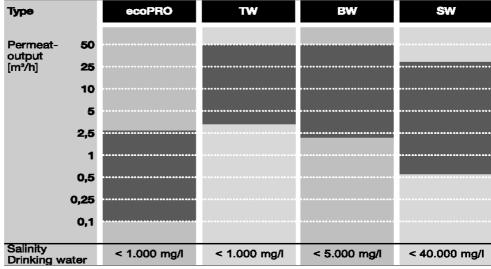
Advantages of Dulcosmose® Reverse Osmosis Systems


- Simple and reliable operation, thanks to modern microprocessor control with integrated conductivity measurement and clear text display of the operating status
- Efficient operation with pure water output of up to 85% and separation of more than 99% of dissolved ions
- Minimal energy consumption by the use of "low energy" reverse osmosis diaphragms and energy recovery from the concentrate flow (salt water desalination)
- Long service lives of the diaphragms, thanks to integrated cleaning concept and permeate and/or raw water flushing option
- Well thought-out, service-friendly construction of the systems on stainless steel or PP frames or made of powder-coated steel
- Minimal investment and operating costs, as components are used, optimised and matched to the individual case
- On request, complete solutions with precisely coordinated pre- and post-treatment, such as ProMinent
 metering and measuring and control technology, i.e. simple networking, perfect operation and overall
 monitoring of the different components of the system

Applications of Dulcosmose® Reverse Osmosis Systems

Typical applications are desalination duties in municipal or private potable water supply, in the chemical and pharmaceutical industries, food and beverage industry, metal processing industry, electroplating, in boiler feed water treatment and in power stations, for example.

A typical general plant diagram is shown below:


pk_7_067

Basically, three types of raw water with different salt contents can be considered for desalination:

- Potable water (typically up to 1,000 mg/l)
- Brackish water (typically up to 2,000 5,000 mg/l)
- Sea water (typically higher than 35,000 mg/l)

Our engineers use their years of experience in the treatment of this raw water to determine - based on the particular raw water analysis – the optimum version of reverse osmosis plant for the customer. At the same time, the most suitable pre-treatment and post-treatment stages are selected using other ProMinent® products. So a complete package is put together for the customer, from a single source. One of our specialities here is the supply of complete plants installed in a standard transport container.

ProMaqua also has wide experience in building other special plants, e.g. two-pass plants for higher permeate quality requirements. Please contact us – we'll be happy to advise you.

P_PMA_MT_0002_SW

Raw water

Module(s)

Permeate

Concentrate

Permeate tank

2 Filter3 Pump

5

6

7

8 UserA Pre-treatmentB Reverse osmosisC Post-treatment

6.5	Questionnaire							
6.5.1	Questionnaire on the Design of a UF System							
Application:	Drinking water production							
	Process water for food/beverage industry							
	Circulation water for swimming pools							
	Flushing water for swimming pools							
	Other:							
Type of raw water	Drinking water							
	Surface water (lake, river water)							
	Source water							
	Ground water							
	Brackish water, sea water							
• • •	se state maximum (peak), minimum and avera	•						
Clear water requirement:		Chloride:						
Clear water requirement:	· ·	Iron in solution:						
Temperature:	°C	Particular iron:						
Turbidity:	NTU	Manganese in solution:						
COD:	ppm	Particular manganese:	ppm					
TOC/DOC:	ppm	Fluctuations? Yes	No □					
Total hardness:	°dH							
Remarks (current pre-tr	eatment, special requirements)							

P_PMA_MT_0001_SW

_

6 Membrane Technology and Membrane Filtration

6.5.2 Questionnaire on the Design of an RO System

Clean water requirement:	Clean water requirement:		_ m³/h	Available space HxWxD:	m
Required	Clean water requirement:		_ m³/day	Location of the system:	Floor
Clean water pressure: bar Existing clean water pump: m/h bar bar camperature, min/max: "C Lift yes mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo	Operating hours:		_ h/day	Location of the users:	Floor
Existing clean water pump: m²/h bar Required			Existing clean water tank:	m³	
Base	clean water pressure:		_ bar	Existing class water suspens	3 <i>1</i> -
Lift	Raw water				
Required quality of clean water:			_ ℃		&
Required quality of clean water: Conductivity:	·			· ·	_
Door dimensions	Required quality of clea	n water:		nc) <u> </u>
Door dimensions	O and the state of		0/	H x W x D:	mm
H x W	Conductivity:		_ μS/cm	Door dimensions	
Drinking Water Directive Germ-free and sterile Lifting capacity:	pH value:		_	H x W	mm
Drinking Water Directive □ Lifting capacity: t Germ-free and sterile □ Lifting capacity: t Intended use of clean water: Raw water pressure: bar Raw water connection: - Clean water pipes available yes □ available yes □ Brackish water □ Clean water pipes available Well water □ Lake water □ Or Mains voltage: V/Hz Fluctuations: yes □ State fluctuations: yes □ mg/l Conductivity: µS/cm HCO₂: mg/l pH value: SO₄: mg/l Ca: mg/l NO₃: mg/l K: mg/l NO₃: mg/l K: mg/l F: mg/l Na: mg/l CO₂ (free): mg/l Sr: mg/l COD*: mg/l Mn: mg/l COD*: mg/l	Destroistanist surling				
Drinking Water Directive □ Lifting capacity: t Intended use of clean water: Raw water pressure: bar Raw water connection: " Clean water pipes available yes □ Intended use of clean water: No □ Drinking water □ Well water □ Brackish water □ Lake water □ or □ Huctuations: yes □ State fluctuations: yes □ Conductivity: µs/cm HCO₂: mg/l pH value: SO₄: mg/l Ca: mg/l NO₃: mg/l K: mg/l NO₃: mg/l K: mg/l F: mg/l Na: mg/l CO₂ (free): mg/l Sr: mg/l COD': mg/l	Bacteriological quality:			•	_
National Color State fluctuations: Paw water pressure:	-				
Raw water connection: Type of raw water: Clean water pipes available yes	Germ-free and sterile			Lifting capacity:	t
Type of raw water: Clean water pipes available yes □ □ Drinking water □ □ Material: Ø Brackish water □ □ -□ · V/Hz Lake water □ □ Wains voltage: V/Hz Fluctuations: yes □ □ □ □ V/Hz State fluctuations: Conductivity: µS/cm HCOg: mg/l pH value: SOg: mg/l Ca: mg/l Cl: mg/l Mg: mg/l NOg: mg/l K: mg/l F: mg/l Na: mg/l COg: (free): mg/l Sr: mg/l COD': mg/l Mn: mg/l COD': mg/l	Intended use of clean wa	ter:		Raw water pressure:	bar
Type of raw water: available yes □ no □ Drinking water Material: Ø Ø Brackish water □ Lake water or □ □ □ Wains voltage: W/Hz White water or □ Wains voltage: W/Hz Fluctuations: yes □ no □ □ Mains voltage: W/Hz State fluctuations: Conductivity: □ μS/cm				Raw water connection:	
Drinking water No Well water Ø Brackish water — - Lake water Mains voltage: V/Hz Fluctuations: yes — no Mains voltage: V/Hz State fluctuations: yes — mg/l Conductivity: µS/cm HCO₃: mg/l mg/l mg/l Ph value: SO₄: mg/l mg/l mg/l mg/l Ca: mg/l NO₃: mg/l				Clean water pipes	
Drinking water Well water Ø Brackish water — Lake water — or — Huctuations: — State fluctuations: — Conductivity: — µS/cm HCO3: pH value: — Ca: — mg/l Cl: Mg: — mg/l NO3: K: — mg/l F: Na: — mg/l PO4: mg/l Sr: — mg/l SlO2: mg/l Mn: —	Type of raw water:			available ye	
Brackish water	Drinking water			nc) [
Brackish water □ Lake water □ or	Well water			Material:	Ø
or	Brackish water				
Fluctuations: State fluctuations: Conductivity: μS/cm HCOg: mg/l pH value: SO4: mg/l Ca: mg/l Cl: mg/l Mg: mg/l NO3: mg/l K: mg/l F: mg/l Na: mg/l PO4: mg/l Ba: mg/l CO2 (free): mg/l Sr: mg/l SlO2: mg/l Fe: mg/l COD*: mg/l Mn: mg/l COD*: mg/l					
State fluctuations: Conductivity: μS/cm HCO₂: mg/l pH value: SO₄: mg/l Ca: mg/l Cl: mg/l Mg: mg/l NO₂: mg/l K: mg/l F: mg/l Na: mg/l PO₄: mg/l Ba: mg/l CO₂ (free): mg/l Sr: mg/l SlO₂: mg/l Fe: mg/l COD*: mg/l Mn: mg/l *COD*: mg/l	or			Mains voltage:	V/Hz
Conductivity: μS/cm HCO3: mg/l pH value: SO4: mg/l Ca: mg/l Cl: mg/l Mg: mg/l NO3: mg/l K: mg/l F: mg/l Na: mg/l PO4: mg/l Ba: mg/l CO2 (free): mg/l Sr: mg/l SIO2: mg/l Fe: mg/l COD*: mg/l Mn: mg/l COD*: mg/l	Fluctuations:	-			
pH value:	State fluctuations:				
Ca: mg/l CI: mg/l Mg: mg/l NO3: mg/l K: mg/l F:	Conductivity:		_ μS/cm	HCO ₃ :	mg/l
Mg: mg/l NO ₃ : mg/l K: mg/l F: mg/l Na: mg/l PO ₄ : mg/l Ba: mg/l CO ₂ (free): mg/l Sr: mg/l SIO ₂ : mg/l Fe: mg/l COD*: mg/l Mn: mg/l	pH value:		_	SO ₄ :	mg/
K: mg/l F: mg/l Na: mg/l PO4: mg/l Ba: mg/l CO2 (free): mg/l Sr: mg/l SiO2: mg/l Fe: mg/l COD*: mg/l Mn: mg/l mg/l	Ca:		_ mg/l	Cl:	mg/l
Na:	Mg:		_ mg/l	NO ₃ :	mg/l
Ba: mg/l CO2 (free): mg/l Sr: mg/l SIO2: mg/l Fe: mg/l COD*: mg/l Mn: mg/l	K:		_ mg/l	F:	mg/l
Sr: mg/l SIO2: mg/l Fe: mg/l COD*: mg/l Mn: mg/l	Na:		_ mg/l	PO ₄ :	mg/
Fe: mg/l COD*: mg/l Mn: mg/l	Ва:	-	_ mg/l	CO ₂ (free):	mg/l
Mn: mg/l	Sr:		_ mg/l	SiO ₂ :	mg/l
COD shaming an demand	Fe:		_ mg/l	COD:	mg/l
Al: *COD = chemical oxygen demand	Mn:		_ mg/l		
	Al:		_ mg/l	*COD = chemical oxygen demand	

Smart Disinfection

6.6 Ultrafiltration System Dulcoclean®

6.6.1

6

Ultrafiltration Systems Dulcoclean® UF

Pure, crystal-clear potable water at all times

8 - 75 m³/h filtrate output

Ultrafiltration system Dulcoclean® UF reliably and safely uses diaphragm technology to remove turbidity, particles and microbiological contamination.

The ultrafiltration system Dulcoclean® UF is used in water treatment to separate the finest particles and turbidity. The diaphragms provides a sterile barrier, so that bacteria, parasites and viruses are safely removed from the water – even with fluctuating water quality, as can occur after heavy rainfall. The quality of the filtrate remains consistently good! In potable water treatment, the filtration process is ideally used before final disinfection.

In regular cycles, back washes are performed to prevent blockages in the modules. Cleaning is supported by the addition of chemicals, where necessary, and adapted to the raw water quality present

Your benefits

- Very high retention rates for bacteria and viruses (based on MS2 phages) of 99.999% and/or 99.99%
- Minimal consumption of energy and water by economical dead-end operation
- Maximum operational reliability due to fully automated system control with PLC and data storage and by user-friendly touch panel with clear process visualisation
- All relevant events are recorded electronically for system optimisation and can be easily evaluated.
- Constant filtrate output and efficient back flushing by speed-controlled filtration and backwash pumps
- Complete solutions with perfectly coordinated pre- and post-treatment and waste water treatment

Technical details

- Compact design can be installed in existing plant rooms or in a container
- Fitted with extremely resistant and shatter-proof PES ultrafiltration diaphragms

Field of application

- Municipal potable water treatment: Potable water is produced from surface, spring or well water.
- Food and beverage industry: Improved water quality.
- Desalination: Pre-treatment for downstream desalination plants (RO, NF or ion exchange)

Dulcoclean® ultrafiltration systems are suitable for use with the following water values in the feed:

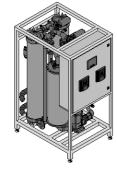
 pH range
 3.0 ... 12.0

 Free chlorine
 Max. 1.2 mg/l

 Turbidity
 0.5 ... 30 NTU

 DOC
 0.5 ... 12 mg/l

 Suspended solids
 50 mg/l


Deviating values influence the performance data and require a separate design of the system. Please contact our experts.

Dulcoclean [®] type	Filtration capacity* at 15 °C	Approx. backwash water per rinse	Raw/rinsing water connector	Approx. dimensions LxWxH [mm]
	m³/h	m³	[Rp/DN]	
UF 2	8 - 15	0.34	1 1/2 "/2 "	1,200 x 920 x 2,100
UF 3	12 - 22.5	0.51	2 "/DN 65	1,600 x 920 x 2,100
UF 4	16 - 30	0.68	2 "/DN 80	1,600 x 920 x 2,100
UF 6	24 - 45	1.02	DN 65/DN 80	2,000 x 920 x 2,100
UF 8	32 - 60	1.36	DN 80/DN 100	2,400 x 920 x 2,100
UF 10	40 - 75	1.70	DN 100/DN 125	2,800 x 920 x 2,100

^{*} Filtrate performance depends on the water quality

Systems with filtration capacity of more than 18 m³/h are designed on a project basis. Offers are available on request. Please contact us.

Optionally available are a fully automatic neutralisation system for the treatment of acid and alkaline backwash water, an integrity test as well as customised data logging.

P_PMA_MT_0003_SW

6.7 Reverse Osmosis System Dulcosmose®

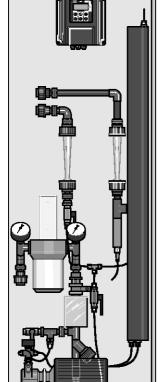
6.7.1 Reverse Osmosis Systems Dulcosmose® ecoPRO

Potable water desalination for industrial applications - compact and cost-effective Permeate output 100 - 2,700 l/h

Reverse osmosis system Dulcosmose[®] ecoPro ensures low investment and operating costs with maximum permeate output at low operating pressures.

As the system runs with low operating pressures, the entire system can be fitted with inexpensive PVC pipework and/or with pressure hoses. The system sizes ecoPRO 600-2,700 are also available with integrated semi-automatic cleaning system and raw water flushing option. The cleaning system can also be simply retrofitted. Equipped with the latest generation of "ultra low-pressure" diaphragms, this system achieves maximum permeate performance with low operating pressures, thereby lowering investment and operating costs.

Your benefits


- Efficient operation with low pressure diaphragms with outputs of up to 85% and salt retention rates of up to 97%
- Reduced maintenance and service costs as well as long diaphragm service lives, thanks to integrated cleaning concepts and flushing options
- Service-friendly construction of systems on a corrosion-resistant powder-coated steel or PP frame
- Simple and safe to operate: Microprocessor control with direct connection option for peripheral system components and integrated conductivity measurement with plain text display in the graphic display
- One-stop integration into customised complete solutions by perfectly coordinated pre- and post-treatment from ProMinent.

Technical details

- Types ecoPRO 100 1,500 are mounted on an extremely stable and corrosion-free PP frame.
- Larger types ecoPRO 1,800 2,700 are mounted on a high-quality, double powder-coated steel frame.
- Highly efficient operation with outputs of up to 85% and system retention rates of up to 97% integrated in epoxy-glass resin pressure pipes
- Pre-filter 5µm with manometer for determining differential pressure
- Pressure switch to protect the high-pressure pump
- Flow meter to display permeate and concentrate volume
- Optional semi-automatic cleaning system for chemical module cleaning for long module service lives
- 2 switching inputs for level control of the cleaning tank
- 2 switching inputs for level control of the permeate tank
- Pause switching input for external On/Off
- External fault switching input
- Temperature measuring input (Pt 100)
- Active permeate valve output (filling of cleaning tank)
- Active output for flushing valve for initial permeate disposal (depending on conductivity), raw water, permeate and interval flushing (idle time management)
- Active output for controlling a metering pump (anti-scalant)
- Analogue output 0/4 20 mA conductance

Field of application

- Power plants: Provision of boiler feed water
- Electroplating / metal processing industry: Provision of rinsing water
- Beverage industry: Provision of rinsing water, product water and process and return dilution water
- Food industry: Provision of rinsing water and process water
- Chemical industry: Provision of rinsing water and process water
- Provision of rinsing water and process water for laboratory purposes and industrial rinsing machines
- Pure water for laboratory applications, hospital uses (autoclaves, high-speed steam generators)
- Feed water for cooling and air conditioning plants (air humidification and air scrubbers)
- Process water in printing plants, the pharmaceutical or cosmetics industry
- Car-washing systems: Provision of rinsing water

pk_7_062_V2

1.1.2015 Product Catalogue 2015 6-

Dulcosmose® ecoPRO reverse osmosis systems on PP rack; capacity range 100-1,500 l/h

This range is the cost-effective standard system for modern potable water desalination. Equipped with the latest generation of "ultra low-pressure" membranes, these systems achieve maximum permeate capacity at low operating pressures, thereby ensuring reduced investment and running costs. The low operating pressures enable the systems to be fitted cost-effectively with PVC pipes or pipes with pressure hoses throughout.

The ecoPRO 600-1500 models are additionally available with an integrated semi-automatic cleaning system and raw water flushing option. The semi-automatic cleaning system can also be simply retrofitted.

The ecoPRO 100-1500 range was designed for the following values in feed water:

Max. salt content ecoPro 100-500 650 mg/l* Max. salt content ecoPro 600-1,500 1,000 mg/l* pH range 3.0 ... 10.0 Silt density index max. Free chlorine max. 0.1 mg/l Total Fe, Mn max. 0.2 mg/l Total hardness max. 0.1 °dH Bacteria count max. 100 KBE/ml Turbidity max. 0.5 NTU COD max. 5 mg/l**

* Differing salinities affect the performance data accordingly

Systems with 2.5 or 4" diaphragms, system salt retention 90-97%

Plant	Permeate capacity at 15 °C water temperature	Number of 2.5" and 4" membranes	Connected load	Dimensions H x W x D	Weight
	l/h	No.	kW	mm	kg
ecoPRO 100	100	1	0.37	1,400 x 500 x 320	47
ecoPRO 200	200	2	0.55	1,400 x 500 x 320	63
ecoPRO 300	300	1	1.10	1,500 x 600 x 400	88
ecoPRO 550	550	2	1.10	1,500 x 600 x 400	112
ecoPRO 600	600	2	1.50	1,650 x 700 x 720	167
ecoPRO 900	900	3	1.50	1,650 x 700 x 720	192
ecoPRO 1200	1,200	4	1.50	1,650 x 700 x 720	217
ecoPRO 1500	1,500	5	2.20	1,650 x 700 x 720	243

^{**} As for O₂

P_PMA_UO_0020_SW1

Dulcosmose® ecoPRO reverse osmosis systems on powder-coated steel rack; capacity range 1,800-2,700 l/h

This range is the standard model for modern potable water desalination. Equipped with the latest generation of "ultra-low-pressure" membranes, these systems guarantee maximum permeate output at low operating pressures and thus low investment and operating costs. The low operating pressures enable cost-effective PVC pipes to be used. These systems are also available with an integrated semi-automatic cleaning system and with raw water flushing option.

The ecoPRO 1800-2700 range was designed for the following values in feed water:

Salt content max.	1,000 mg/l*
pH range	3.0 10.0
Silt density index max.	3
Free chlorine max.	0.1 mg/l
Total Fe, Mn max.	0.2 mg/l
Total hardness max.	0.1 °dH
Bacteria count max.	100 KBE/m
Turbidity max.	0.5 NTU
COD max.	5 mg/l**

- * Differing salinities affect the performance data accordingly
- ** As for O_2

Systems with 4" diaphragms, system salt retention 90-97%

Plant	Permeate capacity at 15 °C water temperature	Number of 4" membranes	Connected load	Dimensions H x W x D	Weight
	l/h	No.	kW	mm	kg
ecoPRO 1800	1,800	6	2.2	1,750 x 2,600 x 750	260
ecoPRO 2400	2,400	8	3.0	1,750 x 2,600 x 750	299
ecoPRO 2700	2,700	9	3.0	1,750 x 3,500 x 750	315

6.7.2

6

Reverse Osmosis Systems Dulcosmose® TW

Potable water desalination for industrial applications - compact and cost-effective Permeate output 3 - $50 \text{ m}^3\text{/h}$

Reverse osmosis system Dulcosmose® TW is the all-purpose model for modern potable water desalination. Maximum permeate output at low operating pressures ensures low investment and operating costs.

As the system runs with low operating pressures, the entire Dulcosmose® TW can be fitted with inexpensive PVC pipework. This system is also available with an integral, semi-automated cleaning system and permeate and/or raw water flushing option. Equipped with the latest generation of "ultra low-pressure" diaphragms, this system achieves maximum permeate output with low operating pressures, thereby lowering investment and operating costs.

The system is very adaptable to specific customer requirements. Pipework material, other types of diaphragm for enhanced salt retention, integration of measuring and control technology and metering technology to visualisation of the entire process with peripheral components via a PLC.

Your benefits

- Efficient operation with low pressure diaphragms with outputs of up to 85% and high salt retention rates of up to more than 99% (depending on the type of diaphragm used)
- Reduced maintenance and service costs as well as long diaphragm service lives thanks to integrated cleaning concepts and flushing options, such as permeate flushing
- Service-friendly construction of systems on a corrosion-resistant powder-coated steel or stainless steel frame
- Simple and safe to operate: Microprocessor control with direct connection option for peripheral system components and integrated conductivity measurement with plain text display in the graphic display
- One-stop shop: no interface problems, smooth running with short times between definition of the task to joint commissioning and on-site system supervision with our global subsidiaries.

- Turnkey systems constructed on a high-quality, double powder-coated steel or stainless steel frame
- Highly efficient low-pressure diaphragms with maximum output and system retention rates of over 99% integrated in epoxy-glass resin pressure pipes
- Pre-filter 5µm with manometer for determining differential pressure
- Pressure switch to protect the high-pressure pump
- Flow meter to display permeate, concentrate and concentrate return volume
- Semi-automatic cleaning system for chemical module cleaning for long module service lives
- 2 switching inputs for level control of the cleaning tank
- 2 switching inputs for level control of the permeate tank
- Pause switching input for external On/Off
- External fault switching input
- Temperature measuring input (PT 100)
- Active permeate valve output (filling of cleaning tank)
- Active output for flushing valve for initial permeate disposal (depending on conductivity), raw water, permeate and interval flushing (idle time management)
- Active output for controlling a metering pump (anti-scalant)
- Analogue output 0/4...20 mA conductance
- Optional industrial PLC with touch panel and process visualisation

Field of application

- Power plants: Provision of boiler feed water
- Electroplating / metal processing industry: Provision of rinsing water
- Beverage industry: Provision of rinsing water, product water and process and return dilution water
- Food industry: Provision of rinsing water and process water
- Chemical industry: Provision of rinsing water and process water
- Provision of rinsing water and process water for laboratory purposes and industrial rinsing machines
- Pure water for laboratory applications, hospital uses (autoclaves, high-speed steam generators)
- Feed water for cooling and air conditioning plants (air humidification and air scrubbers)
- Process water in printing plants, the pharmaceutical or cosmetics industry

The product range Dulcosmose® TW was designed for the following values in feed water:

1,000 mg/l* Salt content max. pH range 3.0 ... 10.0 Silt density index max. Free chlorine max. 0.1 mg/l Total Fe, Mn max. 0.2 mg/l Total hardness max. $0.1\,^{\circ}dH$ Bacteria count max. 100 KBE/ml Turbidity max. 0.5 NTU COD max. 5 mg/l**

* Differing salinities affect the performance data accordingly

Systems with 8" diaphragms, system salt retention 90-97%

Plant	Permeate capacity at 15 °C water temperature	Number of 8" membranes	Connected load	Dimensions H x W x D
	l/h	No.	kW	mm
PRO 0300TW	3,000	3	3.0	1,800 x 4,000 x 1,000
PRO 0400TW	4,000	4	3.0	1,800 x 3,000 x 1,000
PRO 0500TW	5,000	5	4.0	1,800 x 4,000 x 1,000
PRO 0600TW	6,000	6	4.0	1,800 x 4,000 x 1,000
PRO 0700TW	7,000	6	5.5	1,800 x 4,000 x 1,000
PRO 0800TW	8,000	7	5.5	1,800 x 4,000 x 1,000
PRO 0900TW	9,000	7	7.5	1,800 x 4,000 x 1,000
PRO 1000TW	10,000	8	11.0	1,800 x 3,000 x 1,000
PRO 1100TW	11,000	9	11.0	1,800 x 4,000 x 1,000
PRO 1200TW	12,000	10	11.0	1,800 x 4,000 x 1,000
PRO 1300TW	13,000	11	11.0	1,800 x 4,000 x 1,000
PRO 1400TW	14,000	12	11.0	1,800 x 4,000 x 1,000
PRO 1500TW	15,000	12	11.0	1,800 x 4,000 x 1,000
PRO 2000TW	20,000	18	11.0	1,800 x 7,000 x 1,200
PRO 2500TW	25,000	24	15.0	1,800 x 7,000 x 1,200*
PRO 3000TW	30,000	28	18.5	1,800 x 7,000 x 1,200*
PRO 4000TW	40,000	34	22.0	1,800 x 7,000 x 1,200*
PRO 5000TW	50,000	48	22.0	1,800 x 7,000 x 1,200*

^{*} Separate cleaning tank

On request, these plants can also be supplied with different membrane types for further salt rejection, and with measuring and control equipment (conductivity, ORP, pH measurement) and metering equipment (in pre-treatment and post-treatment).

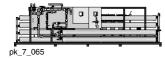
^{**} As for O₂

6.7.3

6

Reverse Osmosis Systems Dulcosmose® BW

Brackish water is transformed into drinking water


Permeate output 2,000 - 50,000 l/h.

Reverse osmosis system Dulcosmose® BW is the standard model for the modern desalination of brackish water. Equipped with the latest generation of "high rejection low-pressure" diaphragms, this system achieves maximum permeate output with moderate operating pressures, thereby lowering investment and operating costs.

A reverse osmosis system of type of BW has PVC pipework on the low-pressure side. The system has high-grade stainless steel (type DIN 1.4571) on the high-pressure side. Stainless steel pipes are welded under shielding gas and a forming gas atmosphere and subsequently passivated in a pickling bath. The integrated semi-automatic cleaning system with permeate and/or raw water flushing ensures exceptionally long diaphragm service lives, as scaling and fouling effects are minimised. The system is very adaptable to specific customer requirements. Pipework material, other types of diaphragm for enhanced salt retention, integration of measuring and control technology and metering technology to visualisation of the entire process with peripheral components via a PLC.

Your benefits

- Efficient operation with low pressure diaphragms with maximum output and salt retention rates of up to over 99%
- Reduced maintenance and service costs as well as long diaphragm service lives, thanks to integrated cleaning concepts and flushing options
- Service-friendly construction of systems on a corrosion-resistant powder-coated steel or stainless steel frame
- Simple and safe to operate: Central control of the entire system by microprocessor controller or industrial PLC with touch panel and process visualisation.
- Application-optimised design taking into account economic aspects, such as the durability of the diaphragms, energy efficiency and process automation
- One-stop shop: no interface problems, smooth running with short times between definition of the task to joint commissioning and on-site system supervision with our global subsidiaries

Technical details

- Turnkey systems constructed on a high-quality, double powder-coated steel or stainless steel frame.
- Highly efficient low-pressure diaphragms with maximum output and system retention rates of over 99% integrated in epoxy-glass resin pressure pipes
- Pre-filter 5µm with manometer for determining differential pressure
- Pressure switch to protect the high-pressure pump
- Flow meter to display permeate, concentrate and concentrate return volume
- Semi-automatic cleaning system for chemical module cleaning for long module service lives
- 2 switching inputs for level control of the cleaning tank
- 2 switching inputs for level control of the permeate tank
- Pause switching input for external On/Off
- External fault switching input
- Temperature measuring input (PT 100)
- Active permeate valve output (filling of cleaning tank)
- Active output for flushing valve for initial permeate disposal (depending on conductivity), raw water, permeate and interval flushing (idle time management)
- Active output for controlling a metering pump (anti-scalant)
- Analogue output 0/4...20 mA conductance
- Optional industrial PLC with touch panel and process visualisation

Field of application

Decentralised, public or private supply of potable water.

The product range Dulcosmose® BW was designed for the following values in feed water:

Silt density index max.3Free chlorine max.0.1 mg/lTotal Fe, Mn max.0.2 mg/l

Total hardness max. water must be chemically stabilised

 $\begin{tabular}{llll} \textbf{Bacteria count max.} & 100 \ KBE/ml \\ \textbf{Turbidity max.} & 0.5 \ NTU \\ \textbf{COD max.} & 5 \ mg/l^{**} \\ \end{tabular}$

 Deviating salt contents have a corresponding influence on the performance data.

** As for O₂

Systems with 8" diaphragms, system salt retention 95-99%

Plant	Permeate capacity at 25 °C water temperature	Number of 4" and 8" membranes	Connected load	Dimensions H x W x D
	I/h	No.	kW	mm
PRO 0200BW	2,000	9	4.0	1,800 x 3,500 x 750
PRO 0300BW	3,000	3	5.5	1,800 x 4,000 x 1,000
PRO 0400BW	4,000	4	5.5	1,800 x 3,000 x 1,000
PRO 0500BW	5,000	5	5.5	1,800 x 4,000 x 1,000
PRO 0600BW	6,000	6	7.5	1,800 x 4,000 x 1,000
PRO 0700BW	7,000	7	7.5	1,800 x 4,000 x 1,000
PRO 0800BW	8,000	8	15.0	1,800 x 4,000 x 1,000
PRO 0900BW	9,000	9	15.0	1,800 x 4,000 x 1,000
PRO 1000BW	10,000	10	15.0	1,800 x 4,000 x 1,000
PRO 1100BW	11,000	11	15.0	1,800 x 4,000 x 1,000
PRO 1200BW	12,000	12	15.0	1,800 x 5,000 x 1,000
PRO 1300BW	13,000	13	15.0	1,800 x 6,000 x 1,000
PRO 1400BW	14,000	14	15.0	1,800 x 5,000 x 1,000
PRO 1500BW	15,000	15	18.5	1,800 x 5,000 x 1,000
PRO 2000BW	20,000	21	18.5	1,800 x 6,000 x 1,200
PRO 2500BW	25,000	26	30.0	1,800 x 6,000 x 1,200*
PRO 3000BW	30,000	29	30.0	1,800 x 6,000 x 1,200*
PRO 4000BW	40,000	42	45.0	1,800 x 7,000 x 1,200*
PRO 5000BW	50,000	51	60.0	1,800 x 7,000 x 1,200*

^{*} Separate cleaning tank

On request, these plants can also be supplied with different membrane types for other salt rejection, and with measuring and control equipment (conductivity, ORP, pH measurement) and metering equipment (in pre-treatment and post-treatment).

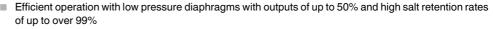
1.1.2015 Product Catalogue 2015 6-17

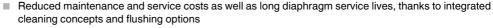
6.7.4

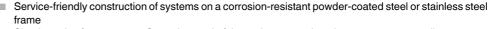
6

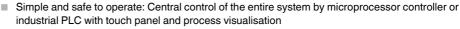
Reverse Osmosis Systems Dulcosmose® SW

Salt water is transformed into drinking water.


Permeate output 780 - 29,000 l/h




The reverse osmosis system Dulcosmose® SW is the standard model for modern desalination of salt water. Equipped with the latest generation of "high rejection low-pressure" diaphragms, this system achieves maximum permeate output with moderate operating pressures, thereby lowering investment and operating costs.


A reverse osmosis system of type of SW has PVC pipework on the low-pressure side. The high-pressure side of the system has a potable water-compatible, highly corrosion-resistant inner seal due to the high NaCl content. The integrated semi-automatic cleaning system with permeate and/or raw water flushing ensures exceptionally long diaphragm service lives, as scaling and fouling effects are minimised. The system can be adapted with ease to specific customer requirements. Pipework material, other types of diaphragm for enhanced salt retention, integration of measuring and control technology and metering technology to visualisation of the entire process with peripheral components via a PLC. Everything can be selected at random. Optional for all systems: They can be fitted with a system for energy recovery from the concentrate flow. The latest generation of what are known as pressure controllers is used.

Your benefits

- Application-optimised design taking into account economic aspects, such as the durability of the diaphragms, energy efficiency and process automation
- One-stop shop: no interface problems, smooth running with short times between definition of the task to joint commissioning and on-site system supervision with our global subsidiaries
- Integrated energy recovery system based on state-of-the-art pressure controllers

Technical details

- Turnkey systems constructed on a high-quality, double powder-coated steel or stainless steel frame
- Highly efficient low-pressure diaphragms with maximum output and system retention rates of over 99% integrated in epoxy-glass resin pressure pipes
- Pre-filter 5µm with manometer for determining differential pressure
- Pressure switch to protect the high-pressure pump
- Flow meter to display permeate and concentrate volume
- Semi-automatic cleaning system for chemical module cleaning for long module service lives
- Central PLC of the entire system and peripheral components, adapted to customer requirements.

Field of application

Decentralised, public or private supply of potable water.

The product range Dulcosmose® SW was designed for the following values in feed water:

 Salt content max.
 40,000 mg/l*

 pH range
 3.0 ... 10.0

Silt density index max.3Free chlorine max.0.1 mg/lTotal Fe, Mn max.0.2 mg/l

Total hardness max. water must be chemically stabilised

* Differing salinities affect the performance data accordingly

** As for O₂

Plants with 4" and 8" membranes, salt rejection of the plants 99%

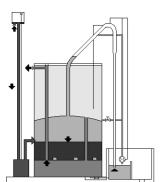
Plant	Permeate capacity at 25 °C water temperature	Number of 4" and 8" membranes	Connected load without energy recovery	Connected load with energy recovery	Dimensions H x W x D
	l/h	No.	kW	kW	mm
PRO 0078SW	780	6	5.5		1,800 x 3,500 x 1,000
PRO 0185SW	1,850	3	11.0		1,800 x 4,000 x 1,000
PRO 0240SW	2,400	4	15.0		1,800 x 4,000 x 1,000
PRO 0300SW	3,000	5	18.5	11.2*	1,800 x 4,000 x 1,000
PRO 0360SW	3,600	6	18.5	14.7*	1,800 x 4,000 x 1,000
PRO 0490SW	4,900	8	30.0	20.5*	1,800 x 5,000 x 1,200
PRO 0610SW	6,100	10	37.0	20.5*	1,800 x 6,000 x 1,200
PRO 0730SW	7,300	12	41.0	24.0*	1,800 x 5,000 x 1,400
PRO 0920SW	9,200	15	75.0	27.5*	1,800 x 6,000 x 1,500
PRO 0980SW	9,800	16	75.0	35.5*	1,800 x 5,000 x 1,500
PRO 1230SW	12,300	20	75.0	35.5*	1,800 x 6,000 x 1,500**
PRO 1470SW	14,700	24	90.0	41.0*	1,800 x 7,000 x 1,500**
PRO 1840SW	18,400	30	110.0	56.0*	1,800 x 7,000 x 1,500**
PRO 2210SW	22,100	36	132.0	66.0*	1,800 x 7,000 x 1,500**
PRO 2580SW	25,800	42	150.0	66.0*	1,800 x 7,000 x 1,500**
PRO 2900SW	29,000	48	180.0	90.0*	1,800 x 7,000 x 1,500**

Energy recovery by pressure exchanger technology

On request, these plants can also be supplied with different membrane types for other salt rejection, and with measuring and control equipment (conductivity, ORP, pH measurement) and metering equipment (in pre-treatment and post-treatment).

^{**} Separate cleaning tank

7 Sand Filter INTERFILT® SK


7.1

Sand Filter INTERFILT® SK

Economical water treatment with gravity filters - using the gravity of the water alone Filtration capacity $6.5 - 62.0 \, \text{m}^3\text{/h}$

The gravity filter INTERFILT® SK is an open sand filter system for extremely economical water treatment. The filter system operates with differential pressure-controlled backwashing and an integral backwashing water tank.

pk 7 029

The automatic gravity filter uses the principle of differential pressure and essentially consists of the cylindrical tank, its fittings, the automatic backwashing system with injector, the raw water feed and baffle tube, filter nozzles and filter filling unit

Your benefits

- No controls: The filter needs no moving parts, like valves, flow meter, controller or display equipment, for filtering/backwashing and post-rinsing
- No pumps: The required volume of backwashing water is stored in the storage tank below the filter, making a back-flushing pump redundant.
- No compressed air, pressurised water and electrical energy: The filter controls and performs all processes independently
- No operating personnel: The filter works fully automatically, without external intervention
- No wearing parts: No moving parts no wear and tear.

Technical details

- Material: Polyethylene PE-HD
- Filter material: Filter sand DIN EN 12904, other filter materials on request

The filter essentially consists of:

- Cylindrical tank
- Fittings
- Automatic backwashing system with injector
- Raw water feed and baffle tank
- Filter nozzles and
- Filter filling unit

Field of application

- Cooling water, partial flow filtration
- River water, process water and potable water treatment
- Removal of iron from well water
- Waste water cleaning to reduce the content of suspended matter, CSB, BSB₅ and phosphate (4th cleaning stage)

Optional additional equipment:

- Cover for cylindrical tank
- Frost protection insulation with supplementary electric heating
- Combined air/water backwashing
- PE-HD backwashing water sump tank
- Other options on request

7 Sand Filter INTERFILT® SK

Technical Data

Type list and capacity data

Туре	Filter diameter	Filter capacity	Back wash Water	Weight empty	Weight in operation
	mm	m³/h	~ m ³	~ t	~ t
SK- 9	900	6.5	1.4	1.2	4.5
SK- 12	1,200	11.5	2.5	1.5	7.1
SK- 15	1,500	18.0	4.5	1.9	10.5
SK- 18	1,800	26.0	5.5	2.3	15.0
SK- 21	2,100	35.0	8.5	2.8	19.5
SK- 24	2,400	46.0	10.0	3.0	25.0
SK- 28	2,800	62.0	14.0	3.5	30.0

Flow rate: Backwash intervals:	3 10 m/h Approx. 8 36 h
(depending on type and amount of pollutants)	PP
Head loss:	120 150 mbar
Clean water solids figure:	0 3 mg/l
(depending on raw water and filter material)	
Backwash flow rate::	
At the start	44 m/h
In the middle	37 m/h
At the end	30 m/h
Cylinder height:	4,500 mm
(same for all types)	
Overall height:	6,500 mm
Depending on filter diameter	
Backwash and refilling time:	13 15 min.
Filter sand in accordance with EN 12904	
- Height of bed	600 mm
- Grain size range	0.71 1.25 mm
Filter nozzles:	
– Type	Lamellar nozzle
- Material	PPN
- Slot width	0.2 mm

As system components are produced individually according to application, we will inform you of prices on request.

We reserve the right to change components and their construction, as long as these do not affect their performance or function.

Product catalogue 2015

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2015.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue
Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview